Supervised Detection for Hyperspectral Imagery Based on High-dimensional Multiscale Autoregression
-
摘要: 给出一种有监督检测算法以检测高光谱图像中的区域目标. 为利用高光谱图像中的空间尺度维信息, 在高光谱图像多尺度观测不同相连节点之间建立高维多尺度自回归模型, 并利用四叉树节点间的多阶马尔可夫性和高维多尺度回归噪声先验概率密度与高维观测条件概率密度的等价性及其多元 t 分布特性, 构造出适用于检测高光谱图像中区域目标的空间多尺度自回归有监督检测算法. 理论分析及实验中的5种评价方法的结果均表明该检测器可有效检测出高光谱图像中的目标区域.Abstract: A supervised detection algorithm is presented to detect the target region in hyperspectral imagery. In order to utilize the spatial scale information in hyperspectral data, the multiscale observation of hyperspectral imagery of different connected nodes at different scales are described by a high-dimensional autoregressive model. Then, a high-dimensional multiscale autoregression based detector to detect target region is constructed, utilizing the equality between joint distribution of various multiscale observations and that of the regression noise, and the multivariate t distribution statistics of the regression noise. Theoretical analysis and the experiment involving five performance indexes show that our detector is effective to detect target region in hyperspectral imagery.
计量
- 文章访问数: 1912
- HTML全文浏览量: 89
- PDF下载量: 1007
- 被引次数: 0