2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于椭圆曲线ELGamal的隐私保护分布式优化算法

赵中原 高旺 蒋璐瑶 葛泉波

赵中原, 高旺, 蒋璐瑶, 葛泉波. 基于椭圆曲线ELGamal的隐私保护分布式优化算法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240404
引用本文: 赵中原, 高旺, 蒋璐瑶, 葛泉波. 基于椭圆曲线ELGamal的隐私保护分布式优化算法. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240404
Zhao Zhong-Yuan, Gao Wang, Jiang Lu-Yao, Ge Quan-Bo. Privacy-preserving distributed optimization algorithm based on elliptic curve elgamal. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240404
Citation: Zhao Zhong-Yuan, Gao Wang, Jiang Lu-Yao, Ge Quan-Bo. Privacy-preserving distributed optimization algorithm based on elliptic curve elgamal. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240404

基于椭圆曲线ELGamal的隐私保护分布式优化算法

doi: 10.16383/j.aas.c240404 cstr: 32138.14.j.aas.c240404
基金项目: 国家自然科学基金 (U23B2061), 江苏高校‘青蓝工程’ (R2023Q07), 江苏省研究生科研与实践创新计划项目 (SJCX24_0463)资助
详细信息
    作者简介:

    赵中原:南京信息工程大学自动化学院副教授. 主要研究方向为协同控制, 机器学习和分布式优化. E-mail: zhaozhongyuan@nuist.edu.cn

    高旺:南京信息工程大学自动化学院硕士研究生. 主要研究方向为去中心化联邦学习, 隐私保护和分布式优化. E-mail: gaowang@nuist.edu.cn

    蒋璐瑶:上海交通大学机械与动力工程学院博士研究生. 主要研究方向为数据隐私保护, 分布式优化和复杂人机系统. E-mail: luyaojiang@sjtu.edu.cn

    葛泉波:南京信息工程大学自动化学院教授. 主要研究方向为信息融合, 非线性滤波, 无人系统和分布式优化. 本文通信作者. E-mail: quanboge@163.com

Privacy-preserving Distributed Optimization Algorithm Based on Elliptic Curve ELGamal

Funds: Supported by National Natural Science Foundation of China (U23B2061), Qing Lan Project of Jiangsu Province (R2023Q07), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX24_0463)
More Information
    Author Bio:

    ZHAO Zhong-Yuan Associate professor at the School of Automation, Nanjing University of Information Science and Technology. His research interest covers cooperative control, machine learning and distributed optimization

    GAO Wang Master student at the School of Automation, Nanjing University of Information Science and Technology. His research interest covers decentralized federated learning, privacy-preserving and distributed optimization

    JIANG Lu-Yao Ph.D. candidate at the School of Mechanical Engineering, Shanghai Jiao Tong University. Her research interest covers data privacy protection, distributed optimization, and complex human-machine systems

    GE Quan-Bo Professor at the School of Automation, Nanjing University of Information Science and Technology. His research interest covers information fusion, nonlinear filtering, unmanned system, and distributed optimization. Corresponding author of this paper

  • 摘要: 研究一类考虑节点隐私保护的分布式优化问题, 目标为保护各智能体的隐私信息不被泄露, 并最小化所有智能体局部成本函数之和. 首先, 针对无向连通图, 提出一种基于椭圆曲线密码机制的分布式凸优化算法. 通过设计底层权重矩阵, 将基于椭圆曲线的ElGamal同态加密和数字签名与分布式次梯度算法相结合, 克服了椭圆曲线密码机制与分布式一致性策略无法结合的难点. 在无第三方或聚合器的场景下, 该算法实现了系统的隐私保护. 理论分析表明, 该算法能够渐近收敛至全局最优解, 并适用于时变通信拓扑的动态环境. 此外, 算法有效保护智能体的状态和成本函数不受来自诚实但好奇攻击者、外部窃听者和篡改攻击者的威胁. 最后, 通过数值仿真验证了算法的有效性.
  • 图  1  10个智能体的通信拓扑图

