2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应原型特征类矫正的小样本学习方法

赵红 钟杨清 金杰 邹林华

闫敬, 关新平. 海上无人系统跨域集群发展现状及其关键技术. 自动化学报, 2025, 51(3): 1−18 doi: 10.16383/j.aas.c240334
引用本文: 赵红, 钟杨清, 金杰, 邹林华. 基于自适应原型特征类矫正的小样本学习方法. 自动化学报, 2025, 51(2): 475−484 doi: 10.16383/j.aas.c240312
Yan Jing, Guan Xin-Ping. Development status and key techniques for cross-domain swarm of maritime unmanned systems. Acta Automatica Sinica, 2025, 51(3): 1−18 doi: 10.16383/j.aas.c240334
Citation: Zhao Hong, Zhong Yang-Qing, Jin Jie, Zou Lin-Hua. Few-shot learning based on class rectification via adaptive prototype features. Acta Automatica Sinica, 2025, 51(2): 475−484 doi: 10.16383/j.aas.c240312

基于自适应原型特征类矫正的小样本学习方法

doi: 10.16383/j.aas.c240312 cstr: 32138.14.j.aas.c240312
基金项目: 国家自然科学基金(62376114)资助
详细信息
    作者简介:

    赵红:闽南师范大学计算机学院教授. 2019年获得天津大学博士学位. 主要研究方向为粒计算, 小样本学习和分层分类. 本文通信作者. E-mail: hongzhaocn@163.com

    钟杨清:闽南师范大学计算机学院硕士研究生. 主要研究方向为小样本学习. E-mail: yangqingzhong0@163.com

    金杰:闽南师范大学计算机学院硕士研究生. 主要研究方向为小样本学习, 分层分类. E-mail: kimjee@126.com

    邹林华:闽南师范大学计算机学院硕士研究生. 主要研究方向为小样本学习, 分层分类. E-mail: zlh1836065471@163.com

Few-shot Learning Based on Class Rectification via Adaptive Prototype Features

Funds: Supported by National Natural Science Foundation of China (62376114)
More Information
    Author Bio:

    ZHAO Hong Professor at the School of Computer Science, Minnan Normal University. She received her Ph.D. degree from Tianjin University in 2019. Her research interest covers granular computing, few-shot learning, and hierarchical classification. Corresponding author of this paper

    ZHONG Yang-Qing Master student at the School of Computer Science, Minnan Normal University. Her main research interest is few-shot learning

    JIN Jie Master student at the School of Computer Science, Minnan Normal University. His research interest covers few-shot learning and hierarchical classification

    ZOU Lin-Hua Master student at the School of Computer Science, Minnan Normal University. His research interest covers few-shot learning and hierarchical classification

  • 摘要: 针对小样本学习过程中样本数量不足导致的性能下降问题, 基于原型网络(Prototype network, ProtoNet)的小样本学习方法通过实现查询样本与支持样本原型特征间的距离度量, 从而达到很好的分类性能. 然而, 这种方法直接将支持集样本均值视为类原型, 在一定程度上加剧了对样本数量稀少情况下的敏感性. 针对此问题, 提出了基于自适应原型特征类矫正的小样本学习方法(Few-shot learning based on class rectification via adaptive prototype features, CRAPF), 通过自适应生成原型特征来缓解方法对数据细微变化的过度响应, 并同步实现类边界的精细化调整. 首先, 使用卷积神经网络构建自适应原型特征生成模块, 该模块采用非线性映射获取更为稳健的原型特征, 有助于减弱异常值对原型构建的影响; 然后, 通过对原型生成过程的优化, 提升不同类间原型表示的区分度, 进而强化原型特征对类别表征的整体效能; 最后, 在3个广泛使用的基准数据集上的实验结果显示, 该方法提升了小样本学习任务的表现.
  • 近年来, 物理互联的大规模系统协调控制问题已成为研究热点. 在这类系统中, 确保全局稳定性需要仔细考虑众多高度耦合的子系统和控制组件. 这些系统广泛应用于处理海量数据, 提供关键服务以及执行复杂控制任务, 如航空航天系统[12]、机器人系统[35]和能源管理系统[68] 等. 本文重点关注一类大规模非线性互联系统, 旨在提出一种高效、可靠的分散式控制方案, 以提升系统的控制性能. 大规模互联系统往往由众多子系统组成, 各子系统间通过无线通信实现彼此间的信息交流. 采用这种无线通信网络系统[911]设计可实现对物理环境中各种参数的实时监测和精准控制. 这类系统不仅具有高度的灵活性和可扩展性, 还能够在复杂环境中保持稳定的性能, 因此在生产生活中具有广泛的应用场景和推广前景.

    然而, 在工业应用中, 大规模系统的控制问题面临着两大技术挑战[1214]: 1)网络控制架构的有限通信带宽和计算资源导致通信延迟、数据丢失的问题日益突出, 尤其是当涉及更多子系统和复杂互联操作时, 数据传输和计算负担急剧增加, 从而严重影响控制性能; 2)大规模系统通常展现出未知的系统动态和非线性互联特性, 使得借助精确数学模型分析控制过程变得极为困难. 此外, 测量误差和环境噪声的存在进一步加剧了这一问题的复杂性.

    针对问题1), 为满足互联大规模系统在通信带宽方面的限制, 研究者们提出了基于事件触发的控制方法[1520], 以解决分散式或分布式控制中通信资源有限、带宽受限的问题. 与传统时间触发控制方法不同, 它允许控制动作只在需要时被执行, 避免不必要的控制策略更新. 同时, 信息传输仅在满足特定触发条件时才会执行, 可显著减少子系统与控制器之间以及不同子系统之间的信息交换.

    针对问题2), 多位研究者致力于开发分散式或分布式控制架构[15, 2125]. 例如Wu等[18]通过采用多项式系统框架对非线性大规模系统进行建模, 这种方法不仅提高了模型的准确性, 还使得控制系统更加高效和可靠. 文献[2122] 中采用辨识器模型来消除未测量状态和未建模动态的影响, 从而提高系统的稳定性和性能. 其中, 文献[21]所提出的在线事件触发方法和自适应模糊分散式控制算法为系统动态未知的互联非线性大规模系统提供有效途径. 综上所述, 基于事件触发的控制方法以及分散式或分布式控制架构为解决复杂的互联大规模系统的控制问题提供了有效的技术手段.

    近年来, 自适应动态规划(Adaptive dynamic programming, ADP)方法在理论研究[2632]和实际应用[3237]中都取得了显著进展. 在理论研究方面, ADP方法已被广泛应用于解决各类控制问题, 王鼎等[26]开发了一种离散时间非线性系统的迭代神经动态规划方法, 用于设计近似最优调节器. 文献[27]通过设计孤立子系统的相应最优控制器解决未知互联大规模系统的分散跟踪控制问题. Zhao等[29]通过设计基于神经网络的辨识器, 提出一种基于ADP的分散式控制方法, 有效避免互联项有界性的常见假设. 在实际应用方面, ADP方法同样展现出了强大的潜力. Wei等[36]借助ADP算法提出一种微电网中最优约束自适应学习电池顺序管理方法, 通过迭代得到最优的电池顺序控制策略, 为微电网的稳定运行提供有力支持. 此外, 文献[37]首次将基于强化学习的ADP方法应用于漂浮式风力涡轮机的结构控制, 取得了显著的效果.

    然而, 上述文献在探讨互联大规模系统的分散或分布式控制时, 并未充分考虑到巨大的传输负担问题. 尽管文献[15, 1719, 25]采用基于事件触发的控制策略来减轻通信负荷, 但这些研究的前提都是系统动态已知, 且未将输入受限的情况纳入考量. 同时, 在工业过程控制中, 输入受限是一个必须面对的现实问题. 这意味着设计的控制器需要在满足这些外部条件的限制下依然能够实现预期的性能. 文献[16]针对受不确定性和未知动态影响的大规模系统, 研究其在输入受限下的事件触发控制问题. 然而, 该研究主要侧重于解决特定参考轨迹的跟踪问题, 所提出的方法并不能直接应用于大规模系统的调节问题. 鉴于此, 本文的研究动机在于开发一种针对未知非线性大规模系统的输入受限分散式控制方法. 该方法旨在保证系统稳定性的同时, 有效减少系统资源的占用空间, 从而满足工业过程控制中对于通信效率和性能稳定性的双重需求.

    本文关注一类非线性大规模系统, 设计基于神经网络的辨识器来识别系统内部的未知动态和互联项. 此外, 为减轻通讯网络的通信和计算负担, 本文设计出一种新的分散式控制策略. 同时, 在理论上证明互联系统的稳定性和权值估计误差的最终一致有界性. 本文的贡献可以概括为三个方面.

    1)针对系统内部动态未知的非线性大规模互联系统, 本文基于现有事件触发ADP算法[3840], 提出一种基于动态事件触发的自适应动态规划控制算法, 推导一种输入受限下的触发条件, 因为该方法不需要控制输入信息, 所以避免控制器和事件生成器之间的信息传输, 因此节省更多的通信资源. 此外, 本文通过在触发条件中引入死区运算进一步减少算法的计算负担.

    2)与现有的离线辨识算法[4041]不同, 本文使用基于神经网络设计的辨识器在线逼近未知的系统内部动态. 同时使用辨识得到的系统动态指导控制策略的设计, 从而实现系统的稳定运行, 这一即时控制特性使得本文所提出的方法更适于工业推广运用.

    3)所设计的分散控制器仅使用对应子系统的本地状态信息, 不依赖于系统的全局状态, 并且动态事件触发算法的设计也是相互独立的. 因此, 不同子系统间的测量数据和控制信息是异步传输和更新的.

    本文的内容安排如下: 第1节首先建立具有未知动态的互联大规模系统, 并设计基于事件的控制框架. 第2节设计辨识器模型和评判神经网络模型, 并给出受控系统的全局稳定性证明. 第3节提供对事件间隔时间下限的理论推导过程. 第4节使用两个仿真算例证明本文方法的正确性. 最后, 第5节对本文进行总结.

    符号表示: 在本文中, 符号$ {\bf{R}} $、$ {\bf{R}}^n $和$ {\bf{R}}^{n \times m} $分别代表所有实数的集合、实数向量的集合和所有矩阵的集合. 此外, $ {\cal{N}} $表示集合$ \{1,\; 2,\; \cdots,\; N\} $, $ {\cal{N}}^+ $是所有正整数的集合. 对于任意矩阵$ A $, $ \lambda_{\text{min}}(A) $和$ \lambda_{\text{max}}(A) $分别代表其最小和最大的特征值. 矩阵$ I_{n \times n} $是$ n $维单位矩阵, 而$ 0_{n \times m} $是具有相应维数的零值矩阵, 关于时间$ t $的函数$ f(x(t)) $可以重写为$ f(t) $, $ x(t ^ {-}):= \mathop {\lim } \nolimits_{\Delta t \to 0^{-}} x(t + \Delta t) $.

    考虑如下形式的无线网络控制系统, 它由$ N $个互联的子系统组成. 第$ i $个子系统的动态如下:

    $$ \begin{align} \left\{ {\begin{aligned} &{{{\dot x}_{i,\;1}} = {x_{i,\;2}} + {g_{i,\;1}}({\underline{x}_{i,\;1}}) + {{\cal{H}}_{i,\;1}}(x) }\\& {{{\dot x}_{i,\;2}} = {x_{i,\;3}} + {g_{i,\;2}}({\underline{x}_{i,\;2}}) + {{\cal{H}}_{i,\;2}}(x) }\\& \ \ \ \ \ \ \vdots \\& {{{\dot x}_{i,\;{n_i-1}}} = {x_{i,\;{n_i}}} + {g_{i,\;{n_i-1}}}({\underline{x}_{i,\;{n_i-1}}}) + {{\cal{H}}_{i,\;{n_i-1}}}(x) }\\& {{{\dot x}_{i,\;{n_i}}} = {u_i} + {g_{i,\;{n_i}}}({\underline{x}_{i,\;{n_i}}}) + {{\cal{H}}_{i,\;{n_i}}}(x) } \end{aligned}} \right. \end{align} $$ (1)

    其中, $\underline{x}_{i,\;j} = [x_{i,\;1},\; x_{i,\;2},\; \cdots,\; x_{i,\;j}]^{\mathrm{T}}\; \in\; {\bf{R}}^j$, $i \in {\cal{N}}$, $1 \leq j \leq n_i$. $x_i := \underline{x}_{i,\;n_i}$为第$i$个子系统在包含原点的紧集$U_{x_i} \subset {\bf{R}}^{n_i}$上的状态向量, 全局状态向量$x = [x_1^{\mathrm{T}},\; x_2^{\mathrm{T}},\; \cdots,\; x_N^{\mathrm{T}}]^{\mathrm{T}}$. 另外, $u_i \in {\bf{R}}$是第$i$个子系统的控制输入. 控制输入$ u_i $受以下条件约束: $|u_i| < u_{i,\;G}$, 其中$u_{i,\;G}$是一个正值常数. 输入函数$g_{i,\;j}(x_{i,\;j}): {\bf{R}}^j \rightarrow {\bf{R}}$是一个未知的平滑非线性函数, ${\cal{H}}_{i,\;j}(x)$是一个关于状态$x$的未知互联项, 代表其他子系统对第$i$个子系统的影响. 记$g_i(x_i)=[g_{i,\,1} (\underline{x}_{i,\,1}), \; \cdots, g_{i,\;n_i}(\underline{x}_{i,\;n_i})]^{\mathrm{T}}$ 和 $ {\cal{H}}_i(x)=[{\cal{H}}_{i,\;1}(x),\, \cdots, $$ {\cal{H}}_{i,\;n_i}(x)]^{\mathrm{T}} $. 在本文中, 假定以下条件得到满足:

    假设1. 对于任意$i \in {\cal{N}}$, 大规模互联系统(1)的状态是可测的, 并且当${\cal{H}}_i(x) = 0$时, 系统(1)在平衡点$x = 0$是可控的.

