2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异构非线性多智能体系统无模型输出一致性控制

孙一仆 陈鑫 贺文朋 佘锦华 吴敏

孙一仆, 陈鑫, 贺文朋, 佘锦华, 吴敏. 异构非线性多智能体系统无模型输出一致性控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240459
引用本文: 孙一仆, 陈鑫, 贺文朋, 佘锦华, 吴敏. 异构非线性多智能体系统无模型输出一致性控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240459
Sun Yi-Pu, Chen Xin, He Wen-Peng, She Jin-Hua, Wu Min. Model-free output consensus control for heterogeneous nonlinear multi-agent systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240459
Citation: Sun Yi-Pu, Chen Xin, He Wen-Peng, She Jin-Hua, Wu Min. Model-free output consensus control for heterogeneous nonlinear multi-agent systems. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240459

异构非线性多智能体系统无模型输出一致性控制

doi: 10.16383/j.aas.c240459 cstr: 32138.14.j.aas.c240459
基金项目: 高等学校学科创新引智计划资助(B17040)、湖北省科技创新重大专项(2020AEA010), 国家自然科学基金(61873248), 湖北省自然科学基金(2020CFA031), 国家电网公司科技专项(52153216000R)资助
详细信息
    作者简介:

    孙一仆:中国地质大学(武汉)博士研究生. 研究方向为多智能体强化学习控制. E-mail: 20141000976@cug.edu.cn

    陈鑫:中国地质大学(武汉) 自动化学院教授. 主要研究方向为智能控制, 过程控制, 机器人运动控制. 本文通信作者. E-mail: chenxin@cug.edu.cn

    贺文朋:中国地质大学(武汉)博士研究生. 研究方向为多智能体分布式控制. E-mail: wenpenghe@cug.edu.cn

    佘锦华:东京工科大学教授. 主要研究方向包括重复控制, 机电系统的高精度控制, 康复机器人, 计算智能的工业应用. E-mail: she@stf.teu.ac.jp

    吴敏:中国地质大学(武汉) 自动化学院教授. 主要研究方向为过程控制, 鲁棒控制和智能系统. E-mail: wumin@cug.edu.cn

Model-free Output Consensus Control for Heterogeneous Nonlinear Multi-agent Systems

Funds: Supported by the 111 Project (B17040), Technical Innovation Major Project of Hubei Province (2020AEA010), National Natural Science Foundation of China (61873248), Natural Science Foundation of Hubei Province (2020CFA031), Science and Technology Project of State Grid Corporation of China (52153216000R)
More Information
    Author Bio:

    SUN Yi-Pu Ph. D. candidate at the School of Automation, China University of Geosciences. His research interest covers multi-agent system and reinforcement learning

    CHEN Xin Professor at the School of Automation, China University of Geosciences. His research interest covers intelligent control, process control and robot control. Corresponding author of this paper

    HE Wen-Peng Ph. D. candidate at the School of Automation, China University of Geosciences. His research interest covers multi-agent system distributed control

    SHE Jin-hua Professor at the Tokyo University of Technology. His research interest covers repetitive control, high precision control of mechatronic systems, rehabilitation robots, and industrial applications of computational intelligence

    WU Min Professor at the School of Automation, China University of Geosciences. His research interest covers process control, robust control, and intelligent systems

  • 摘要: 针对异构非线性多智能体系统的输出一致性控制难题, 设计了一种基于同胚分布式控制协议的无模型方法. 通过将输出反馈线性化理论与自适应动态规划相结合, 可以在不需要精确系统模型的情况下实现非线性智能体的线性化, 简化分布式控制器的设计复杂性. 具体而言, 通过设计双层分布式控制结构, 在物理空间层通过无模型反馈线性书方法实现未知系统线性化, 在微分同构空间层利用线性控制方法进行分布式共识控制. 通过两个实验验证了所提方法在处理未知异构非线性多智能体系统中的有效性, 将传统的线性分布式控制方法扩展到未知非线性多智能体控制器设计问题.
  • 图  1  同胚分布式控制协议结构图

    Fig.  1  Structure diagram of homeomorphic distributed control protocol

    图  2  无模型反馈线性化学习模块

    Fig.  2  Model-free Feedback Linearized Learning Modules

    图  3  通讯拓扑

    Fig.  3  Communication Topology

    图  4  学习前后输出和一致性误差轨迹对比((a)初始一致性误差轨迹; (b)学习收敛后一致性误差轨迹; (c)初始输出轨迹; (d)学习收敛后输出轨迹)

    Fig.  4  The output and output error trajectory comparison before and after learning ((a) initial consensus error trajectory; (b) the consensus error trajectory after learning convergence; (c) initial output trajectory; (d) output trajectory after learning convergence))

    图  5  智能体双评价网络权值更新轨迹

    Fig.  5  Agent dual-critic network weight update trajectory

    图  6  智能体奖励网络权值更新轨迹

    Fig.  6  Agent reward network weight update trajectory

    图  7  网络更新损失演化轨迹((a)评价网络更新损失; (b)奖励网络更新损失)

    Fig.  7  Evolution trajectory of network update loss ((a) Critic network update loss; (b) Reward network update loss)

    图  8  学习收敛后输出一致性轨迹切换实验

    Fig.  8  Output consensus trajectory switching experiment after learning convergence