    Fig.  1  Communication topology of 10 agents

    图  2  10个智能体的状态演化

    Fig.  2  State evolutions of 10 agents

    图  3  节点2接收到的加密信息$ c_1$的演化

    Fig.  3  Evolution of the encrypted messages $ c_1$ received by node 2

    图  4  节点2接收到的加密信息$ c_2$的演化

    Fig.  4  Evolution of the encrypted messages $ c_2$ received by node 2

    图  5  不同$\eta$值下$\mathrm{ERR}_{\mathrm{RMSE}}$的演化

    Fig.  5  Evolution of $\mathrm{ERR_{\mathrm RMSE}}$ with different $\eta$ values

    图  6  $\eta = 0.010$时诚实且好奇敌手对节点1状态的估计

    Fig.  6  Honest and curious adversary's estimation of the state of node 1 with $\eta = 0.010$

    图  8  $\eta = 0.001$时诚实且好奇敌手对节点1状态的估计

    Fig.  8  Honest and curious adversary's estimation of the state of node 1 with $\eta = 0.001$

    图  7  $\eta = 0.005$时诚实且好奇敌手对节点1状态的估计

    Fig.  7  Honest and curious adversary's estimation of the state of node 1 with $\eta = 0.005$

    表  1  不同$\eta$值下算法1的均方根误差

    Table  1  Root mean square error of algorithm 1 under different $\eta$ values

    $\eta$ $\mathrm{ERR_{\mathrm{RMSE}}}$
    $0.100$ $5.47 \times 10^{-4}$
    $0.010$ $1.16 \times 10^{-3}$
    $0.005$ $1.42 \times 10^{-3}$
    $0.001$ $1.47 \times 10^{-3}$
    下载: 导出CSV

    表  2  $N=5$时各种同态加密方案的计算时间 (单位: s)

    Table  2  Computation time of various homomorphic encryption schemes for $N=5$ (unit: s)

    算法 准备时间 加密时间 解密时间 同态运算时间
    算法1 $1.110 \times {10^{-3}}$ $1.190 \times {10^{-6}}$ $1.110 \times {10^{-3}}$ $1.10 \times {10^{-6}}$
    Paillier[31] 12.490 1.085 0.301 0.272
    BFV[38] 0.180 0.371 0.165 0.001
    CKKS[30] 2.091 2.084 2.124 0.010
    下载: 导出CSV

    表  3  $N=10$时各种同态加密方案的计算时间 (单位: s)

    Table  3  Computation time of various homomorphic encryption schemes for $N=10$ (unit: s)

    算法 准备时间 加密时间 解密时间 同态运算时间
    算法1 $2.350 \times {10^{-3}}$ $5.710 \times {10^{-6}}$ $2.343 \times {10^{-3}}$ $2.510 \times {10^{-6}}$
    Paillier 26.891 2.121 0.599 0.718
    BFV 0.361 0.716 0.361 0.004
    CKKS 4.392 4.811 4.522 0.021
    下载: 导出CSV
  • [1] Yang T, Yi X L, Wu J F, Yuan Y, Wu D, Meng Z Y, et al. A survey of distributed optimization. Annual Reviews in Control, 2019, 47: 278−305 doi: 10.1016/j.arcontrol.2019.05.006
    [2] Guo F H, Wen C Y, Mao J F, Song Y D. Distributed economic dispatch for smart grids with random wind power. IEEE Transactions on Smart Grid, 2016, 7(3): 1572−1583 doi: 10.1109/TSG.2015.2434831
    [3] 李远征, 倪质先, 段钧韬, 徐磊, 杨涛, 曾志刚. 面向高比例新能源电网的重大耗能企业需求响应调度. 自动化学报, 2023, 49(4): 754−768

    Li Yuan-Zheng, Ni Zhi-Xian, Duan Jun-Tao, Xu Lei, Yang Tao, Zeng Zhi-Gang. Demand response scheduling of major energy-consuming enterprises based on a high proportion of renewable energy power grid. Acta Automatica Sinica, 2023, 49(4): 754−768
    [4] Nedić A. Distributed gradient methods for convex machine learning problems in networks: distributed optimization. IEEE Signal Processing Magazine, 2020, 37(3): 92−101 doi: 10.1109/MSP.2020.2975210
    [5] Tao W, Pan Z L, Wu G W, Tao Q. The strength of nesterov's extrapolation in the individual convergence of nonsmooth optimization. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(7): 2557−2568
    [6] Wu M, Xiong N X, Vasilakos A V, Leung V C M, Chen C L P. RNN-K: A reinforced newton method for consensus-based distributed optimization and control over multiagent systems. IEEE Transactions on Cybernetics, 2022, 52(5): 4012−4026 doi: 10.1109/TCYB.2020.3011819
    [7] Zhou X, Zou S L, Wang P, Ma Z J. ADMM-based coordination of electric vehicles in constrained distribution networks considering fast charging and degradation. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 565−578 doi: 10.1109/TITS.2020.3015122
    [8] Gao F K, Yang B, Chen C L, Guan X P, Zhang Y. Distributed urban freeway traffic optimization considering congestion propagation. IEEE Internet of Things Journal, 2022, 9(14): 12155−12165 doi: 10.1109/JIOT.2021.3133877
    [9] Zhang S Y, Zhang S Y, Yeung L K, Yu J J Q. Urban internet of electric vehicle parking system for vehicle-to-grid scheduling: formulation and distributed algorithm. IEEE Transactions on Vehicular Technology, 2024, 73(1): 67−79 doi: 10.1109/TVT.2023.3304718
    [10] 杨涛, 徐磊, 易新蕾, 张圣军, 陈蕊娟, 李渝哲. 基于事件触发的分布式优化算法. 自动化学报, 2022, 48(1): 133−143

