Optimal Control of ATO System with Individual Components and Product Demands Based on Markov Decision Process
-
摘要: 研究多维组件, 单一产品的双需求型面向订单装配(Assemble-to-order, ATO)系统. 产品需求为延期交货型, 当其不被满足时将产生缺货等待成本; 而独立组件需求为销售损失型, 其不被满足时将产生缺货损失成本. 该问题可以抽象成一个动态马尔科夫决策过程(Markov decision process, MDP), 通过对双需求模型求解得到状态依赖型最优策略, 即任一组件的最优生产--库存策略由系统内其他组件的库存水平决定. 研究解决了多需求复杂ATO系统的生产和库存优化控制问题. 提出在一定条件下, 组件的基础库存值可以等价于最终产品需求的库存配给值. 组件的基础库存值与库存配给值随系统内其他组件库存的增加而增加, 而产品需求的库存配给值随系统组件库存和产品缺货量的增加而减少. 最后通过数值实验分析缺货量及组件库存对最优策略结构的影响, 并得到了相应的企业生产实践的管理启示.Abstract: An assemble-to-order (ATO) system is considered which produces n components to be assembled into a single product. Demand for the product is backlogged while demand for components is lost, if it is not immediately satisfied. The problem is to control component production and component inventory allocation. The Markov decision process (MDP) framework is used to formulate this problem. It is shown that for components, the optimal policy is characterized by two state-dependent thresholds: a production base-stock level and an inventory rationing level, and that for the assembled product, the optimal policy is characterized by a state-dependent rationing level. Under a certain condition, the base-stock level of component equals the rationing level for the product. The base-stock level and rationing level of one component are both increasing with the inventories of other components. The rationing level of the product is decreasing with the backlog level and other components' inventories. Finally, though some numerical examples, the influence of the backlog level and inventory level on the optimal policy is studied and some managerial insights for manufacturing practice are also provided.
-
表 1 最优策略vs.启发式算法策略
Table 1 Optimal policy versus heuristics
$\lambda_0$ $\lambda_1$ $ \lambda_2$ $\mu_1$ $\mu_2$ $h_1$ $h_2$ $b_0$ $c_1$ $c_2$ $\frac{({v^{H}-v^{\ast}})}{v^{\ast}}(\%)$ 1 1.05 0.43 1.71 2.43 3.06 5.90 4.63 82.17 117.63 276.33 1.574 2 0.60 1.03 2.45 2.98 3.42 5.59 4.96 69.88 227.82 454.58 5.734 3 1.32 2.60 1.07 3.84 3.22 4.82 4.60 47.74 182.11 199.48 1.371 4 1.70 2.46 2.37 4.95 3.97 5.76 6.74 92.02 310.57 405.30 2.429 5 0.26 5.19 1.66 4.55 3.36 3.51 4.47 86.85 483.11 384.78 3.099 6 0.79 1.81 1.98 4.57 3.18 2.02 5.49 66.18 209.95 332.79 0.686 7 0.69 1.65 1.96 2.63 4.95 6.84 6.69 52.93 427.26 386.80 6.115 8 0.26 3.79 2.59 3.46 3.20 2.16 8.58 69.10 480.45 197.10 0.243 9 1.97 1.04 0.42 4.81 4.01 1.69 5.66 54.73 200.01 164.37 5.052 10 1.59 2.79 1.45 3.80 3.97 6.80 6.55 83.89 277.30 173.66 1.627 11 0.46 1.84 1.63 2.67 1.92 8.07 7.27 49.97 352.29 277.87 1.169 12 0.78 1.88 3.19 4.20 3.99 1.49 7.46 93.58 348.68 465.15 0.185 13 1.01 1.07 1.94 2.57 3.80 3.84 3.57 51.64 297.04 144.26 2.873 14 0.30 0.24 1.31 0.72 2.68 9.42 9.15 40.28 142.12 356.00 0.604 15 1.14 2.47 0.69 4.69 3.54 4.65 7.08 108.09 388.54 305.73 4.842 16 1.42 0.77 6.51 2.44 9.82 8.56 3.66 74.49 318.02 219.48 1.798 17 0.04 4.73 2.18 5.82 2.16 1.47 9.61 210.47 458.20 143.43 2.829 18 1.30 1.38 7.43 4.35 9.46 4.92 2.30 178.88 155.86 188.07 5.380 19 2.16 1.91 4.31 4.96 7.81 5.03 5.83 93.49 365.78 443.31 1.373 20 1.00 7.47 8.12 9.57 8.10 5.47 1.47 155.48 220.94 353.92 4.670 21 2.67 4.58 2.88 8.30 8.02 6.85 5.54 135.60 198.65 492.38 1.830 22 2.36 7.22 2.05 9.95 4.97 7.44 2.72 83.86 100.10 296.27 1.096 23 0.34 7.99 7.54 7.64 7.75 2.13 7.06 206.66 421.96 331.71 1.182 24 1.23 2.41 9.73 6.79 9.50 2.21 3.22 204.06 369.70 195.20 6.379 25 1.20 2.77 3.61 5.97 7.51 9.05 4.40 213.99 474.80 100.03 2.233 26 1.56 6.87 6.54 9.02 8.31 8.58 6.56 166.86 227.97 371.99 11.512 27 0.54 8.36 2.54 9.54 5.38 1.26 1.68 119.78 305.63 255.31 0.126 28 1.50 4.37 9.17 6.43 9.95 2.05 1.90 127.34 393.21 390.50 2.209 29 1.71 6.67 2.80 7.16 8.61 9.97 3.28 103.01 277.92 410.01 1.778 30 1.09 9.29 6.05 9.81 7.01 3.85 9.17 160.18 493.08 439.47 1.207 (注: $\lambda_0 \sim {\rm U}(0,10)$, $\lambda_k \sim {\rm U}(0,10)$, $\mu_k \sim {\rm U}(1,10)$, $0.5 \le \rho _k \le 1.2$, $h_k \sim {\rm U}(1,10)$, $b_0 \sim {\rm U}(5,15) \times \sum\nolimits_{k = 1}^2 {h_k }$, $c_k \sim {\rm U}(100,500)$, }\\ \multicolumn{12}{l}{$\rho _k =\left( {\lambda _0 + \lambda _k } \right) / {\mu _k }$, $k = 1,2$.) -
