-
摘要: 提出了一种基于均值漂移(Mean Shift, MS)聚类的全极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)图像无监督分割算法. 已有的工作在将MS算法应用于全PolSAR图像分割时, 仅使用每个像素点的极化总功率值作为该像素点的特征值, 没有充分利用极化协方差矩阵或者相干矩阵所包含的完整的极化散射信息. 但是如果直接利用每个像素点的极化协方差矩阵作为特征向量, 则这些特征向量构成的空间不再是一个欧氏空间, 而原始的MS算法是定义在欧氏空间中的. 因此, 本文首先将每一个像素点的厄尔米特正定极化协方差矩阵也称为一个张量, 而且使用黎曼流形来描述该张量空间. 然后, 原始的MS算法被扩展到该张量空间中. 直接扩展得到的算法每一步具有明确的含义, 但是运算复杂度较高. 所以本文又进一步对该算法进行了简化, 从而得到了一个实用的分割算法. 通过使用真实的全PolSAR数据以及仿真数据进行实验, 结果验证了新方法的有效性.Abstract: We present an unsupervised segmentation algorithm for fully polarimetric synthetic aperture radar (PolSAR) data by using the mean shift clustering. The previous work using the span values of the PolSAR data as the features in the mean shift clustering, however, does not sufficiently exploit the full information contained in the polarimetric covariance matrix. When considering the polarimetric covariance matrices as the feature vectors, the traditional mean shift clustering in the Euclidean space is not applicable anymore, since these matrices do not form a Euclidean space. We first show that by regarding each Hermitian positive definite polarimetric covariance matrix at per pixel as a tensor, the tensor space can be represented as a Riemannian manifold. Then, the mean shift clustering is extended to the Riemannian manifold to explain the theoretical meanings of the tensor clustering and a practical segmentation algorithm based on the metric lying on the manifold is proposed. Experimental results using the real fully PolSAR data and simulated data verify the effectiveness of the proposed method.
计量
- 文章访问数: 1801
- HTML全文浏览量: 64
- PDF下载量: 1263
- 被引次数: 0