    表  1  异构多智能体系统参数

    Table  1  Heterogeneous multi-agent system parameters

    变量 值 (m) 变量 值 (m) 变量 值 (m)
    $ {m_1} $ 0.04 $ {m_2} $ 0.04 $ {m_3} $ 0.06
    $ {h_1} $ 0.06 $ {h_2} $ 0.04 $ {h_3} $ 0.06
    $ {m_4} $ 0.06 $ {m_5} $ 0.08 $ {m_6} $ 0.08
    $ {h_4} $ 0.04 $ {h_5} $ 0.06 $ {h_6} $ 0.04
    下载: 导出CSV

    表  2  学习参数设置

    Table  2  Learning parameter

    参数 参数 参数
    $ {\eta _r} $ 0.05 $ {\eta _c} $ 0.02 $ {\eta _a} $ 0.01
    $ \gamma $ 0.9 $ {\mu _j} $ 0.01 $ {\mu _\lambda } $ 0.01
    $ \varepsilon_i $ 0.08 $ H $ $ [1,\; 0.2] $
    下载: 导出CSV
  • [1] Nair R R and Behera L. Robust adaptive gain higher order sliding mode observer based control-constrained nonlinear model predictive control for spacecraft formation flying. IEEE/CAA Journal of Automatica Sinica, 2016, 5(1): 367−381
    [2] Guo X, Wei G, Yao M, and Zhang P. Consensus control for multiple euler-lagrange systems based on high-order disturbance observer: An event-triggered approach. IEEE/CAA Journal of Automatica Sinica, 2022, 9(5): 945−948 doi: 10.1109/JAS.2022.105584
    [3] Peng Z, Wang D, Li T, and Han M. Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance. IEEE Transactions on Cybernetics, 2019, 50(6): 2527−2535
    [4] Simões D, Lau N, and Reis L P. Multi-agent actor centralized-critic with communication. Neurocomputing, 2020, 390: 40−56 doi: 10.1016/j.neucom.2020.01.079
    [5] Wu J and Lou Y. Efficient centralized traffic grid signal control based on meta-reinforcement learning. IEEE/CAA Journal of Automatica Sinica, 20231−3
    [6] Yan B, Shi P, and Lim C-C. Robust formation control for nonlinear heterogeneous multiagent systems based on adaptive event-triggered strategy. IEEE Transactions on Automation Science and Engineering, 2021, 19(4): 2788−2800
    [7] Bai C, Yan P, Pan W, and Guo J. Learning-based multi-robot formation control with obstacle avoidance. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(8): 11811−11822
    [8] Huang J, Zhou S, Tu H, Yao Y, and Liu Q. Distributed optimization algorithm for multi-robot formation with virtual reference center. IEEE/CAA Journal of Automatica Sinica, 2022, 9(4): 732−734 doi: 10.1109/JAS.2022.105473
    [9] Ju Y, Ding D, He X, Han Q-L, and Wei G. Consensus control of multi-agent systems using fault-estimation-in-the-loop: Dynamic event-triggered case. IEEE/CAA Journal of Automatica Sinica, 2021, 9(8): 1440−1451
    [10] Yu X, Yang F, Zou C, and Ou L. Stabilization parametric region of distributed PID controllers for general first-order multi-agent systems with time delay. IEEE/CAA Journal of Automatica Sinica, 2019, 7(6): 1555−1564
    [11] Bidram A, Lewis F L, and Davoudi A. Synchronization of nonlinear heterogeneous cooperative systems using input-output feedback linearization. Automatica, 2014, 50(10): 2578−2585 doi: 10.1016/j.automatica.2014.08.016
    [12] Sun Y, Chen X, He W, Zhang Z. Fukushima E F, and She J, Q-learning based model-free input-output feedback linearization control method. IFAC-PapersOnLine, 2023, 56(2): 9534−9539 doi: 10.1016/j.ifacol.2023.10.253
    [13] Li K, Hua C C, You X, and Guan X P. Output feedback-based consensus control for nonlinear time delay multiagent systems. Automatica, 2020, 111: 108669 doi: 10.1016/j.automatica.2019.108669
    [14] Wang D, Gao N, Liu D, Li J, and Lewis F L, Recent progress in reinforcement learning and adaptive dynamic programming for advanced control applications[J], IEEE/CAA Journal of Automatica Sinica, 2023.
    [15] Jiang H and He H. Data-driven distributed output consensus control for partially observable multiagent systems. IEEE Transactions on Cybernetics, 2018, 49(3): 848−858
    [16] Jiang Y, Fan J, Gao W, Chai T, and Lewis F L. Cooperative adaptive optimal output regulation of nonlinear discrete-time multi-agent systems. Automatica, 2020, 121: 109149 doi: 10.1016/j.automatica.2020.109149
    [17] Lu X and Li H. Consensus of singular linear multiagent systems via hybrid control. IEEE Transactions on Control of Network Systems, 2022, 9(2): 647−656 doi: 10.1109/TCNS.2022.3161193
    [18] Wen G, Chen C L P, Feng J, and Zhou N. Optimized multi-agent formation control based on an identifier–actor–critic reinforcement learning algorithm. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 2719−2731 doi: 10.1109/TFUZZ.2017.2787561
  • 加载中
计量
  • 文章访问数:  39
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 录用日期:  2024-11-11
  • 网络出版日期:  2024-12-18

目录

    /

    返回文章
    返回