-
摘要: 提出了一种基于轮廓线统计量的前景分割Markov随机场(Markov random field, MRF)模型. 和Grabcut等以往模型不同, 本文模型通过在分割标签的编码中加入对轮廓线方向的考虑, 将Gestalt知觉组织的原则加入分割约束中去, 从而使分割边界更为平滑. 作为前景分割和Gestalt知觉组织原则研究的基本框架, 本文模型的系统结构分为前景分割、注意力选择和信息整合三个子模块, 与相关神经生理研究的结论相一致. 最后, 分别给出了基于本文模型的自动和半自动前景分割实现, 结果好于Grabcut等相关算法的结果.Abstract: In this paper, we propose a Markov random field (MRF) based representation for the Gestalt law, and suggest using a message passing-like scheme to infer the segmentation. Different from other grabcut models, our MRF function is specially encoded to consider orientations along the contour, thus the Gestalt law is embedded into the inference. As a basic framework of the research in figure-ground separation and Gestalt law, our system is designed in reference to neurophysiology, and the architecture is composed of three modules: primal visual cortex (V1), extra-striate cortex (V2), and the interest selected region. To validate our method, we conduct experiments in both auto and interactive segmentation algorithm. The results are better than those of grabcut and other related algorithms.
计量
- 文章访问数: 2841
- HTML全文浏览量: 27
- PDF下载量: 1528
- 被引次数: 0