-
摘要: 多变量统计过程监控对于复杂工业过程是一种有效的故障检测和诊断技术. 最小二乘(或称潜空间投影)模型是多变量统计过程监控中常用的一种投影模型, 能够同时对过程数据和质量数据进行建模. 讨论了一种新的基于全潜空间投影模型的故障诊断技术. 全潜空间投影模型中有4个检测统计量. 提出了一种新的T2贡献图计算方法, 对于所有检测统计量, 得到了相应的贡献图算法. 为了确定一个变量是否发生了故障, 计算所有变量贡献图的控制限. 该技术可以将辨识到的故障变量分为与Y有关和与Y无关的两类. 基于Tennessee Eastman过程的案例研究表明了该技术的有效性.Abstract: Multivariate statistical process monitoring (MSPM) is an efficient data-driven fault detection and diagnosis approach forcomplex industrial processes. Partial least squares or projection tolatent structures (PLS) is one of the latent projection structuresused in MSPM, which uses process data X and quality data Y together. In this paper, we discuss a new fault diagnosis approachbased on total projection to latent structures (T-PLS). Four kindsof monitoring statistics are used in T-PLS, and a new definition ofvariable contributions to T2 of PLS is proposed. Then, definitions of variable contributions to all statistics are derivedto identify the faults. Control limits for contribution plots arecalculated to identify whether a variable is in abnormal situationor not. Further, the proposed method separates the identifiedvariables into faulty variables related to Y and unrelated to Y more clearly than conventional method. A case study on TennesseeEastman process (TEP) indicates the efficiency of the proposed approach.
计量
- 文章访问数: 2846
- HTML全文浏览量: 115
- PDF下载量: 1732
- 被引次数: 0