摘要:
自动图像标识就是自动识别图像中的有意义目标并赋予其相应的语义关键词, 该过程虽然对于人类来说并不难, 但是对于计算机而言却是一项艰巨而有挑战性的任务. 鉴于人类识别物体通常是一个由粗到细的过程, 本文提出一种层次标识方案. 首先, 输入图像被自动分割成多个区域, 每个区域由支持向量机进行粗分类. 由于粗分类结果会直接影响后续细分类, 本文建立统计的上下文语义关系以修订不正确的粗标识. 接着为了对每个获得粗标识的区域进行细分类, 本文提出一种半监督期望最大化算法, 该算法不仅能为每一粗类别下的细类找到代表模式, 而且能对粗分类区域进行二次分类, 使其获得细标识. 最后我们再次应用上下文语义关系修订不合适的细标识. 为了证明上述识别方案的有效性, 我们开发了一个原型图像标识系统, 实验结果证明该层次标识方案是有效的.
Abstract:
Automatic image annotation, which aims at automatically identifying and then assigning semantic keywords to the meaningful objects in a digital image, is not a very difficult task for human but has been regarded as a difficult and challenging problem to machines. In this paper, we present a hierarchical annotation scheme considering that generally human's visual identification to a scenery object is a rough-to-fine hierarchical process. First, the input image is segmented into multiple regions and each segmented region is roughly labeled with a general keyword using the multi-classification support vector machine. Since the results of rough annotation affect fine annotation directly, we construct the statistical contextual relationship to revise the improper labels and improve the accuracy of rough annotation. To obtain reasonable fine annotation for those roughly classified regions, we propose an active semi-supervised expectation-maximization algorithm, which can not only find the representative pattern of each fine class but also classify the roughly labeled regions into corresponded fine classes. Finally, the contextual relationship is applied again to revise the improper fine labels. To illustrate the effectiveness of the presented approaches, a prototype image annotation system is developed, the preliminary results of which showed that the hierarchical annotation scheme is effective.