    假设2. 对于第$i$个子系统, 函数$g_{i,\;j}$和${\cal{H}}_{i,\;j}$在紧集$U_{x_i}$上是局部利普希茨连续的. 即系统的互联项${\cal{H}}_i$满足$\|{\cal{H}}_i\| \leq \bar{{\cal{H}}}_i$, 其中常数$\bar{{\cal{H}}}_i > 0$.

    鉴于系统(1)中的内部动态$g_{i,\;j}$和互联项${\cal{H}}_{i,\;j}$均未知, 直接设计系统(1)是困难的. 因此, 本文采用基于神经网络的辨识器模型对子系统动态进行估计, 并设计分散式状态反馈控制器以实现大规模互联系统的稳定控制.

    本文考虑设计一种基于动态事件触发的分散式控制策略, 旨在减轻系统(1)总体的带宽压力. 假设在$t = t_l$时, 系统状态误差超出预先设定的触发阈值, 此时触发一个事件, 并同步更新相应的控制信号. 事件触发时刻所组成的集合使用单调递增序列$\{t_l| l \in {\bf{N}}^+\}$表示.

    由于真实系统(1)的动态是未知的, 子系统状态$x_i$和实时事件驱动控制信号$u_i$首先被传输到相应的辨识器. 然后, 估计状态$\hat{x}_i$和子系统状态$x_i$被传送到分散式事件生成器以确定是否超出设定的触发阈值. 在第$l$次触发时刻, 即$t = t_l$时, 辨识器系统状态被采样, 同时控制输入被重新计算并传送至执行器节点. 在本文研究范围内, 假设整个控制过程中不存在计算和通讯上的延迟. 也就是说, 采样状态的收集、控制策略的计算以及控制器输出信号的传输都是同时发生的.

    在上述的事件触发机制中, 第$ i $个子系统的采样状态可表示为:

    $$ \begin{align} \breve x_i(t) = \hat{x}_i(t_l),\; \ t_l \le t <t_{l+1} \end{align} $$ (2)

    在零阶保持器的作用下, 控制信号保持不变, 直到触发下一个事件, 即基于事件触发的控制策略为:

    $$ \begin{align} \breve u_i(t) = u_i(\breve x_i,\; t),\; \ t_l \le t <t_{l+1} \end{align} $$ (3)

    此外, 本文使用事件触发误差$z_{x_i}$来表示子系统状态和采样状态之间的误差:

    $$ \begin{split} z_{x_i}(t) =\;& x_i(t) - \breve x_i(t)= \\ &x_i(t) - \hat x_i(t_l),\; \ t_l \le t < t_{l+1} \end{split} $$ (4)

    本节设计一种基于神经网络的辨识器用于在线逼近未知系统的内部动态. 通过引入一个稳态矩阵$K_i$, 第$i$个子系统在控制策略$u_i$作用下的动态可以表示为:

    $$ \begin{split} {{\dot x}_i}=\;&{M_i}{x_i}-{K_i}{x_i}+{K_i}{x_i}+g_i(x_i)\;+\\ &{\cal{H}}_i(x)+{A_{i,\;{n_i}}}{{u}_i} \end{split} $$ (5)

    这里矩阵$K_i\;=\; [ [K_{i,\,\;1}^{\mathrm{T}},\,\; 0_{1 \times (n_i-1)}^{\mathrm{T}}]^{\rm{T}},\; \cdots,\; [K_{i,\;n_i-1}^{\mathrm{T}}, 0_{1 \times 1}^{\mathrm{T}}]^{\rm{T}},\;$$ K_{i,\;n_i}^{\mathrm{T}} ] \in {\bf{R}}^{n_i \times n_i}$为一个上三角矩阵. 根据神经网络的全能逼近性质, 未知的非线性函数可以用$ K_{i,\;j}^{\mathrm{T}}{\underline{x}_{i,\;j}} + g_{i,\;j}(\underline{x}_{i,\;j})\; =\; \theta_{i,\;j}^*\phi_{i,\;j}(\underline{x}_{i,\;j}) + \varepsilon_{i,\;j} $的形式来逼近. 这里$ \theta_{i,\;j}^* \in {\bf{R}}^{m_{i,\;j}} $, $ \phi_{i,\;j}(\underline{x}_{i,\;j}): {\bf{R}}^j \to {\bf{R}}^{m_{i,\;j}} $以及$ \varepsilon_{i,\;j} \in {\bf{R}} $分别是理想的神经网络权值, 激活函数和逼近误差. 因此, 子系统(5)可以进一步表述为:

    $$ \begin{split} {{\dot x}_i} = \;& (M_i - K_i){x_i} + \sum\limits_{j = 1}^{{n_i}} {{A_{i,\;j}}\theta _{i,\;j}^{ * {\rm{T}}}{\phi _{i,\;j}}({\underline{x}_{i,\;j}})}\;+ \\ &{\varepsilon_i}+ {\cal{H}}_i(x) + {A_{i,\;{n_i}}}{{u}_i} \end{split} $$ (6)

    其中,

    $$ \begin{split} & {M_i} = \left[ {\begin{array}{*{20}{c}} { 0 } & {}\\ { \vdots}&{I_{{(n_i-1)} \times {(n_i-1)}}}\\ { 0 } & {0 \ \ \ \ \ \cdots \ \ \ \ \ 0} \end{array}} \right],\; {\varepsilon _i} = \left[ {\begin{array}{*{20}{c}} {\varepsilon_{i,\;1} }\\ \vdots \\ {\varepsilon_{i,\;n_i} } \end{array}} \right],\; \\ & {A_{i,\;j}} = [\overbrace {0,\;\cdots,\;1}^j,\;0,\;\cdots,\;0]^{\mathrm{T}} \in {\bf{R}}^{n_i} \end{split} $$

    通过选择合适的常数矩阵$K_i$, 可使$C_i := M_i\; - K_i$成为一个赫尔维茨矩阵. 那么对于给定的正定矩阵$B_i \in {\bf{R}}^{n_i \times n_i}$, 存在唯一的对称正定矩阵$P_i \in {\bf{R}}^{n_i \times n_i}$满足[42]:

    $$ \begin{align} {C_i^{\mathrm{T}}}{P_i} + {P_i}C_i = - B_i \end{align} $$ (7)

    为重构系统动态(1), 考虑使用如下形式的辨识器:

    $$ \begin{align} {{{\dot {\hat x}}_i} = {C_i}{\hat x_i} + \sum\limits_{j = 1}^{{n_i}} {{A_{i,\;j}}{\hat \theta} _{i,\;j}^{\mathrm{T}}{\phi _{i,\;j}}({\underline{\hat x}_{i,\;j}})} + {A_{i,\;{n_i}}}{{u}_i}} \end{align} $$ (8)

    式中$\hat{\underline{x}}_{i,\;j} = [\hat{x}_{i,\;1},\; \cdots,\; \hat{x}_{i,\;j}]^{\mathrm{T}} \in {\bf{R}}^j$是$\underline{x}_{i,\;j}$的估计值,$\hat{\theta}_{i,\;j} \in {\bf{R}}^{m_{i,\;j}}$是理想权重$\theta^*_{i,\;j}$的估计值. 为简化表达形式, 在之后的叙述中定义$\phi_{i,\;j} = \phi_{i,\;j}(x_{i,\;j})$和$\hat{\phi}_{i,\;j} = \phi_{i,\;j}(\hat{x}_{i,\;j})$. 此外, 状态估计误差定义为$\tilde{x}_i = x_i - \hat{x}_i$. 将式(6)与式(8)相减, 可以得到状态估计误差的动态表达式如下:

    $$ \begin{split} {{\dot {\tilde x}}_i} =\; & {C_i}{\tilde x_i} + \sum\limits_{j = 1}^{{n_i}} {{A_{i,\;j}}{\theta} _{i,\;j}^{*{ \mathrm{T}}} \big (\phi_{i,\;j} - {\hat \phi}_{i,\;j} \big )}\;+ \\ &\sum\limits_{j = 1}^{{n_i}} {{A_{i,\;j}}{\tilde \theta} _{i,\;j}^{\mathrm{T}}{\hat \phi}_{i,\;j}} + {\cal{H}}_i(x) + \varepsilon_i \end{split} $$ (9)

    其中, ${\tilde \theta}_{i,\;j} = \theta^*_{i,\;j} - {\hat \theta}_{i,\;j}$, ${\tilde \theta}_{i,\;j} $是评判网络权值估计误差. 取评判网络的自适应律为:

    $$ \begin{align} \dot {\hat \theta}_{i,\;j} = \delta_{i,\;j}{\hat \phi}_{i,\;j}A_{i,\;j}^{\mathrm{T}}P_i{\tilde x}_{i} - \beta_{i}\delta_{i,\;j}\|{\tilde x}_{i}\| {\hat \theta}_{i,\;j} \end{align} $$ (10)

    这里$\delta_{i,\;j} \in {\bf{R}}^{m_{i,\;j} \times m_{i,\;j}}$是一个对称正定矩阵, $\beta_{i} > 0$是评判网络的学习率.

    为深入讨论, 以下假设是必要的[43]:

    假设3. 对于所有的$ i \in {\cal{N}} $且$ 1 \le j \le n_i $, 在紧集$ U_{x_i} $上, 目标函数的未知权重$ \theta_{i,\;j}^* $, 激活函数$ \phi_{i,\;j} $以及神经网络近似误差$ \varepsilon_{i} $都是范数有界的, 即$ \|\theta_{i,\;j}^*\| \le {\bar \theta}_{i,\;j} $, $ \|\phi_{i,\;j}(\cdot)\| \le {\bar \phi}_{i,\;j} $且$ \|\varepsilon_{i}(\cdot)\| \le {\bar \varepsilon}_{i} $, 这里的$ {\bar \theta}_{i,\;j} $, $ {\bar \phi}_{i,\;j} $和 $ {\bar \varepsilon}_{i} $都是正值常数.

    受文献[25]的启发, 在以下引理中, 以上设计的辨识器的有效性得到证明.

    引理 1. 考虑满足假设1 ~ 3条件的未知子系统(1), 采用式(8)所示的辨识器. 当辨识器中神经网络的权值自适应调节律给定为式(10)时, 状态估计误差$ \tilde x_i $和辨识器权值估计误差 $ \tilde \theta_{i,\;j} $都是一致最终有界(Uniformly ultimately bounded, UUB)的.