    Yang Tao, Xu Lei, Yi Xin-Lei, Zhang Sheng-Jun, Chen Rui-Juan, Li Yu-Zhe. Event-triggered distributed optimization algorithms. Acta Automatica Sinica, 2022, 48(1): 133−143
    [11] 王龙, 卢开红, 关永强. 分布式优化的多智能体方法. 控制理论与应用, 2019, 36(11): 1820−1833 doi: 10.7641/CTA.2019.90502

    Wang Long, Lu Kai-Hong, Guan Yong-Qiang. Distributed optimization via multi-agent systems. Control Theory & Applications, 2019, 36(11): 1820−1833 doi: 10.7641/CTA.2019.90502
    [12] 谢佩, 游科友, 洪奕光, 谢立华. 网络化分布式凸优化算法研究进展. 控制理论与应用, 2018, 35(7): 918−927 doi: 10.7641/CTA.2018.80205

    Xie Pei, You Ke-You, Hong Yi-Guang, Xie Li-Hua. A survey of distributed convex optimization algorithms over networks. Control Theory & Applications, 2018, 35(7): 918−927 doi: 10.7641/CTA.2018.80205
    [13] Nedić A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization. IEEE Transactions on Automatic Control, 2009, 54(1): 48−61 doi: 10.1109/TAC.2008.2009515
    [14] Shi W, Ling Q, Yuan K, Wu G, Yin W T. On the linear convergence of the ADMM in decentralized consensus optimization. IEEE Transactions on Signal Processing, 2014, 62(7): 1750−1761 doi: 10.1109/TSP.2014.2304432
    [15] Iutzeler F, Bianchi P, Ciblat P, Hachem W. Explicit convergence rate of a distributed alternating direction method of multipliers. IEEE Transactions on Automatic Control, 2016, 61(4): 892−904 doi: 10.1109/TAC.2015.2448011
    [16] Gratton C, Venkategowda N K D, Arablouei R, Werner S. Privacy-preserved distributed learning with zeroth-order optimization. IEEE Transactions on Information Forensics and Security, 2022, 17: 265−279 doi: 10.1109/TIFS.2021.3139267
    [17] Lü, Q G, Liao X F, Xiang T, Li H Q, Huang T W. Privacy masking stochastic subgradient-push algorithm for distributed online optimization. IEEE Transactions on Cybernetics, 2021, 51(6): 3224−3237 doi: 10.1109/TCYB.2020.2973221
    [18] Wei M L, Yang J, Zhao Z Y, Zhang X G, Li J S, Deng Z L. DeFedHDP: Fully decentralized online federated learning for heart disease prediction in computational health systems. IEEE Transactions on Computational Social Systems, 2024, 11(5): 6854−6867 doi: 10.1109/TCSS.2024.3406528
    [19] Lagendijk R L, Erkin Z, Barni M. Encrypted signal processing for privacy protection: Conveying the utility of homomorphic encryption and multiparty computation. IEEE Signal Processing Magazine, 2013, 30(1): 82−105 doi: 10.1109/MSP.2012.2219653
    [20] Gong Y M, Cai Y, Guo Y X, Fang Y G. A Privacy-preserving scheme for incentive-based demand response in the smart grid. IEEE Transactions on Smart Grid, 2016, 7(3): 1304−1313 doi: 10.1109/TSG.2015.2412091
    [21] Wei W Q, L iu, L. Gradient leakage attack resilient deep learning. IEEE Transactions on Information Forensics and Security, 2022, 17: 303−316 doi: 10.1109/TIFS.2021.3139777
    [22] Zhang T, Zhu Q Y. Dynamic differential privacy for ADMM-based distributed classification learning. IEEE Transactions on Information Forensics and Security, 2017, 12(1): 172−187 doi: 10.1109/TIFS.2016.2607691
    [23] Huo X, Liu M X. Encrypted decentralized multi-agent optimization for privacy preservation in cyber-physical systems. IEEE Transactions on Industrial Informatics, 2023, 19(1): 750−761 doi: 10.1109/TII.2021.3132940
