-
摘要: 提出用粒计算方法从关系数据库或信息系统中挖掘具有不同粒度大小的多维多层次关联规则. 首先, 基于粒计算的划分模型给出了从关系数据库或信息系统中进行知识发现的框架; 其次, 提出频繁k-项目集生成的粒计算方法; 最后, 对所提出的粒计算方法通过实际例子进行说明, 并选择两类不同数据集在给定不同支持度下进行测试, 以及与两种经典方法进行了比较. 测试结果表明所提出的粒计算方法有效. 而且借助粒计算使得关联规则的语义变得更加清晰和易于理解.Abstract: The main objective of this paper is to present granular computing algorithms of finding association rules with different levels of granularity from relational databases or information tables. Firstly, based on the partition model of granular computing, a framework for knowledge discovery in relational databases was introduced. Secondly, referring to granular computing, the algorithms for generating frequent k-itemsets were proposed. Finally, the proposed algorithms were illustrated with a real example and tested on two data sets under different supports. Experiment results show that the algorithms are effective and feasible. Moreover, the meanings of mining association rules based on granular computing are clearly understandable.
-
Key words:
- Granular computing /
- information granule /
- knowledge discovery /
- association rule
计量
- 文章访问数: 1930
- HTML全文浏览量: 78
- PDF下载量: 1887
- 被引次数: 0