    证明. 选择李雅普诺夫函数为:

    $$ \begin{align} {\cal{F}}_i = {\cal{F}}_{i,\;1} + {\cal{F}}_{i,\;2} = \frac{{1}}{{2}}{\tilde x}_i^{\mathrm{T}}{P_i}{\tilde x}_i + \frac{{1}}{{2}} \sum\limits_{j = 1}^{{n_i}} { {\tilde \theta}_{i,\;j}^{\mathrm{T}} \delta_{i,\;j}^{-1} {\tilde \theta}_{i,\;j} } \end{align} $$ (11)

    ${\cal{F}}_{i,\;1}$沿着状态估计误差的动态(9)的轨道导数是

    $$ \begin{split} {\cal{\dot F}}_{i,\;1} =\; & \frac{{1}}{{2}}{\tilde x}_i^{\mathrm{T}} \big ( {P_i}{C_i} + {C_i^{\mathrm{T}}}{P_i} \big ) {\tilde x}_i + {\tilde x}_i^{\mathrm{T}}{P_i} \Bigg ({\cal{H}}_i(x) \;+\\ &\varepsilon_i+ \sum\limits_{j = 1}^{{n_i}} {{A_{i,\;j}}{\theta} _{i,\;j}^{*{ \mathrm{T}}} \big ( \phi_{i,\;j} - {\hat \phi}_{i,\;j} \big )}\;+\\ &\sum\limits_{j = 1}^{{n_i}} {{A_{i,\;j}}{\tilde \theta} _{i,\;j}^{\mathrm{T}}{\hat \phi}_{i,\;j}} \Bigg )\le \\ & -\frac{{1}}{{2}}\lambda_{\min}(B_i) \left\| {\tilde x}_i \right\|^2 + {\tilde x}_i^{\mathrm{T}} {P_i} \sum\limits_{j = 1}^{{n_i}} {{A_{i,\;j}}{\tilde \theta} _{i,\;j}^{\mathrm{T}}{{\hat \phi}_{i,\;j}}} \;+\\ & \left\| {\tilde x}_{i} \right\| \left\| P_i \right\| \Bigg ( 2\sum\limits_{j = 1}^{{n_i}} {{\bar \theta}_{i,\;j} {\bar \phi}_{i,\;j} + \bar{{\cal{H}}}_i + {\bar \varepsilon}_i} \Bigg ) \\[-1pt]\end{split} $$ (12)

    由于$\theta_{i,\;j}^*$是常数, 则有$\dot{\tilde{\theta}}_{i,\;j} = - \dot{\hat{\theta}}_{i,\;j}$. 然后有:

    $$ \begin{split} \dot{{\cal{F}}}_{i,\;2} =\; & -\tilde{x}_i^{\mathrm{T}} P_i \sum_{j = 1}^{n_i} A_{i,\;j}\tilde{\theta}_{i,\;j}^{\mathrm{T}} \hat{\phi}_{i,\;j}\;+ \\ & \beta_i \left\| \tilde{x}_i \right\| \sum_{j = 1}^{n_i} \left( \tilde{\theta}_{i,\;j}^{\mathrm{T}} \theta_{i,\;j}^* - \tilde{\theta}_{i,\;j}^{\mathrm{T}} \tilde{\theta}_{i,\;j} \right) \end{split} $$ (13)

    结合式(12)和(13), 可得:

    $$ \begin{split} {\cal{\dot F}}_{i} \le & -\frac{{1}}{{2}}\lambda_{\min}(B_i) \left\| {\tilde x}_i \right\|^2 + \left\| {\tilde x}_i \right\| \sigma_i+ {\beta_i}\left\| \tilde x_i \right\|\times\\ & \sum\limits_{j = 1}^{{n_i}} {\left( - \left( \left\| {\tilde \theta}_{i,\;j} \right\| - \frac{1}{2} {\bar \theta}_{i,\;j} \right)^2 + \frac{1}{4} {\bar \theta}_{i,\;j}^2 \right)}= \\ & \left\| {\tilde x}_i \right\| \Bigg( -\frac{{1}}{{2}}\lambda_{\min}(B_i) \left\| {\tilde x}_i \right\|- \\ & {\beta_i} \sum\limits_{j = 1}^{{n_i}} {\left( \left\| {\tilde \theta}_{i,\;j} \right\| - \frac{1}{2} {\bar \theta}_{i,\;j} \right)^2} + p_i \Bigg) \end{split} $$ (14)

    其中, $ \sigma_i = \| P_i \|(2 \sum_{j=1}^{n_i} \bar{\theta}_{i,\;j}^{\mathrm{T}} \bar\phi_{i,\;j} + \bar{{\cal{H}}}_i + \bar{e}_i) $且$ p_i = ({\beta_i}/{4}) \sum_{j=1}^{n_i} \bar \theta_{i,\;j}^2 + \sigma_i .$ 当 $\|\tilde{x}_i\| > {2p_i}/{\lambda_{\min}(B_i)}:=\bar \eta_{\tilde x_i}$ 或$\|\tilde {\theta}_{i,\;j}\| > ({1}/{2})\bar \theta_{i,\;j} + ({p_i}/{\beta_i})^{\frac{1}{2}}$满足时, 有$ \dot{{\cal{F}}}_i < 0 $. 由李雅普诺夫扩展定理, 得出$ \tilde{x}_i $和$ \tilde{\theta}_{i,\;j} $都是UUB的.

    引理1表明, 随着$ t \to \infty $, 评判网络估计权值$ {\hat \theta}_{i,\;j} $会收敛到理想权值$ {\theta}_{i,\;j}^* $的小邻域内. 这意味着, 所设计的辨识器能够识别系统(6)中的未知内部动态. 同时, 与子系统(6)相对应的孤立系统的动态可以表示为:

    $$ \begin{split} {{\dot x}_i} =\; & C_i{x_i} + \sum\limits_{j = 1}^{{n_i}} {{A_{i,\;j}}\theta _{i,\;j}^{*{ \mathrm{T}}}{\phi _{i,\;j}}({\underline{x}_{i,\;j}})} + {\varepsilon_i}\;+\\ &{A_{i,\;{n_i}}}{{u}_i} \end{split} $$ (15)

    比较辨识器动态(8)和孤立系统动态(15), 可以发现, 随着$ {\hat \theta}_{i,\;j} \to {\theta}_{i,\;j}^* $, 动态(8)可以被看作是式(15)的近似形式. 考虑到误差项$ \varepsilon_{i} $是范数有界的, 以及通过增加辨识器神经网络的隐藏层节点数, 误差可以进一步减小[43].

    在现有的ADP相关工作[29]中, 已经证明为孤立子系统设计的最优控制策略所组成的控制序列可以作为整体互联系统的分散式控制策略. 这启发构建一种仅依赖于对应子系统局部状态信息的评价模型, 设计一种新的大规模互联系统分散式控制方法.

    由于子系统受到全局系统状态$x$的影响, 考虑到系统动态是完全未知的, 直接求解系统(6)的最优控制问题相当复杂. 受文献[29]的启发, 首先考虑孤立系统的最优控制问题, 随后将获得的近似最优控制策略应用于互联系统中. 对于孤立系统(15), 时间驱动的性能指标函数是

    $$ \begin{align} V_i = \int_0^\infty {r_i(x_i,\; u_i)\text{d}t} \end{align} $$ (16)

    这里$ r_i(x_i,\; u_i) = x_i^{\mathrm{T}} Q_i x_i + G(u_i) $表示一个效用函数, 它包含两个对称正定矩阵$ Q_i \in {\bf{R}}^{n_i \times n_i} $和$ R_i \in {\bf{R}} $. 对于输入受限的控制问题, $G(u_i)$被设计为:

    $$ \begin{split} G(u_i)=\; & 2u_{i,\;G} \int_0^{u_i} \Phi^{-1}\left(\frac{s}{u_{i,\;G}} \right) ^{\mathrm{T}}R_i \text{d}s=\\ & 2u_{i,\;G}^{\mathrm{T}} R_i\Phi^{-1} \left(\frac{u_i}{u_{i,\;G}}\right) +\\ & u_{i,\;G}^2R_i^{\mathrm{T}} \ln \left(1 - \frac{u_i^2}{u_{i,\;G}^2}\right) \end{split} $$ (17)

    其中, $\Phi(\cdot): = \text{tanh}( \cdot )$且$ \Phi^{-1}(\cdot) = \text{arctanh}( \cdot ) $.

    假设$V_i(t)$在 $[0,\;+\infty)$上连续可微, 对式(16)两端取微分可得:

    $$ \begin{split} 0 =\; & (\nabla V_i)^{\mathrm{T}} \Bigg ( {C_i}{x_i} + \sum\limits_{j = 1}^{{n_i}} {{A_{i,\;j}}\theta _{i,\;j}^{*{ \mathrm{T}}}{\phi _{i,\;j}}({\underline{x}_{i,\;j}})} + {\varepsilon _i}\;+ \\ &{A_{i,\;{n_i}}}{{u}_i} \Bigg ) + {x_i^{\mathrm{T}} Q_i x_i} + G(u_i) \\[-1pt]\end{split} $$ (18)

    其中, $ \nabla V_i = \frac{{\partial V_i(x_i)}}{{\partial x_i}} $. 为简单起见, 定义$F_i(x_i) = M_i x_i + f_i(x_i) = {C_i}{x_i} + \sum\nolimits_{j = 1}^{{n_i}} {{A_{i,\;j}}\theta _{i,\;j}^{*{ \mathrm{T}}}{\phi _{i,\;j}}({\underline{x}_{i,\;j}})} $ + ${\varepsilon _i} .$ 那么, 时间驱动的汉密尔顿函数表示为:

    $$ \begin{split} H_i(x_i,\;u_i,\;V_i) =\; & r_i({x_i},\;{u_i}) + (\nabla V_i)^{\mathrm{T}} \times \\ &\big ( F_i(x_i) + {A_{i,\;{n_i}}}{{u}_i} \big ) \end{split} $$ (19)

    孤立子系统对应的最优值函数表示为:

    $$ \begin{align} V_i^* = \mathop {\min }\limits_{u_i} \int_0^\infty {({x_i^{\mathrm{T}}}Q_i{x_i} + G(u_i))\text{d}s} \end{align} $$ (20)

    假设最优值函数$V_i^*(t)$存在并且在$[0,\; +\infty)$上可微. 根据稳态条件的要求, 对应的最优控制策略如下所示:

    $$ \begin{align} u_i^* = -u_{i,\;G}\Phi\left(\frac{1}{2u_{i,\;G}} R_i^{-1} A_{i,\;n_i}^{\mathrm{T}} \nabla V_i^*\right) \end{align} $$ (21)

    那么, 对应的时间触发HJB方程为:

    $$ \begin{split} H_i(x_i,\;u_i^*,\;V_i^*) =\;& r_i({x_i},\;{u_i^*})+ (\nabla V_i^*)^{\mathrm{T}}\;\times \\ &\big ( F_i(x_i) + {A_{i,\;{n_i}}}{u_i^*} \big )=0 \end{split} $$ (22)

    为减轻总体系统的通信负担, 本研究采用动态事件触发控制框架. 根据式(21), 动态事件触发最优控制策略可表示为:

    $$ \begin{split}& {\breve u}_i^* := u_i^* ({\breve x}_i) = -u_{i,\;G}\Phi\left(\frac{{1}}{{2u_{i,\;G}}}{R_i^{-1}}A_{i,\;n_i}^{\mathrm{T}}{\nabla {\breve V}_i^*}\right),\;\\ &\qquad t_l \le t < t_{l+1} \\[-1pt]\end{split} $$ (23)

    其中${\nabla {\breve V}_i^*} = \left. {\frac{{\partial V_i^*(x(t))}}{{\partial x(t)}}} \right|_{t = t_l}$. 同时, HJB方程(22)也转换为如下的事件触发形式:

    $$ \begin{split} H_i(x_i,\;{\breve u}_i^*,\;V_i^*) = \;& r_i({x_i},\;{{\breve u}_i^*}) +(\nabla V_i^*)^{\mathrm{T}}\times \\ &\big ( F_i(x_i) + {A_{i,\;{n_i}}}{{\breve u}_i^*} \big ) \end{split} $$ (24)

    应当注意的是, 由于存在事件触发误差$z_{x_i}$, 所以式(24)不等于0.

    以下假设均有助于接下来的证明, 并且已在文献[3, 28, 43]中进行详细阐述.

    假设 4. 控制策略$u_i^*$关于事件触发误差$z_{x_i}$是利普希茨连续的, 即对于所有$i \in {\cal{N}}$, 存在一个正常数${\xi}_i$使得$\|u_i^*(\hat{x}_i) - u_i^*(x_i)\|^2 \leq {\xi}_i \|z_{x_i}\|^2$恒成立.

    鉴于HJB方程(22)是一个非线性偏微分方程, 通常很难得到解析解$V_i^*$, 这也意味着最优控制策略$u_i^*$无法直接确定. 因此, 在第2.3节中, 采用ADP算法来求得HJB方程(22)的近似最优解.