    [24] Mo Y L, Murray R M. Privacy preserving average consensus. IEEE Transactions on Automatic Control, 2017, 62(2): 753−765 doi: 10.1109/TAC.2016.2564339
    [25] Gade S, Vaidya N H. Privacy-preserving distributed learning via obfuscated stochastic gradients. In: Proceedings of the Conference on Decision and Control. Miami, USA: IEEE, 2018. 184−191
    [26] He J P, Cai L, Cheng P, Pan J P, Shi L. Distributed privacy-preserving data aggregation against dishonest nodes in network systems. IEEE Internet of Things Journal, 2019, 6(2): 1462−1470 doi: 10.1109/JIOT.2018.2834544
    [27] Lu Y, Zhu M H. Privacy preserving distributed optimization using homomorphic encryption. Automatica, 2018, 96: 314−325 doi: 10.1016/j.automatica.2018.07.005
    [28] Lu Y, Zhu M H. Game-theoretic distributed control with information-theoretic security guarantees. In: Proceedings of the 5th IFAC Workshop on Distributed Estimation and Control in Networked Systems. Philadelphia, USA: IFAC, 2015. 264−269
    [29] Ruan M H, Gao H, Wang Y Q. Secure and privacy-preserving consensus. IEEE Transactions on Automatic Control, 2019, 64(10): 4035−4049 doi: 10.1109/TAC.2019.2890887
    [30] Chen Z Y, Ye F, Cao X H, Chow M Y. A homomorphic encryption-based private collaborative distributed energy management system. IEEE Transactions on Smart Grid, 2021, 12(6): 5233−5243 doi: 10.1109/TSG.2021.3091624
    [31] Yuan Z P, Li P, Li Z L, Xia J. A fully distributed privacy-preserving energy management system for networked microgrid cluster based on homomorphic encryption. IEEE Transactions on Smart Grid, 2024, 15(2): 1735−1748 doi: 10.1109/TSG.2023.3309405
    [32] Zhang C L, Ahmad M, Wang Y Q. ADMM based privacy-preserving decentralized optimization. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 565−580 doi: 10.1109/TIFS.2018.2855169
    [33] 唐飞, 凌国玮, 单进勇. 基于国密SM2和SM9的加法同态加密方案. 密码学报, 2022, 9(3): 535−549

    TANG Fei, LING Guo-Wei, SHAN Jin-Yong. Additive homomorphic encryption schemes based on SM2 and SM9. Journal of Cryptologic Research, 2022, 9(3): 535−549
    [34] Zhang C L, Wang Y Q. Enabling privacy-preservation in decentralized optimization. IEEE Transactions on Control of Network Systems, 2019, 6(2): 679−689 doi: 10.1109/TCNS.2018.2873152
    [35] Nedić, A, Ozdaglar A, Parrilo P A. Constrained consensus and optimization in multi-agent networks. IEEE Transactions on Automatic Control, 2010, 55(4): 922−938 doi: 10.1109/TAC.2010.2041686
    [36] Tsiounis Y, Yung M. On the security of ElGamal based encryption. In: Proceedings of International Workshop on Public Key Cryptography. Heidelberg, Germany: Springer, 1998. 117−134
    [37] Johnson D, Menezes A, Vanstone S. The elliptic curve digital signature algorithm (ECDSA). International Journal of Information Security, 2001, 1(1): 36−63 doi: 10.1007/s102070100002
    [38] Su Y, Yang B L, Yang C, Zhao S Y. ReMCA: A reconfigurable multi-core architecture for full RNS variant of BFV homomorphic evaluation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(7): 2857−2870 doi: 10.1109/TCSI.2022.3163970
  • 加载中
计量
  • 文章访问数:  42
  • HTML全文浏览量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-28
  • 录用日期:  2024-11-06
  • 网络出版日期:  2024-12-10

目录

    /

    返回文章
    返回