Convergent Stabilization Conditions of Discrete-time 2-D T-S Fuzzy Systems via Improved Homogeneous Polynomial Techniques
-
摘要: 通过利用改进的齐次多项式技术来研究了Roesser型二维T-S模糊系统的镇定设计问题. 首先, 提出了一种用来镇定该二维T-S模糊系统的一种新型非二次控制率, 并且通过应用两种改进的齐次多项式技术得到了保守性更小的镇定条件. 随着所选用的齐次多项式参数依赖矩阵度数的增加, 所得结果的保守性会越来越小. 其次, 为了继续减少保守性, 提出了一种新的右侧松弛变量引入方法, 该方法适合于齐次多项式情形. 最后, 仿真实验验证了所提方法的有效性.Abstract: This paper is concerned with the problem of stabilization of the Roesser type discrete-time 2-D T-S fuzzy system via some improved homogeneous polynomial techniques. First, a novel kind of non-quadratic control scheme is proposed to stabilize the underlying 2-D T-S fuzzy system, thus less conservative stabilization conditions are attained by applying two kinds of improved homogeneous polynomial techniques. As the degree of the homogeneous polynomially parameter-dependent matrix increases, these attained sufficient conditions may be asymptotically necessary in a convergent sense. Second, for the sake of further reducing conservatism, a new right-hand-side slack variables introducing approach which suits the homogenous polynomial setting is also proposed. Finally, a numerical example is provided to illustrate the effectiveness of the proposed methods.
计量
- 文章访问数: 1968
- HTML全文浏览量: 65
- PDF下载量: 897
- 被引次数: 0