    在本节中, 基于ADP算法设计基于静态事件触发(Static event triggering, SET)的近似最优控制器. 根据神经网络的全能逼近性, 最优值函数(20)可以重写为:

    $$ \begin{align} V_i^*(x_i) = W_i^{*{ \mathrm{T}}}\varphi_i(x_i) + \tau_i \end{align} $$ (25)

    其中$W_i^* \in {\bf{R}}^{q_i}$是理想权重, $\varphi_i(x_i):{\bf{R}}^{n_i} \to {\bf{R}}^{q_i}$是激活函数, $\tau_i$是神经网络的逼近误差. 基于式(21)和(25), 最优控制策略为:

    $$ \begin{split} u_i^* =\;& -u_{i,\;G} \Phi \Bigg ( \frac{{1}}{{2u_{i,\;G}}}{R_i^{-1}}A_{i,\;n_i}^{\mathrm{T}} \Big( \big ( \nabla \varphi_i(x_i) \big )^{\mathrm{T}} W_i^*\; +\\ & \nabla \tau_i(x_i) \Big) \Bigg) \\[-1pt]\end{split} $$ (26)

    这里$\nabla \varphi_i$和$\nabla \tau_i$分别是$\varphi_i$和$\tau_i$关于$x_i$的偏导数. 此外, 考虑到$V_i^*$的表达式(25), 控制策略(23)可化为:

    $$ \begin{split} {\breve u}_i^* =\; &-u_{i,\;G}\Phi \Bigg( \frac{{1}}{{2u_{i,\;G}}}{R_i^{-1}}A_{i,\;n_i}^{\mathrm{T}} \Big ( \big ( \nabla \varphi_i({\breve x}_i) \big )^{\mathrm{T}} W_i^*\; +\\ & \nabla \tau_i(\breve x_i) \Big ) \Bigg )\\[-1pt] \end{split} $$ (27)

    这里, $ t_l \le t < t_{l+1} $.

    由于$W_i^*$是未知的, 在此引入如下形式的评判神经网络:

    $$ \begin{align} {\hat V}_i(\hat x_i) = {\hat W}_i^{\mathrm{T}}\varphi_i(\hat x_i) \end{align} $$ (28)

    其中, $\hat W_i \in {\bf{R}}^{q_i}$是$W_i^*$的估计值. 然后基于式(28), 事件触发控制器被设计成以下形式:

    $$ \begin{split} &{\breve u}_i = -u_{i,\;G}\Phi\left( \frac{{1}}{{2u_{i,\;G}}}{R_i^{-1}}A_{i,\;n_i}^{\mathrm{T}} \big ( \nabla \varphi_i({\breve x}_i) \big )^{\mathrm{T}} {\hat W}_i(t_l)\right),\; \\ &\qquad t_l \le t < t_{l+1}\\[-1pt] \end{split} $$ (29)

    借助辨识器动态${\dot {\hat x}_i}$, 结合上述推导过程, 可得相应的近似汉密尔顿函数有如下形式:

    $$ \begin{split} H_i({\hat x}_i,\; {\breve u}_i,\; {\hat W}_i) =\; &r_i({\hat x}_i,\; \breve u_i) \;+\\ &{\hat W}_i^{\mathrm{T}} \nabla \varphi_i(\hat x_i) {\dot {\hat x}_i}:=e_{c,\;i} \end{split} $$ (30)

    此外, 定义$e_i := H_i(\hat x_i,\; \breve u_i,\; W_i^*) = r_i(\hat x_i,\; \breve u_i)\; + W_i^{*{ \mathrm{T}}} \nabla \varphi_i(\hat x_i) \dot{\hat x}_i$和权重误差 $\tilde W_i\, =\, W_i^*\, -\, \hat W_i$, 则有$e_{c,\;i} = e_i - \tilde W_i^{\mathrm{T}} \nabla \varphi_i(\hat x_i) \dot{\hat x}_i$.

    自适应评判网络设计的目标是找到权重$ \hat W_i $来最小化误差函数:

    $$ \begin{split} E_{c,\;i} =\;& \frac{{1}}{{2}} \big ( H_i({\hat x}_i,\; {\breve u}_i,\; {\hat W}_i) \;-\\ &H_i(x_i,\; u_i^*,\; W_i^*) \big )^2 =\frac{{e_{c,\;i}^2}}{2} \end{split} $$ (31)

    借助归一化梯度下降算法, 设计$ {\hat W}_i $的自适应律如下:

    $$ \begin{split} {\dot {\hat W}_i} = \;& - \gamma_i \frac{1}{(\psi_i^{\mathrm{T}} \psi_i + 1)^2}\frac{{\partial E_{c,\;i}}}{{\partial \hat W_i}}= \\ & - \gamma_i \frac{{\psi_i}e_{c,\;i}}{(\psi_i^{\mathrm{T}} \psi_i + 1)^2}= \\ & - \gamma_i \frac{{\underline{\psi}_i}e_{i}}{\psi_i^{\mathrm{T}} \psi_i + 1} + \gamma_i \frac{{\psi_i}\psi_{i}^{\mathrm{T}}}{(\psi_i^{\mathrm{T}} \psi_i + 1)^2}{\tilde W_i} \end{split} $$ (32)

    其中, $\psi_i =\nabla \varphi_i(\hat x_i) \dot{\hat x}_i$且$\underline{\psi}_i = {\psi_i}/({\psi_i^{\mathrm{T}}\psi_i+1})$. 而$\gamma_i > 0$是学习率. 由于$W_i^*$是常数, $\tilde W_i$的动态为:

    $$ \begin{split} {\dot {\tilde W}_i} =\;&\gamma_i \frac{{\psi_i}e_{c,\;i}}{(\psi_i^{\mathrm{T}} \psi_i + 1)^2}= \\ & \gamma_i \frac{{\underline{\psi}_i}e_{i}}{\psi_i^{\mathrm{T}} \psi_i + 1} - \gamma_i \frac{{\psi_i}\psi_{i}^{\mathrm{T}}}{(\psi_i^{\mathrm{T}} \psi_i + 1)^2}{\tilde W_i} \end{split} $$ (33)

    后续分析需要持续性激励(Persistence of excitation, PE)条件[3], 即:

    假设 5. 对于任意时刻$t$和$i \in {\cal{N}}$, 假设存在常数$s_i > 0$, $o_i > 0$ 和$T > 0$, 使得信号$\psi_i$在区间$[t, \; t + T]$上持续激励, 并有$s_{i} \leq \lambda_{\min}(\underline{\psi}_i\underline{\psi}_i^{\mathrm{T}}) \leq \lambda_{\max}(\underline{\psi}_i\underline{\psi}_i^{\mathrm{T}}) \leq o_{i}$成立.

    以下假设对于后续讨论是必要的, 该假设已在文献[4445]等使用.

    假设 6. 对于所有$i\in {\cal{N}}$, 在紧集$U_{x_i}$上, 理想的评判网络权值$W_i^*$, 激活函数的梯度$\nabla \varphi_i$, 神经网络近似误差的梯度$\nabla \tau_i$以及辅助项$e_i$都是范数有界的, 即$\| W_i^* \| \leq \bar{W}_i$, $\| \nabla \varphi_i \| \leq \bar{\varphi}_i$, $\| \nabla \tau_i \| \leq \bar{\tau}_i$, 并且$|e_i| \leq \bar{e}_i$, 其中$\bar{W}_i$、$\bar{\varphi}_i$、$\bar{\tau}_i$和$\bar{e}_i$都是正常数.

    在给出所设计的闭环控制系统的稳定性证明之前, 受文献[46]的启发, 评判网络权值估计误差的收敛性质如引理2所示.

    引理2. 考虑在事件触发控制策略(29)作用下的子系统(6), 设假设1 ~ 6都成立. 评判神经网络权值的自适应律由式(32)给出, 则对于任意$i \in {\cal{N}}$, 存在一个时刻$T_1 > 0$, 使得当$t > T_1$时, 权值估计误差$\tilde{W}_i$是UUB的.

    证明. 选取的李雅普诺夫函数为${\cal{P}}_i =\tilde W_i^{\mathrm{T}}\tilde W_i$. 由于$\tilde W_i$在区间$[0,\; +\infty)$上是时间连续的, 可知在触发时刻$t=t_l$, 函数${\cal{P}}_i$的一阶差分是$\Delta {\cal{P}}_i = 0$. 现在只需要分析相邻两次事件间的控制过程.

    当$ t\in (t_l,\; t_{l+1}) $时, 根据式(33), 可得:

    $$ \begin{split} {{\cal{\dot P}}_i} =\; & 2\gamma_i{\tilde W}_i^{\mathrm{T}} \Big ( \frac{{\underline{\psi}_i}e_{i}}{\psi_i^{\mathrm{T}} \psi_i + 1} - \frac{{\psi_i}\psi_{i}^{\mathrm{T}}}{(\psi_i^{\mathrm{T}} \psi_i + 1)^2}{\tilde W_i} \Big )\le \\ & \gamma_i \frac{{e_i^2} - {\tilde W}_i^{\mathrm{T}}{\psi_i}{\psi_i^{\mathrm{T}}}{\tilde W}_i}{(\psi_i^{\mathrm{T}} \psi_i + 1)^2}\le \\ & \gamma_i \Big ( {\bar e}_i^2 - \lambda_{\min}(\underline{\psi}_i\underline{\psi}_i^{\mathrm{T}})\|\tilde W_i\|^2 \Big )\le \\ & \gamma_i {\bar e}_i^2 - \gamma_i s_i \|\tilde W_i\|^2 \end{split} $$ (34)

    由式(34)可知, 当$ \|\tilde{W}_i\| > \left({{\bar e}_i}/{\sqrt{s_i}}\right) = \tilde{W}_{i,\;{M}} $时,$ {\cal{P}}_i < 0 $成立, 即存在一个时间常数$ T_1 > 0 $, 对于所有$ t > T_1 $, 权值估计误差$ \tilde{W}_i $将保持UUB.

    依据引理2, 可推得一旦$ t \geq t_l > T_1 $, 即有$\|\tilde{W}_i\| \leq \tilde{W}_{i,\;{M}}$, 此性质在后续的定理证明中也将被用到.

    接下来, 将证明在事件触发最优控制策略(27)的作用下闭环控制系统的稳定性.

    定理 1. 针对系统(1), 设假设1 ~ 6都成立. 使用如式(8)所示的辨识器和如式(27)所示的控制策略, 辨识器权值和评判网络权值的自适应律分别如式(10)和(33)所示. 使用如下形式的事件触发条件:

    $$ \begin{align} \|z_{x_i}\|\ \leq \frac{1}{2} \sqrt{\frac{\rho_i \lambda_{\min}(Q_i)}{R_i \xi_i}} \left\| x_i \right\| \end{align} $$ (35)

    则系统(1)的状态$ x_i $和评判网络权值估计误差$\tilde{W}_i$都是UUB的. 式(35)中$ \rho_i \in (0,\;\frac{1}{2} ) $是阈值调整参数.

