Data-based Optimal Control for Discrete-time Zero-sum Games of 2-D Systems Using Adaptive Critic Designs
-
摘要: 提出了基于一种迭代自适应评判设计(ACD)算法解决一类离散时间Roesser型2-D系统的二人零和对策问题. 文章主要思想是采用自适应评判技术迭代的获得最优控制对使得性能指标函数达到零和对策的鞍点. 所提出的ACD可以通过输入输出数据进行实现而不需要系统的模型. 为了实现迭代ACD算法, 神经网络分别用来近似性能指标函数和计算最优控制率. 最后最优控制策略将应用到空气干燥过程控制中以证明其有效性.Abstract: In this paper, an iterative adaptive critic design (ACD) algorithm is proposed to solve a class of discrete-time two-person zero-sum games for Roesser type 2-D system. The idea is to use; adaptive critic technique to obtain the optimal control pair; iteratively to make the performance index function reach the saddle; point of the zero-sum games. The proposed iterative ACD algorithm; can be implemented based on the input and state data without the; system model. Stability analysis of the 2-D system is presented and; the convergence property of the performance index function is also; proved. Neural networks are used to approximate the performance; index function and compute the optimal control policies,; respectively, for facilitating the implementation of the iterative; ACD algorithm. The optimal control scheme of the air drying process is given to illustrate the performance of the proposed method.
-
Key words:
- Adaptive critic designs (ACD) /
- optimal control /
- zero-sum game /
- 2-D system /
- neural networks
计量
- 文章访问数: 4752
- HTML全文浏览量: 97
- PDF下载量: 1659
- 被引次数: 0