[1]
|
Dong Z, Zhang Z, Qi S, Zhang H, Li J, and Liu, Y. Autonomous cooperative formation control of underactuated USVs based on improved MPC in complex ocean environment. Ocean Engineering, 2023, 270: 113633 doi: 10.1016/j.oceaneng.2023.113633
|
[2]
|
王端松, 李东禹, 梁晓玲. 干扰条件下无人艇编队有限时间同步控制. 自动化学报, 2024, 50(5): 1047−1058Wang D, Li D, and Liang X. Finite time synchronized formation control of unmanned surface vehicles with external disturbances. Acta Automatica Sinica, 2024, 50(5): 1047−1058
|
[3]
|
Wen G, Lam J, Fu J, and Wang S. Distributed MPC-based robust collision avoidance formation navigation of constrained multiple USVs. IEEE Transactions on Intelligent Vehicles, 2023, 9(1): 1804−1816
|
[4]
|
王宁, 刘永金, 高颖. 未知扰动下的无人艇编队优化轨迹跟踪控制. 中国舰船研究, 2024, 19(1): 178−190Wang N, Liu Y, and Gao Y. Optimal trajectory tracking control of unmanned surface vehicle formation under unknown disturbances. Chinese Journal of Ship Research, 2024, 19(1): 178−190
|
[5]
|
王宁, 高颖, 王仁慧. 状态测量不确定和动力学未知的无人艇固定时间容错控制. 自动化学报, 2023, 49(5): 1050−1061Wang N, Gao Y, and Wang R. Fixed-time fault-tolerance control of an unmanned surface vehicle with uncertain measurements and unknown dynamics. Acta Automatica Sinica, 2023, 49(5): 1050−1061
|
[6]
|
Wang C, Wang Y, Han Q, and Xie W. Multi-USV cooperative formation control via deep reinforcement learning with deceleration. IEEE Transactions on Intelligent Vehicles, doi: 10.1109/TIV.2024.3437735
|
[7]
|
Pan J, Han T, Xiao B, and Yan H. Predefined-time bipartite time-varying formation tracking control of networked autonomous surface vehicles via hierarchical control approach. IEEE Transactions on Vehicular Technology, 2024, 73(7): 9536−9545 doi: 10.1109/TVT.2024.3364364
|
[8]
|
Wen G. On distributed leader escort control and bipartite time-varying formation tracking of multiple ASVs. In: 2022 IEEE International Conference on Unmanned Systems (ICUS). Guangzhou, China, 2022: 522-528.
|
[9]
|
Zhou W, Wang Y, Ahn C K, Cheng J, and Chen C. Adaptive fuzzy backstepping-based formation control of unmanned surface vehicles with unknown model nonlinearity and actuator saturation. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14749−14764 doi: 10.1109/TVT.2020.3039220
|
[10]
|
Peng Z, Wang D, Li T, and Han M. Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance. IEEE Transactions on Cybernetics, 2019, 50(6): 2527−2535
|
[11]
|
Peng Z, Wang D, and Hu X. Robust adaptive formation control of underactuated autonomous surface vehicles with uncertain dynamics. IET Control Theory & Applications, 2011, 5(12): 1378−1387
|
[12]
|
Rout R and Subudhi B. A backstepping approach for the formation control of multiple autonomous underwater vehicles using a leader-follower strategy. Journal of Marine Engineering & Technology, 2016, 15(1): 38−46
|
[13]
|
Kwan C and Lewis F L. Robust backstepping control of nonlinear systems using neural networks. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2000, 30(6): 753−766 doi: 10.1109/3468.895898
|
[14]
|
Zhou J and Wen C. Adaptive backstepping control of uncertain systems. Heidelberg, Germany: Springer, 2008.
|
[15]
|
Li N, Liu X, Liu C, He W, and Wang H. Adaptive stabilization control for a class of non-strict feedback underactuated nonlinear systems by backstepping. IEEE Transactions on Automation Science and Engineering, doi: 10.1109/TASE.2024.3392877
|
[16]
|
Farrell J A, Polycarpou M, Sharma M, and Dong W. Command filtered backstepping. IEEE Transactions on Automatic Control, 2009, 54(6): 1391−1395 doi: 10.1109/TAC.2009.2015562
|
[17]
|
Ghommam J, Saad M, Mnif F, and Zhu Q. Guaranteed performance design for formation tracking and collision avoidance of multiple USVs with disturbances and unmodeled dynamics. IEEE Systems Journal, 2020, 15(3): 4346−4357
|
[18]
|
Gonzalez-Garcia A and Castañeda H. Guidance and control based on adaptive sliding mode strategy for a USV subject to uncertainties. IEEE Journal of Oceanic Engineering, 2021, 46(4): 1144−1154 doi: 10.1109/JOE.2021.3059210
|
[19]
|
Chowdhary G, Mühlegg M, and Johnson E. Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation. International Journal of Control, 2014, 87(8): 1583−1603 doi: 10.1080/00207179.2014.880128
|
[20]
|
Pan Y and Yu H. Composite learning robot control with guaranteed parameter convergence. Automatica, 2018, 89: 398−406 doi: 10.1016/j.automatica.2017.11.032
|
[21]
|
Han T, Guan Z, Xiao B, and Yan H. Bipartite average tracking for multi-agent systems with disturbances: Finite-time and fixed-time convergence. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(10): 4393−4402 doi: 10.1109/TCSI.2021.3104933
|
[22]
|
Ma L and Zhu F. Fixed-time-synchronized bipartite time-varying formation tracking control of networked Euler-Lagrange systems. IEEE Transactions on Automation Science and Engineering, doi: 10.1109/TASE.2024.3395325
|
[23]
|
Altafini C. Consensus problems on networks with antagonistic interactions. IEEE Transactions on Automatic Control, 2012, 58(4): 935−946
|
[24]
|
Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 2011, 57(8): 2106−2110
|
[25]
|
Chen M, Wang H, and Liu X. Adaptive fuzzy practical fixed-time tracking control of nonlinear systems. IEEE Transactions on Fuzzy Systems, 2019, 29(3): 664−673
|
[26]
|
Liu K and Wang R. Antisaturation adaptive fixed-time sliding mode controller design to achieve faster convergence rate and its application. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(8): 3555−3559
|
[27]
|
Pan Y, Sun T, Joo Y H, and Yu H. Enhanced parameter estimation in adaptive control via online historical data. IET Control Theory & Applications, 2019, 13(16): 2710−2716
|