    证明. 选择$\varpi =\wp _1 I_1 + \wp _2 I_2 $作为李雅普诺夫函数, 其中$\wp _1$、$\wp _2$对于任意$ i\in {\cal{N}} $都是正值常数, $I_1 = \sum_{i=1}^N V_i^*$和$I_2 = \sum_{i=1}^{N}P_i$. 然后对于系统(1), 有$ \dot{I}_1 = (\nabla V_i^*)^{\mathrm{T}} (F_i(x_i) + A_{i,\;n} {\breve u}_i^* + H_i(x_i))$. 根据式(22), 可得:

    $$ \begin{align} (\nabla V_i^*)^\mathrm{T} F_i(x_i) = -r_i(x_i,\; u_i^*) - (\nabla V_i^*)^\mathrm{T} A_{i,\;n} u_i^* \end{align} $$ (36)

    那么, $ I_1 $的导数是:

    $$ \begin{split} \dot{I_1} = & -{x_i^{\mathrm{T}}}{Q_i}{x_i} -G\left(u_i^{*}\right)+ 2 u_{i,\;G}\Phi^{-1}\left(\frac{{ u}_i^{*}}{u_{i,\;G}}\right)\times\\ &\left({u_i^* - \breve u}_i^*\right) + \left(\nabla V_i^{*}\right)^{\mathrm{T}} {\cal{H}}_i\left(x\right)= \\ &-{x_i^{\mathrm{T}}}{Q_i}{x_i}-G\left(\breve u_i^*\right)\;-\\ &2 u_{i,\;G}\int_{\breve u_i^*}^{u_i^*} \Phi\left(\frac{s}{u_{i,\;G}} \right) ^{\mathrm{T}}R_i \text{d}s\;+\\ &2 u_{i,\;G}\int_{\breve u_i^*}^{u_i^*} \Phi\left(\frac{u_i^*}{u_{i,\;G}} \right) ^{\mathrm{T}}R_i \text{d}u\;+\\ & \left(\nabla V_i^{*}\right)^{\mathrm{T}} {\cal{H}}_i\left(x\right)=\\ &2 u_{i,\;G}\int_{\breve u_i^*}^{u_i^*} \left( \left( \Phi\left(\frac{u_i^*}{u_{i,\;G}} \right)-\Phi\left(\frac{s}{u_{i,\;G}} \right) \right) R_i\right)^{\mathrm{T}} \text{d}s\;-\\ &{x_i^{\mathrm{T}}}{Q_i}{x_i}-G\left(\breve u_i^*\right)+ \left(\nabla V_i^{*}\right)^{\mathrm{T}} {\cal{H}}_i\left(x\right)\\[-1pt] \end{split} $$ (37)

    在式(37)中,

    $$ \begin{split} & 2 u_{i,\;G}\int_{\breve u_i^*}^{u_i^*}\left(\Phi\left(\frac{u_i^*}{u_{i,\;G}} \right) R_i-\Phi\left(\frac{s}{u_{i,\;G}} \right) R_i\right)^{\mathrm{T}}\,\; \text{d}s\le \\ &\;\;\; 2u_{i,\;G}\left \|u_i^*-\breve u_i ^*\right \| \left \|\left(\Phi\left(\frac{u_i^*}{u_{i,\;G}} \right)-\Phi\left(\frac{s}{u_{i,\;G}} \right)\right)R_i \right \| \le \\ &\;\;\;2R_i\left \|u_i^*-\breve u_i ^*\right \|^2\\[-1pt] \end{split} $$ (38)

    所以可以得到:

    $$ \begin{split} \dot{I_1}\le \;& -{x_i^{\mathrm{T}}}{Q_i}{x_i} + 2R_i \left\|u_i^*- {\breve u}_i^* \right\|^2+\\ & (\nabla V_{i}^{*})^{\mathrm{T}} {\cal{H}}_{i}(x) \le\\ & -\lambda_{\min}(Q_i)\|x_i\|^2 + 2R_i\xi_i\|z_{x_i}\|^2 \;+\\ & (\nabla V_{i}^{*})^{\mathrm{T}} {\cal{H}}_{i}(x)\leq \\ & - (1 - \rho_{i}) \lambda_{\min}(Q_{i}) \| x_{i} \|^{2}\;- \\ & \rho_{i} \lambda_{\min}(Q_{i}) \| x_{i} \|^{2}+ 4 R_{i} \xi_{i} \| z_{x_{i}} \|^{2} \;+ \\ & (\bar{\varphi}_{i} \bar{W}_{i}+ \bar{\tau}_{i}) \bar{{\cal{H}}}_{i} \end{split} $$ (39)

    并且根据引理2, 当$t \in(t_l,\; t_{l+1}) $时, 有:

    $$ \begin{align} \dot{I_2}\le \gamma_i {\bar e}_i^2 - \gamma_i s_i \|{\tilde W_i}\|^2 \end{align} $$ (40)

    当$ t \in (t_l,\; t_{l+1}) $时, 事件不会被触发, 状态也不会被采样. 总之, 在$ t \in(t_l,\; t_{l+1}) $的情况下, 结合式(39)和(40), 李雅普诺夫函数$ \varpi $的导数可以表达为:

    $$ \begin{split} \dot\varpi\le\;& \sum\limits_{i=1}^{N}\Big(\wp _1\Big(- (1 - \rho_{i}) \lambda_{\min}(Q_{i}) \| x_{i} \|^{2}\;-\\ & \rho_{i} \lambda_{\min}(Q_{i}) \| x_{i} \|^{2} + 4 R_{i} \xi_{i} \| z_{x_{i}} \|^{2}\Big)\;+ \end{split} $$
    $$ \begin{split} &\wp _2( \gamma_i {\bar e}_i^2 - \gamma_i s_i \|\tilde{W}_i\|^2)\Big)\le\\ & - \sum\limits_{i=1}^{N} \wp _1(1-\rho_i)\lambda_{\min}(Q_i)\|x_i\|^2 + \Omega \;-\\ & \sum\limits_{i=1}^{N}\wp _2\gamma_i{s_i}\|\tilde{W}_i\|^2 - \sum\limits_{i=1}^{N} \wp _1\; \times\\ & \Big( \rho_i\lambda_{\min}(Q_i)\|x_i\|^2 - 4R_i\xi_i\|z_{x_i}\|^2 \Big) \end{split} $$ (41)

    其中$ \Omega = \sum\nolimits_{i=1}^{N} {\wp _2}\gamma_i{\bar e}_i^2 $. 当满足触发条件(35)时, 对于所有$i \in {\cal{N}}$, $\rho_i\lambda_{\min}(Q_i)\|x_i\|^2 \;-\;4R_i{\xi_i}\|z_{x_i}\|^2\;\ge \;0$成立.

    因此, 当$ t_l > T_1 $, 并且至少满足以下条件之一: $ \|x_i\| > \sqrt{\frac{{\Omega }}{{\wp _1(1-\rho_i)\lambda_{\min}(Q_i)}}}$或 $\|\tilde W_i\| > \sqrt{\frac{{\Omega }}{{\wp _2\gamma_i{s_i}}}}:= \bar \eta_{\tilde W_i}$时, 有$ \dot\varpi\leq 0 $成立. 那么, 使用如式(27)所示的事件触发控制策略, 则大规模系统(1)的状态$ x_i $和评判网络权值估计误差$\tilde W_i$都是UUB的.

    注 1. 定理2证明SET最优控制策略(27)可使整个大规模系统达到稳定. 在后续分析过程中, 动态事件触发(Dynamic event triggering, DET)条件将在前述SET控制机制的基础上发展得到. DET机制是在SET机制的基础上增加一个内部动态变量, 该动态变量用来存储系统历史状态信息. 在SET条件(35)的帮助下, 可以在后续设计具体的内部动态变量形式.

    在本文所设计的DET机制中, 引入一个新的内部动态变量$\mu_i$, 它在原理上类似一个一阶滤波器, 其中$\mu_i$被用来存储系统的历史状态信息. $\mu_i$的动态被设计为:

    $$ \begin{split} &\dot{\mu}_i = -\delta_{i} \mu_{i} - \rho_{i} \lambda_{\min}(Q_{i}) \|x_{i}\|^{2} +4 R_{i} \xi_{i} \|z_{x_{i}}\|^{2},\; \\ & \qquad\mu_{i}^{0}=\mu_{i}(0) \geq 0 \end{split} $$ (42)

    这里参数$\delta_i$可被视为一个滤波系数, 且满足$\delta_i \in (0,\; 1)$. 同时有

    $$ \begin{align} D(x_i,\; z_{x_i}) = \rho_{i} \lambda_{\min}(Q_{i}) \|x_{i}\|^{2} -4 R_{i} \xi_{i} \|z_{x_{i}}\|^{2} \end{align} $$ (43)

    在DET控制机制下, 本文采用如下形式的事件触发条件:

    $$ \begin{split} \Theta (z_{x_i}) \leq\; &\frac{1}{2} \sqrt{\frac{\rho_i \lambda_{\min}(Q_i)}{R_i \xi_i}} \left\| x_i \right\| + \frac{1}{2} \sqrt{\frac{\mu_i(t)}{h_{i}R_i \xi_i}}\;+\\ &\left\| {\tilde x}_i(t_l) \right\| := \nu_i (t) \end{split} $$ (44)

    这里引入死区操作$ \Theta (z_{x_i}) $, 以避免不必要的计算和资源浪费:

    $$ \begin{aligned} \Theta (z_{x_i}) = \left\{ {\begin{aligned} &\left\| z_{x_i} \right\|,&& \left\| x_i \right\| > D_i\\& 0,&&\left\| x_i \right\| \le D_i \end{aligned}} \right. \end{aligned} $$ (45)

    其中$ \rho_i \in (0,\;0.5) $是阈值调整参数; $ D_i $表示动态触发终止参数, 是一个给定的正常数; 参数$ \nu_i(t) $代表第$ i $个子系统的触发阈值, 参数$h_i $满足$h_i\geq1/p_i $.

    分析以上触发过程可知, 当系统状态的范数$ \|x_i\| $不超过触发阈值$ D_i $时, DET误差设定为零. 采用死区运算, 可保证在系统状态达到一定精度范围后强制停止事件触发. 据此, 可以认为死区操作在减少计算资源消耗方面是有效的.

    进一步可推得, 在DET控制机制下有如下结果:

    引理3. 对于子系统(1), 内部动态变量$\mu_i$的动态如式(42)所示. 采用如式(44)所示的动态事件触发条件, 则$\mu_i$在DET控制过程中始终保持非负.

    证明. 对于任意$t \in [0,\; +\infty)$, 根据式(44), 有$h_i D(x_i,\; z_{x_i}) + \mu_i(t) \geq 0$. 基于此, 可推得:

    $$ \begin{align} {h}_i \dot{\mu}_i + ({h}_i \delta_i + 1)\mu_i \geq 0 \end{align} $$ (46)

    参照文献[47]进行比较分析, 可得:

    $$ \begin{align} \mu_i \geq \mu_i^0 {\rm{e}}^{-\left(\delta_i + \frac{1}{h_i}\right)t} \end{align} $$ (47)

    由于$\mu_i^0 \geq 0$, 可知$\mu_i(t) \geq 0$总是成立的.

    定理2. 考虑未知系统(1), 设假设1 ~ 6都成立. 采用辨识器模型(8)和评判网络(28), 辨识器神经网络权值和评判网络权值的自适应律分别由式(10)和(32)给出. 采用如式(44)所示的触发条件及如式(45)所示的死区运算. 当使用基于事件的分散式控制策略(29)时, 子系统状态$ x_i $, 采样状态$ {\breve x}_i $和评判网络权值估计误差$ \tilde W_i $都是UUB的.

    证明. 取${\cal{\dot L}} =\sum_{i=1}^{N} (g_{i,\;1}{\cal{\dot L}}_{i,\;1} + g_{i,\;2} {\cal{\dot L}}_{i,\;2}) $为李雅普诺夫函数. $\forall i \in {\bf{N}}$, 参数$ g_{i,\;1},\; g_{i,\;2} $都是正常数. 这里设:

    $$ \begin{align} {\cal{L}}_{i,\;1}= & \sum_{i=1}^{N} \left\{ V_i^*(x_i) + \mu_i(t) \right\} \end{align} $$ (48)
    $$ \begin{align} {\cal{L}}_{i,\;2}=&\sum_{i=1}^{N}P_i \end{align} $$ (49)

    在触发时刻, $ x_i $和$ \tilde{W}_i $的值保持连续, 所以在触发时刻$ t=t_l $, $ {\cal{L}} $的一阶差分是$ \Delta L = 0 $. 因此, 只需要分析相邻触发间隔时段内$ {\cal{L}} $的变化情况.