[1] Song J S, Zipkin P. Supply chain operations: assemble-to-order systems, Chapter 11 in handbooks in operations research and management science. Supply Chain Management, 2003, 11(1): 561-596 [2] De Véricourt F, Karaesmen F, Dallery Y. Optimal stock allocation for a capacitated supply system. Management Science, 2002, 48(11): 1486-1501 [3] Karaarslan A G, Kiesmüller G P, De Kok A G. Analysis of an assemble-to-order system with different review periods. International Journal of Production Economics, 2013, 143(2): 335-341 [4] Saidane S, Babai M Z, Aguir M S, Korbaa O. On the performance of the base-stock inventory system under a compound erlang demand distribution. Computers & Industrial Engineering, 2013, 66(3): 548-554 [5] Juan A A, Grasman S E, Cáceres-Cruz J, Bektas T. A simheuristic algorithm for the single-period stochastic inventory-routing problem with stock-outs. Simulation Modelling Practice and Theory, 2014, 46: 40-52 [6] Benjaafar S, ElHafsi M. Production and inventory control of a single product assemble-to-order system with multiple customer classes. Management Science, 2006, 52(12): 1896-1912 [7] ElHafsi M, Li Z, Camus H, Craye E. An assemble-to-order system with product and components demand with lost sales. International Journal of Production Research, 2015, 53(3): 718-735 [8] 娄山佐, 田新诚. 随机供应中断和退货环境下库存问题的建模与控制. 自动化学报, 2014, 40(11): 2436-2443Lou Shan-Zuo, Tian Xin-Cheng. Modeling and control for inventory with stochastic supply disruptions and returns. Acta Automatica Sinica, 2014, 40(11): 2436-2443 [9] 娄山佐, 田新诚. 随机供应中断和退货环境下库存的应急控制. 自动化学报, 2015, 41(1): 94-103Lou Shan-Zuo, Tian Xin-Cheng. Contingent control of inventory under stochastic supply disruptions and returns. Acta Automatica Sinica, 2015, 41(1): 94-103 [10] 郭佳, 傅科, 陈功玉. 可变产能的按订单装配系统库存和生产决策研究. 中国管理科学, 2012, 20(3): 94-103Guo Jia, Fu Ke, Chen Gong-Yu. Optimal inventory and production decisions for an ATO system with variable capacity. Chinese Journal of Management Science, 2012, 20(3): 94-103 [11] 刘艳梅, 任佳, 江支柱, 刘曦泽, 祁国宁. 大批量定制下按订单装配产品同步生产计划方法. 计算机集成制造系统, 2014, 20(6): 1352-1358Liu Yan-Mei, Ren-Jia, Jiang Zhi-Zhu, Liu Xi-Ze, Qi Guo-Ning. Synchronized production planning method for assemble to order products of mass customization. Computer Integrated Manufacturing Systems, 2014, 20(6): 1352-1358 [12] Kim B, Kim J. A single server queue with Markov modulated service rates and impatient customers. Performance Evaluation, 2015, 83-84: 1-15 [13] Puterman M L. Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: John Wiley and Sons, 1994. 158-164 [14] Lippman S A. Applying a new device in the optimization of exponential queuing systems. Operations Research, 1975, 23(4): 687-710 期刊类型引用(8)
1. 董良振,田建艳,杨胜强,陈海滨. 基于光照校正和图像融合的零件表面图像增强. 计算机工程. 2024(06): 245-254 . 百度学术
2. 王琛,张凌云,刘波,张航. 基于无人机图像的城市道路停车巡检方法. 交通信息与安全. 2024(04): 90-101 . 百度学术
3. 徐少平,林珍玉,陈孝国,李芬,杨晓辉. 采用多通道浅层CNN构建的多降噪器最优组合模型. 自动化学报. 2022(11): 2797-2811 . 本站查看
4. 苏素平,李虹,孙志毅,孙前来,王银. 无人机图像的输电线断股检测方法研究. 太原科技大学学报. 2021(01): 32-36 . 百度学术
5. 索岩,崔智勇. 基于中国剩余定理的高动态图像可逆数据隐藏. 计算机仿真. 2021(01): 167-171 . 百度学术
6. 张媛媛,张红英. 结合饱和度调节的单曝光HDR图像生成方法. 吉林大学学报(理学版). 2021(02): 309-318 . 百度学术
7. 曹义亲,何恬,刘龙标. 基于改进LSD直线检测算法的钢轨表面边界提取. 华东交通大学学报. 2021(03): 95-101 . 百度学术
8. 吴卓钊,范科峰,莫玮. 多尺度权重评估的MSRCR混合曝光成像算法. 计算机工程与应用. 2021(17): 224-229 . 百度学术
其他类型引用(14)
-