-
摘要: 工业过程运行控制的目的是实现反映过程整体运行性能的工艺指标. 将常规解耦内模控制(Internal model control, IMC)进行推广, 提出了优化过程运行的解耦IMC方法. 通过对广义解耦内模控制器的设计获得了具有高维解耦能力、鲁棒稳定性和抗干扰能力强的回路设定模型. 该模型能够响应系统的各种不确定性和干扰, 对回路设定值进行调整, 通过控制回路的输出跟踪调整后的设定值, 从而实现期望的工艺指标. 磨矿回路运行的解耦IMC设计实例及仿真验证了所提方法的有效性.Abstract: In industrial process operation, the purpose of control is to achieve the desired technique indices (TIs) which represent the performance of process operation. In this paper, an extended decoupling internal model control (IMC) method for optimal operation of industrial process is proposed. Via designing a generalized internal model controller, a control loop setting model is obtained, which has characteristics of high dimension decoupling, good robust stability and strong disturbance rejection. This setting model can auto-adjust the setpoints of lower level controllers in response to process uncertainties and disturbances. As long as the outputs of the basic loop track their adjusted setpoints, the desired TIs are achieved. An application in grinding circuit and several simulation studies are presented to demonstrate the proposed control approach.
计量
- 文章访问数: 2376
- HTML全文浏览量: 50
- PDF下载量: 1374
- 被引次数: 0