    在未触发事件的时间内, 即$ t \in (t_l, \; t_{l+1}) $时, 沿着子系统(6)的轨迹, $ {\cal{L}}_{i,\;1}$的轨迹导数是:

    $$ \begin{align} {\cal{\dot L}}_{i,\;1}=(\nabla V_i^*)^{\mathrm{T}} (F_i(x_i) + A_{i,\;n}\breve{u}_i + {\cal{H}}_i(x_i) +{\dot\mu}_i(t)) \end{align} $$ (50)

    考虑到$ ({\nabla {V}_i^*})^{\mathrm{T}}A_{i,\;n}R_i=-2 u_{i,\;G}\Phi^{-1}(\frac{{ u}_i^{*}}{u_{i,\;G}} ) ^{\mathrm{T}}R_i $, 当$ t_l > T_1 $时, 将式(36)代入式(50), 有:

    $$ \begin{split} {\cal{\dot L}}_{i,\;1} =\; & -{x_i^{\mathrm{T}}}{Q_i}{x_i} -G\left(u_i^{*}\right)+ \left(\nabla V_i^{*}\right)^{\mathrm{T}} {\cal{H}}_i\left(x\right)+\\ & 2 u_{i,\;G}\Phi^{-1}\left(\frac{{ u}_i^{*}}{u_{i,\;G}}\right)\left({u_i^* - \breve u}_i\right)+\dot{\mu}_i\left(t\right)= \\ & -{x_i^{\mathrm{T}}}{Q_i}{x_i}-G\left(\breve u_i\right)+ \left(\nabla V_i^{*}\right)^{\mathrm{T}} {\cal{H}}_i\left(x\right)-\\ & 2 u_{i,\;G}\int_{\breve u_i}^{u_i^*} \Phi\left(\frac{s}{u_{i,\;G}} \right) ^{\mathrm{T}}R_i \text{d}s\;+\\ &2 u_{i,\;G}\int_{\breve u_i}^{u_i^*} \Phi\left(\frac{u_i}{u_{i,\;G}} \right) ^{\mathrm{T}}R_i \text{d}s+\dot{\mu}_i\left(t\right)=\\ & 2 u_{i,\;G}\int_{\breve u_i}^{u_i^*} \left( \Phi\left(\frac{u_i}{u_{i,\;G}} \right) -\Phi\left(\frac{s}{u_{i,\;G}} \right) \right)^{\mathrm{T}}R_i \text{d}s\;-\\ &{x_i^{\mathrm{T}}}{Q_i}{x_i}-G\left(\breve u_i\right)\;+ \left(\nabla V_i^{*}\right)^{\mathrm{T}} {\cal{H}}_i\left(x\right) + \dot{\mu}_i\left(t\right) \end{split} $$ (51)

    进一步地, 有:

    $$ \begin{split} & 2 u_{i,\;G}\int_{\breve u_i}^{u_i^*}\left(\Phi\left(\frac{u_i^*}{u_{i,\;G}} \right) -\Phi\left(\frac{s}{u_{i,\;G}} \right) \right)^{\mathrm{T}}R_i \text{d}s\le \\ &\qquad 2R_iu_{i,\;G}\left \|u_i^*-\breve u_i \right\| \left\|\Phi\left(\frac{u_i^*}{u_{i,\;G}} \right) -\Phi\left(\frac{\breve u_i}{u_{i,\;G}} \right)\right \| \le\\ &\qquad2R_i\left \|u_i^*-\breve u_i \right \|^2 \\[-1pt]\end{split} $$ (52)

    根据式(27)和(29), 有:

    $$ \begin{split} 4R_i &\left\| {\breve u}_i^* - {\breve u}_i \right\|^2= \\ & 4R_i u_{i,\;G}^2\Bigg\| -\Phi \Bigg(\frac{1}{2u_{i,\;G}} R_i^{-1} A_{i,\;n_i}^{\mathrm{T}}( \nabla \varphi_i(\breve{x}_i))^{\mathrm{T}} W_i^* \;+\\ &\nabla \tau_i(\breve{x}_i)\Bigg)+ \Phi \Bigg(\frac{1}{2u_{i,\;G}} R_i^{-1} A_{i,\;n_i}^{\mathrm{T}} (\nabla \varphi_i(\breve{x}_i) )^{\mathrm{T}}\times\\ & \hat{W}_i(t_l) \Bigg) \Bigg\|^2 \le\\ & 4R_i u_{i,\;G}^2 \Bigg\| -\Phi \Bigg(\frac{1}{2u_{i,\;G}} R_i^{-1} A_{i,\;n_i}^{\mathrm{T}} \big( \left( \nabla \varphi_i(\breve{x}_i) \right)^{\mathrm{T}}\times \\ & W_i^*+ \nabla \tau_i(\breve{x}_i) - \left( \nabla \varphi_i(\breve{x}_i) \right)^{\mathrm{T}} \hat{W}_i(t_l) \big)\Bigg)\Bigg\|^2 \le \\ &4R_i \Bigg\| \frac{1}{2} R_i^{-1} A_{i,\;n_i}^{\mathrm{T}}\Big(\left( \nabla \varphi_i(\breve{x}_i) \right)^{\mathrm{T}} W_i^* \;+\\ & \nabla \tau_i(\breve{{{x}}}_i) - \left( \nabla \varphi_i(\breve{x}_i) \right)^{\mathrm{T}} \hat{W}_i(t_l) \Big)\Bigg\|^2 \\[-1pt]\end{split} $$ (53)

    接下来, 可以推导出:

    $$ \begin{split} {\cal{\dot L}}_{i,\;1} \le\; & -{x_i^{\mathrm{T}}}{Q_i}{x_i} + 4R_i \left\|u_i^*- {\breve u}_i \right\|^2\;+\\ & 4R_i \left\| {\breve u}_i^* - {\breve u}_i \right\|^2 + ((\nabla \phi_i(x_i))^{\mathrm{T}} W_i^* \;+\\ & \nabla \tau_i(x_i))^{\mathrm{T}} {\cal{H}}_i(x) -\delta_{i} \mu_{i} \;+\\ & p_{i} \lambda_{\min}(Q_{i}) \|x_{i}\|^{2} -4 R_{i} \xi_{i} \|z_{x_{i}}\|^{2}\le \\ & -{x_i^{\mathrm{T}}}{Q_i}{x_i} + 6R_i \left\| u_i^*- {\breve u}_i^* \right\|^2\; + \\ & ( {\bar \varphi}_i {\bar W}_i + {\bar \tau}_i ) \bar{{\cal{H}}}_i +4R_i \Bigg\| \frac{1}{2} R_i^{-1} \times \\ & A_{i,\;n_i}^{\mathrm{T}}( \left( \nabla \varphi_i(\breve{{{x}}}_i) \right)^{\mathrm{T}} W_i^* + \nabla \tau_i(\breve{{{x}}}_i)\; -\\ & \left( \nabla \varphi_i(\breve{{{x}}}_i) \right)^{\mathrm{T}} \hat{W}_i(t_l) ) \Bigg\|^2-\delta_{i} \mu_{i}\;+\\ & p_{i} \lambda_{\min}(Q_{i}) \|x_{i}\|^{2} -4 R_{i} \xi_{i} \|z_{x_{i}}\|^{2}-\\ & (1-p_{i})\lambda_{\min}(Q_i)\|x_i\|^2 \le\\ & 2R_i\xi_i\|z_{x_i}\|^2 -{\frac{\mu_i(t)}{h_{i}}}+R_{i}^{-1}\overline{\varphi}_{i}^{2}+\bar \eta^2_{\tilde W_i}\;+\\ &{R_{i}^{-1}\overline{\tau}_{i}^{2} } + ( {\bar \varphi}_i {\bar W}_i + {\bar \tau}_i ) \bar{{\cal{H}}}_i \end{split} $$ (54)

    并且根据引理2, 当$t_l \,<\, t \,<\, t_{l\,+\,1}$时, 有下式成立:

    $$ \begin{align} {\cal{\dot L}}_{i,\;2} \le \gamma_i {\bar e}_i^2 - \gamma_i s_i \|{\tilde W_i}\|^2 \end{align} $$ (55)

    当$ t \in (t_l,\; t_{l+1}) $时, 事件不会被触发, 状态也不会被采样. 所以有${\cal{\dot L}}_{i,\;3} = 0$. 总之, 在$ t \in (t_l, \; t_{l+1}) $的情况下, 结合式(54)和(55), ${\cal{L}}$的导数可以表达为:

    $$ \begin{split} {\cal{\dot L}} \le \;& \sum\limits_{i=1}^{N} \Bigg( g_{i,\;1} \Big(-(1-p_{i})\lambda_{\min}(Q_i)\|x_i\|^2\;+ \\ & 2R_i\xi_i\|z_{x_i}\|^2 -{\frac{\mu_i(t)}{h_{i}}}+{R_{i}^{-1}\overline{\varphi}_{i}^{2}\overline{\eta}_{\tilde{W}_{i}}^{2}}\;+\\ &{R_{i}^{-1}\overline{\tau}_{i}^{2} }+ ( {\bar \varphi}_i {\bar W}_i + {\bar \tau}_i ) \bar {{\cal{H}}}_i \Big)\Bigg)\; + \\ &\sum\limits_{i=1}^{N} g_{i,\;2} \Big( \gamma_i {\bar e}_i^2 - \gamma_i s_i \|\tilde{W}_i\|^2 \Big)\le \\ & - \sum\limits_{i=1}^{N} g_{i,\;1}(1-2\rho_i)\lambda_{\min}(Q_i)\|x_i\|^2\;-\\ & \sum\limits_{i=1}^{N} g_{i,\;2}\gamma_i{s_i}\|\tilde{W}_i\|^2\;- \\ & \sum\limits_{i=1}^{N} g_{i,\;1} \Bigg( \rho_i\lambda_{\min}(Q_i)\|x_i\|^2 + \frac{\mu_i(t)}{h_{i}}\;+ \\ & 4 R_i \xi_i \|\tilde{x}_i (t_l)\|^2 - 2R_i\xi_i\|z_{x_i}\|^2 \Bigg) + \delta \end{split} $$ (56)

    其中$ \delta = \sum\nolimits_{i=1}^{N} ( g_{i,\;1} ( {R_{i}^{-1}\overline{\varphi}_{i}^{2} \overline{\eta}_{\tilde{W}_{i}}^{2}}\, +\,{R_{i}^{-1}\overline{\tau}_{i}^{2} }+( {\bar \varphi}_i {\bar W}_i\;+ $$ {\bar \tau}_i )\bar{{\cal{H}}}_i +4 R_i \|{\tilde x}_i (t_l)\|^2 )+ g_{i,\;2}\gamma_i{\bar e}_i^2) .$

    当满足触发条件(44)时, 对于所有$i \in {\cal{N}}$, 有:

    $$ \begin{split} \|z_{x_i}\|^2 \le\;& \frac{{\rho_i \lambda_{\min} (Q_i)}}{{2 {R_i} \xi_i}} \|x_i\|^2 +2\|{\tilde x}_i (t_l)\|^2\;+\\ & {\frac{\mu_i(t)}{2h_{i}{R_i} \xi_i}} \end{split} $$ (57)

    即:

    $$ \begin{split} 0 \le\; &\rho_i\lambda_{\min}(Q_i)\|x_i\|^2 +4 R_i {\xi_i} \|{\tilde x}_i (t_l)\|^2\;+\\ &{\frac{\mu_i(t)}{h_{i}}}-2R_i{\xi_i}\|z_{x_i}\|^2 \end{split} $$ (58)

    根据式(58), 当$ t_l > T_1 $, 并且至少满足以下条件之一时:

    $$ \begin{align} & \|x_i\| > \sqrt{\frac{{\delta }}{{g_{i,\;1}(1-2\rho_i)\lambda_{\min}(Q_i)}}} := \eta_{x_i} \end{align} $$ (59)
    $$ \begin{align} & \|\tilde W_i\| > \sqrt{\frac{{\delta }}{{g_{i,\;2}\gamma_i{s_i}}}} := \eta_{\tilde W_i} \end{align} $$ (60)

    $ {\dot {{\cal{L}}}} \leq 0 $成立. 这意味着系统状态$ x_i $和评判网络权值估计误差$ \tilde W_i $都是UUB的.

    由于引理1已经证明了状态估计误差$\tilde x_i $是UUB的,则有$\tilde x_i $也是UUB的. 也就是说, 系统采样状态$ \breve{x}_{i} $是UUB的.

    基于上述分析, 系统状态$ x_i $, 系统采样状态$ \breve{x}_i $, 和评判神经网络权重估计误差$ \tilde{W}_i $在整个控制过程中都是UUB的.

    在本节中, 将证明设计的动态事件触发控制系统所需的最小间隔时间存在下界, 从而证明Zeno现象已被成功规避.

    定理3. 考虑子系统(1), 设假设1 ~ 6都成立, 当使用动态事件触发条件(44)时, 对于任意$ i \in {\cal{N}} $, 第$ i $个子系统的最小事件间隔时间存在一个正下界.

    $$ \begin{align} \Delta t \ge \frac{1}{{\Xi_i}} \ln \left( 1 + \frac{{D_i}}{{2{\bar \Phi}_{i}}} \sqrt {\frac{{\rho_i\lambda_{\min} (Q_i)}}{{R_i\xi_i }}} \right) \end{align} $$ (61)

    其中$\bar \Phi_i \;=\; \frac{1}{2\Xi_i R_i} ( {\bar \varphi}_i {\bar W}_i \,+ \,{\bar \tau}_i \,+\, {\bar \varphi}_i \| {\hat W}_i \|_{\max} ) \,+\,\frac{{\bar h}_i}{\Xi_i} \;+ \left\|{\breve x}_i \right\|_{\max} \;+ \;\left\|{\tilde x}_i \right\|_{\max}$, $\|{\hat W}_i \|_{\max} \;= \;\mathop {\max }\nolimits_{l \in {{\bf{N}}^+}} {\|{\hat W}_i (t_l)\|}$以及$\left\| {\breve x}_i \right\|_{\max} = \mathop {\max }\nolimits_{l \in {{\bf{N}}^+}} {\left\| {\breve x}_i (t_l) \right\|}$. 常数$\Xi_i > 0$的定义将在以下证明中给出.

