摘要:
化工厂中过程数据的质量严重影响到来自例如性能监控, 在线优化和控制等活动所获得的效益和性能. 由于许多化工过程通常表现为非线性动态特性, 例如扩展卡尔曼滤波(EKF)和非线性动态数据协调(NDDR)等技术已经被发展出来改进数据的质量. 近期, 迭代非线性动态数据协调(RNDDR)技术已被提出, 该技术结合了EKF和NDDR技术的优点. 但是, RNDDR技术不能够处理具有显著误差的测量值. 本文中, 一种非线性动态系统中迭代的同步数据协调与显著误差检测的支持向量(SV)回归方法被提出. SV回归是一种经验风险和结构风险间的妥协, 并且对于数据协调来说, 其对随机误差和显著误差是鲁棒的.通过将结构风险取代RNDDR中的极大似然估计并使其最小化, 我们的方法不仅可以实现迭代非线性动态数据协调, 还可以同时实现显著误差检测. 本文中的非线性动态系统仿真结果显示出, 所提出的方法在迭代实时估计框架下, 对于非线性动态系统的同步数据协调和显著误差检测是鲁棒、稳定并且精确的. 该方法也可以提供更好的控制性能.
Abstract:
The quality of process data in a chemical plantsignificantly affects the performance and benefits gained fromactivities like performance monitoring, online optimization, andcontrol. Since many chemical processes often show nonlineardynamics, techniques like extended Kalman filter (EKF) and nonlineardynamic data reconciliation (NDDR) have been developed to improvethe data quality. Recently, the recursive nonlinear dynamic datareconciliation (RNDDR) technique has been proposed, which combinesthe merits of EKF and NDDR techniques. However, the RNDDR techniquecannot handle measurements with gross errors. In this paper, asupport vector (SV) regression approach for recursive simultaneousdata reconciliation and gross error detection in nonlinear dynamicalsystems is proposed. SV regression is a compromise between theempirical risk and the model complexity, and for data reconciliationit is robust to random and gross errors. By minimizing theregularized risk instead of the maximum likelihood in the RNDDR, ourapproach could achieve not only recursive nonlinear dynamic datareconciliation but also gross error detection simultaneously. Thenonlinear dynamic system simulation results in this paper show thatthe proposed approach is robust, efficient, stable, and accurate forsimultaneous data reconciliation and gross error detection innonlinear dynamic systems within a recursive real-time estimation framework. It can also give better performance of control.