    证明. 在设计的基于动态事件触发的控制策略(29)作用下, 第$i$个子系统的动态可以表示为

    $$ \begin{split} {{\dot x}_i} = \;& M_i{x_i} + g_i(x_i) + {\cal{H}}_i(x) + {A_{i,\;{n_i}}} \Big ( {{\breve u}_i} + u_i^* -u_i^* \Big )= \\ & M_i{x_i} + g_i(x_i) + {A_{i,\;{n_i}}}u_i^*(x_i) + {\cal{H}}_i(x) \;+\\ & \frac{1}{2} {A_{i,\;{n_i}}} R_i^{-1} A_{i,\;{n_i}}^{\mathrm{T}} \Big ( \big (\nabla \varphi_i(x_i) \big )^{\mathrm{T}} W_i^* \;+\\ & \nabla \tau_i(x_i) - \big ( \nabla \varphi_i( {\breve x}_i) \big )^{\mathrm{T}} {\hat W}_i (t_l) \Big ),\; \\ &\qquad t_l \le t < t_{l+1} \\[-1pt]\end{split} $$ (62)

    基于假设2和假设4, 可得关于$ x_i $的函数$M_i{x_i} \;+ f_i(x_i) + {A_{i,\;{n_i}}}u_i^*(x_i)$在包含原点的集合$U_{x_i}$上也是利普希茨连续的, 因此存在一个正常数$\Xi_i$, 使得$\left\| M_i{x_i} + f_i(x_i) + {A_{i,\;{n_i}}}u_i^*(x_i) \right\| \le \Xi_i \left\| x_i \right\|$成立. 在式(62)中, 有$\left\| {A_{i,\;{n_i}}} R_i^{-1} A_{i,\;{n_i}}^{\mathrm{T}} \right\| = R_i^{-1}$且$\left\|{ \mathcal H}_i(x) \right\| \le {\bar h}_i$. 进一步地, 由于在区间$[t_l,\; t_{l+1})$上${\breve x}_i$保持不变, 可得到以下结论:

    $$ \begin{split} \left\| {\dot z}_{x_i} \right\| = \;& \| {\dot x}_i - {\dot {\breve x}_i} \| = \left\| {\dot x}_i \right\| \le \Xi_i \left\| x_i \right\| + \Lambda_{i,\;l}= \\ & \Xi_i \left\| z_{x_i}(t) + {\breve x}_i(t_l) \right\| + \Lambda_{i,\;l} \le\\ & \Xi_i \left\| z_{x_i}(t) \right\| + \Gamma_{i,\;l},\; \ t_l \le t < t_{l+1} \end{split} $$ (63)

    这里$\Lambda_{i,\;l} = \frac{1}{2} R_i^{-1} ( {\bar \varphi}_i {\bar W}_i + {\bar \tau}_i + {\bar \varphi}_i \|\hat{W}_i (t_l)\| ) + {\bar h}_i$, 并且$\Gamma_{i,\;l} = \Xi_i \|\breve{x}_i(t_l)\| + \Lambda_{i,\;l}$. 通过运用比较引理, 在初始条件$\|z_{x_i}(t_l)\| = \|\tilde{x}_i (t_l)\|$下, 不等式(63)的解可以被限制在如下范围内:

    $$ \begin{split} \left\| z_{x_i}(t) \right\| \le \;& \left(\left\| {\tilde x}_i (t_l) \right\| + \frac{{\Gamma_{i,\;l}}}{{\Xi_i}}\right) \left( {\rm{e}}^ {\Xi_i(t - t_l)} - 1 \right)+ \\ &\left\| {\tilde x}_i (t_l) \right\|\le \\ & {\bar \Gamma}_{i} \left( {\rm{e}}^ {\Xi_i(t - t_l)} - 1 \right) + \left\| {\tilde x}_i (t_l) \right\| \\[-1pt]\end{split} $$ (64)

    当$t \in (t_l,\; t_{l+1})$时, 由于${\tilde x}_i$、${\breve x}_i$和${\tilde W}_i$已在定理2中被证明是UUB的, 可以确保$\left\| {\tilde x}_i \right\|_{\max}$、$\left\| {\breve x}_i \right\|_{\max}$和$\|{\hat W}_i\|_{\max}$的存在.

    接着, 将相邻事件之间的时间间隔定义为$\Delta t_l = t_{l+1} - t_l$, 即$\left\| z_{x_i} \right\|$从$\left\| {\tilde x}_i (t_l) \right\|$增长至下一个触发阈值所需的时间. 根据动态事件触发条件(44), 得到如下关系:

    $$ \begin{split} &{\bar \Gamma}_{i} \left({\rm{ e}}^ {\Xi_i(t_{l+1} - t_l)} - 1 \right) + \left\| {\tilde x}_i (t_l) \right\|\ge\\ & \qquad\frac{1}{2} \sqrt {\frac{{\rho_i\lambda_{\min} (Q_i)}}{{R_i\xi_i }}} \left\| x_i (t_{l+1}) \right\| + \left\| {\tilde x}_i(t_l) \right\|+\\ &\qquad\frac{1}{2} \sqrt{\frac{\mu_i(t)}{h_{i}R_i \xi_i}} \end{split} $$ (65)

    引理3已证明动态变量$ \mu_i $有零值下界, 因此得到:

    $$ \Delta t_l\ge \frac{1}{{\Xi_i}}\ln \left( 1 + \frac{1}{{2{\bar \Gamma}_{i}}} \sqrt {\frac{{\rho_i\lambda_{\min} (Q_i)}}{{R_i\xi_i }}} \left\| x_i(t_{l+1}) \right\| \right) $$ (66)

    由于$D_i$是第$i$个子系统的触发终止准则, 当触发执行时, 有$\left\| x_i(t_{l+1}) \right\| \;\ge \;D_i$, 这表明$\forall l \in {\bf{N}}^+$, $\Delta t_l$有正值下界$ \frac{1}{{\Xi_i}} \ln \,\left( 1\; + \;\frac{{D_{i}}}{{2{\bar \Gamma}_{i}}}\; \sqrt {\frac{{\rho_i\lambda_{\min} (Q_i)}}{{R_i\xi_i }}} \right)$.

    定理3阐明在采用触发条件(44)的情况下, 触发事件间的最小时间间隔下界确保为一个正值常数. 这表明在设计的基于事件的自适应控制策略中, 已成功规避Zeno现象. 除此之外, 通过引入死区操作式(45), 当系统状态接近并保持在平衡点附近的一个较小邻域内(上界为$D_i$)时, 可以减少不必要的事件触发. 这一成果将在第4节中通过仿真验证得到进一步阐释.

    在本节中将提供两个数值示例, 以展示所提出的动态事件触发控制算法的有效性和可行性.

    例 1. 考虑如下形式的非线性互联系统:

    $$ \begin{align} \left\{ {\begin{aligned} &{{{\dot x}_{1,\;1}} = {x_{1,\;2}} - 0.2\tanh({x_{2,\;1}}{x_{3,\;1}})}\\ &{{{\dot x}_{1,\;2}} = {u_1} - 1.5\tan ({x_{1,\;1}}) - {x_{1,\;2}}}\;+\\&\; \ \ \ \ \ \ \ \ \ 0.12\sinh ({x_{2,\;1}}{x_{3,\;1}}) \\ &{{{\dot x}_{2,\;1}} = {x_{2,\;2}} - 0.5\tanh({x_{1,\;1}}{x_{3,\;1}})}\\ &{{{\dot x}_{2,\;2}} = {u_2} - 1.5\tan ({x_{2,\;1}}) - {x_{2,\;2}}} \;+\\ &\ \ \ \ \ \ \ \ \ \; 0.15\sinh ({x_{1,\;1}}{x_{3,\;1}})\\ &{{{\dot x}_{3,\;1}} = {x_{3,\;2}} - 0.3\tanh({x_{1,\;1}}{x_{2,\;1}})}\\ &{{{\dot x}_{3,\;2}} = {u_3} - 1.5\sin ({x_{3,\;1}}) - {x_{3,\;2}}}\;+ \\ &\ \ \ \ \ \ \ \ \ \; 0.1\sinh ({x_{1,\;1}}{x_{2,\;1}}) \end{aligned}} \right. \end{align} $$ (67)

    其中$ x_1= [x_{1,\;1},\; x_{1,\;2}]^{\mathrm{T}} $, $ x_2 = [x_{2,\;1},\; x_{2,\;2}]^{\mathrm{T}} $和$ x_3 = [x_{3,\;1},\;x_{3,\;2}]^{\mathrm{T}} $是子系统状态. 由式(16)定义的性能指标参数设置为$ Q_1 = I_{2 \times 2} $, $ Q_2 = 1.2 I_{2 \times 2} $, $ Q_3 = 1.5 I_{2 \times 2} $和$ R_1 = R_2 =R_3 = 1 $.

    建立如式(8)形式的辨识器, 取$ K_1 = K_2 = K_3 = {\rm diag}\{0.5,\; 1.5\} $和$ B_1=B_2=B_3 = 10I_{2 \times 2} $. 辨识器权值的学习率为$ \beta_1 = \beta_2 = \beta_3 =0.1 $和$ \delta_{1,\;1} = \delta_{1,\;2} = \delta_{2,\;1} = \delta_{2,\;2} = \delta_{3,\;1} = \delta_{3,\;2} = 2I_{3 \times 3} $. 为满足假设3, 选择辨识神经网络的激活函数为$ \phi_{1,\;1} = \tanh (Y_{11}\times {\hat x}_{1,\;1}) $, $ \phi_{1,\;2} \;=\; \tanh(Y_{12}{\hat x}_{1}) $, $ \phi_{2,\;1} \;= \;\tanh(Y_{21}{\hat x}_{2,\;1}) $, $ \phi_{2,\;2} = \tanh(Y_{22}{\hat x}_{2}) $, $ \phi_{3,\;1} = \tanh(Y_{31}{\hat x}_{3,\;1}) $和$ \phi_{3,\;2} \;= \tanh(Y_{32}{\hat x}_{3}) $, 这里$ Y_{11} $$ \in $$ {\bf{R}}^{3 \times 1} $, $ Y_{12} $$ \in $$ {\bf{R}}^{3 \times 2} $, $ Y_{21} $$ \in $${\bf{R}}^{3 \times 1} $, $ Y_{22} \in {\bf{R}}^{3 \times 2} $, $ Y_{31} \in {\bf{R}}^{3 \times 1} $和$ Y_{32} \in {\bf{R}}^{3 \times 2} $中的参数都在$ [-1,\; 1] $中随机选择. 为保证$ \nabla \varphi_i $的有界性, 评判神经网络的激活函数分别取为$ \varphi_1= $$ [\cos({\hat x}_{1,\;1}) $, $ \cos({\hat x}_{1,\;2}) $, $ {\rm sech}({\hat x}_{1,\;1}) $, $ {\rm sech}({\hat x}_{1,\;2})]^{\mathrm{T}} $, $ \varphi_2 =$ $ [\cos({\hat x}_{2,\;1}) $, $ \cos({\hat x}_{2,\;2}) $, $ {\rm sech}({\hat x}_{2,\;1})$, $ {\rm sech}({\hat x}_{2,\;2})]^{\mathrm{T}} $和$ \varphi_3= [\cos({\hat x}_{3,\;1}), $ $ \cos({\hat x}_{3,\;2}), $ $ {\rm sech}({\hat x}_{3,\;1}), $ $ {\rm sech}({\hat x}_{3,\;2})]^{\mathrm{T}} $. 学习率$ \gamma_1= \gamma_2 =\gamma_3 = 3 $, 触发参数$ \rho_1 = \rho_2 =\rho_3 = 0.2 $, $ \xi_1 = \xi_2 =\xi_3 = 2 $. 采样周期设为$ 0.1\;{\mathrm{s}} $, 自适应控制过程持续$ 200\;{\mathrm{s}} $. 为满足PE条件, 在控制过程的前$ 100\;{\mathrm{s}} $内, 分别向各子系统和辨识器内加入探测噪声.

    图1展示整个动态事件触发控制过程中子系统状态、状态估计误差、控制策略以及近似汉密尔顿函数的变化曲线. 设定的输入限制范围为[−0.1, 0.1], 这一点在图1(c)中有体现. 同时, 从图1(a)中可以看出, 子系统状态在$ t=150\;{\mathrm{s}} $之后迅速趋近于原点附近的小区域, 并且状态的范数$ \|x_{1}\| $、$ \|x_{2}\| $和$ \|x_{3}\| $均低于触发终止条件$ D_1 = D_2 = D_3 = 10^{-5} $, 这证实了所设计控制策略的有效性. 图1显示, 在本文所设计的DET控制机制下, 所有子系统最终均保持稳定. 另外, 图2所示的辨识器权值和评价网络权值在移除噪声前均显示出收敛性. 最后, 评判网络权值收敛到$ [0.010\;7 $, $ -0.315\;5 $, $ -0.261\;2 $,$ 0.110\;3]^{\mathrm{T}} $, $ [-0.077\;2 $, $ -0.302\;1 $, $ 0.019\;5 $, $ -0.126\;2]^{\mathrm{T}} $和$ [-0.077\;2 $, $ -0.148\;9 $, $ -0.036\;8 $, $ -0.298\;0]^{\mathrm{T}} $.

    图 1  三阶互联系统(67)控制过程
    Fig. 1  The control process of the three-order interconnected systems (67)
    图 2  三阶互联系统(67)控制过程中的辨识器权值和评判网络权值
    Fig. 2  Identifier weights and critic NN weight of the three-order interconnected systems (67)

    图3(a)、图3(b)和图3(c)分别展示事件触发误差与触发阈值变化情况. 此外, 如图3(d)所示, 不同的事件生成器以异步的方式触发. 最终, 图4展示三个子系统的累积事件次数. 对应$ 2\;000 $次基于时间的采样后, 事件的触发次数分别仅为$ 363 $次、$ 293 $次和$ 310 $次, 这表明本文所提出的方法有效降低了系统总体通信和计算的负担. 特别地, 如图1(a)所示, 在$ t=160\;{\mathrm{s}} $时, 控制精度已满足要求, 即$ \left| x_1 \right| \le D_1 $, $ \left| x_2 \right| \le D_2 $和$ \left| x_3 \right| \le D_3 $. 因此, 如图3(d)所示, 事件的触发在$ t=120\;{\mathrm{s}} $后停止.

    图 3  三阶互联系统(67)控制过程事件触发误差与触发阈值之间的关系
    Fig. 3  The relationship between event-triggered error and triggering threshold in the control process of the three-order interconnected systems (67)
    图 4  三阶互联系统(67)子系统1、2和3的触发时刻
    Fig. 4  For the three-order interconnected systems (67), the triggering instants for subsystems 1, 2 and 3

    例2. 在第二个示例中, 探讨一个与生产实际密切相关的大规模互联系统案例, 也即三机互联电力系统[25], 其中第$ i $个子系统的系统动态如下式所示:

    $$ \begin{split} \frac{{{\mathrm{d}}(\Delta {f_{g,\;i}}(t))}}{{{\mathrm{d}}t}} =\;& \frac{{{J_{p,\;i}}}}{{{T_{p,\;i}}}}\Delta {P_{m,\;i}}(t) - \frac{\Delta {f_{g,\;i}}(t)}{{{T_{p,\;i}}}}\;-\\ &{ \frac{{{J_{p,\;i}}}}{{{T_{p,\;i}}}}\Delta {P_{g,\;i}}(t)} \\ \frac{{{\mathrm{d}}(\Delta {P_{m,\;i}}(t))}}{{{\mathrm{d}}t}} =\;& \frac{{{J_{t,\;i}}}}{{{T_{t,\;i}}}}\Delta {\zeta _{i}}(t) - \frac{1}{{{T_{t,\;i}}}}\Delta {P_{m,\;i}}(t)\\ \frac{{{\mathrm{d}}(\Delta {\zeta _i}(t))}}{{{\mathrm{d}}t}} =\;&- \frac{1}{{{T_{\zeta,\;i}}}}\Delta {\zeta _i}(t) + \frac{1}{{{\varpi _i}{T_{\zeta,\;i}}}}\;\times\\ &\Delta {f_{G,\;i}}(t)+ \frac{1}{{{T_{\zeta,\;i}}}}{u_i}(t) \end{split} $$ (68)

    其中, 系统状态$ x_{i,\;1} = \Delta {f_{g,\;i}}(t) $、$ x_{i,\;2} = \Delta {P_{m,\;i}}(t) $和$ x_{i,\;3} = \Delta {\zeta _i}(t) $分别代表增量频率偏差、发电机输出功率的增量变化以及调速器位置的增量调整. 电力系统、涡轮和调速器的时间常数分别为$ T_{p,\;i} $、$ T_{t,\;i} $和$ T_{\zeta,\;i} $. 此外, $ J_{p,\;i} $和$ J_{t,\;i} $是电力系统和涡轮模型的增益常数, $ \varpi _i > 0 $是给定的反馈调节常数. 系统的互联项$ \Delta {P_{g,\;i}}(t) = \pi_i \sin(\Delta {f_{g,\;i}} \Delta {P_{m,\;i}}) $表示电力增量变化, 其中$ \pi_1 = \sum\nolimits_{i = 1}^3 {\iota_{1,\;i} \sin ( \Delta {f_{g,\;i}}(t) )} $, $ \pi_2 =$$ \sum\nolimits_{i = 1}^3 {\iota_{2,i} \sin ( \Delta {P_{m,\,i}}(t) )} $ 和 $ \pi_3 = \sum\nolimits_{i = 1}^3\iota_{3,\,i} $$ \sin ( \Delta {\zeta _i}(t) ) .$这里假设对于所有的$ i = 1,\; 2,\; 3 $, 参数$\iota_{1,i} $, $\iota_{2,i} $, 和$\iota_{1,i} $都是未知的正常数.

    控制过程中性能指标矩阵设置为$ Q_1 = 3.5I_{3 \times 3} $, $ Q_2 = 3I_{3 \times 3} $, $ Q_3 = 5I_{3 \times 3} $, $ R_1 = R_2 = 1 $和$ R_3 = 1.5 $. 在本示例中, 辨识器参数被选择为$ K_1 = K_2 = K_3 = {\rm diag}\{0.5,\; 1,\; 0.75\} $和$ B_1\, = \,B_2 \,=\, B_3 \,=\, {\rm diag}\{7.5, \; 5, 5.5\} $. 辨识器的学习率为$ \beta_1 = 0.2 $, $ \beta_2 = 0.1 $, $ \beta_3 = 0.5 $以及 $ \delta_{1,\;1} \;=\; 0.15 I_{3 \times 3} $, $ \delta_{1,\;2} \;= \;\delta_{1,\;3} \;= \;0.1 I_{3 \times 3} $, $ \delta_{2,\;1}\, =\, 0.15 I_{3 \times 3} $, $ \delta_{2,\;2} \,= \,0.1 I_{3 \times 3} $, $ \delta_{2,\;3} \,=\, 0.05 I_{3 \times 3} $, $ \delta_{3,\;1} = 0.15 I_{3 \times 3} $, $ \delta_{3,\;2} = 0.1 I_{3 \times 3} $, $ \delta_{3,\;3} = 0.05 I_{3 \times 3} $. 辨识神经网络的激活函数选择为$ \tanh(Z_{i,\;j}\underline{\hat x}_{i,\;j}) $, 其中$ 1 \le i \le 3 $, $ 1 \le j \le 3 $. 输入层与隐藏层之间的权重矩阵$ Z_{i,\;j} $经过精确设计, 以确保其具有合适的维度.

    三个评判神经网络的激活函数设计为$ \varphi_i $ $ = $ $ [\cos({\hat x}_{i,\;1}), $ $ -\cos({\hat x}_{i,\;2}), $ $ \cos({\hat x}_{i,\;3}) ,$ $ -{\rm sech}({\hat x}_{i,\;1}) ,$ $ {\rm sech}({\hat x}_{i,\;2}) ,$ $ -{\rm sech}({\hat x}_{i,\;3})]^{\mathrm{T}} $, 其中$ i = 1,\; 2,\; 3 $. 学习率设计为$ \gamma_1\,=\, 1 $, $ \gamma_2 \,=\, 3 $, $ \gamma_3\, =\, 3 $. 触发参数设置为$ \rho_i = 0.1 $和$ \xi_i = 2 $. 采样周期选择为$ 0.1\;{\mathrm{s}} $, 自适应控制过程实施$ 200\;{\mathrm{s}} $, 探测噪声在前$ 100 \;{\mathrm{s}}$内工作. 子系统状态、状态估计误差、控制策略和近似汉密尔顿函数的收敛曲线均呈现在图5中. 从图5(a)可以观察到, 最终状态满足$ \left\| x_i \right\| \le D_i = 5\times 10^{-4} $. 此外, 如图5(d)所示, 近似汉密尔顿函数收敛到接近零, 实现自适应评判网络设计的目标.

    图 5  三机互联电力系统(68)控制过程
    Fig. 5  The three-machine power interconnected systems (68)

    图6展示辨识器神经网络权值和评判神经网络权值的收敛过程. 这两个网络的权值最终收敛至$ [-0.498\;9 $, $ 0.765\;3 $, $ -0.194\;0 $, $ -0.120\;1 $, $ -0.017\;2 $, $ -0.052\;2]^{\mathrm{T}} $, $ [-0.589\;5 $, $ 0.748\;7 $, $ -0.355\;5 $, $ -0.157\;5 $, $ -0.144\;2 $, $ 0.416\;0]^{\mathrm{T}} $和$ [-1.251\;4 $, $ 1.243\;7 $, $ -0.526\;4 $, $ 0.897\;1 $, $ -0.858\;8 $, $ -0.042\;6]^{\mathrm{T}} $.

    图 6  三机互联电力系统(68)控制过程中的辨识器权值和评判网络权值
    Fig. 6  Identifier weights and critic NN weight of the three-machine power interconnected systems (68)

    图7(a) ~ 7(c)中, 显示触发条件随时间的演变过程. 从图7(d)可以发现, 执行2000次基于时间的采样后, 对于三个子系统, 累积事件数分别为183, 272和140. 然后, 在图7中给出触发时刻的分布. 值得注意的是, 尽管在图7(a)中, 事件触发误差的范数在$ t= 160\;{\mathrm{s }}$后超过阈值, 但从图8中看出在160 s之后没有触发任何事件. 这是因为子系统的状态收敛到原点附近以$ D_i $为半径的小邻域内, 因此死区操作(45)起作用, 事件的触发被终止. 这一点可以通过图5(a)来验证.

    图 7  三机互联电力系统(68)控制过程事件触发误差与触发阈值之间的关系
    Fig. 7  The relationship between event-triggered error and triggering threshold of the three-machine power interconnected systems (68)
    图 8  三机互联电力系统(68)子系统1、2和3的触发时刻
    Fig. 8  For the three-machine power interconnected systems (68), the triggering instants for subsystems 1, 2 and 3

    此外, 为展示本文所提方法的优越性, 在本例中将已有的事件触发自适应动态规划算法[48-49]与本文所开发的在线DETC算法在计算负载方面的控制结果进行对比. 在文献[48]中, 触发条件设计为

    $$ \begin{align} \left\| z_{x_i} \right\|^2 \le \frac{{p_i\lambda_{\min} (Q_i)}}{{\xi_i}} \left\| x_i \right\|^2 + \frac{1}{{\xi_i}} \|{\breve u}_i(t_l)\|^2 \end{align} $$ (69)

    在文献[49]中, 触发条件给出如下

    $$ \begin{align} \left\| z_{x_i} \right\|^2 \le \frac{{p_i\lambda_{\min} (Q_i) R_i \left\| x_i \right\|^2 + R_i^2 \left\|{\breve u}_i(t_l)\right\|^2}}{{2 \ell_i^2 \| {\hat W}_i \|^2 }} \end{align} $$ (70)

    其中, $ \ell_i $是函数$ \nabla \varphi_i (\cdot) $的利普希茨常数, 其满足$ \left\| \nabla \varphi_i(x_i) - \nabla \varphi_i({\breve x}_i) \right\| \le \ell_i \left\| z_{x_i} \right\| $. 需要注意的是, 在本例中, 两个对比组(即算法[48]和[49])与本文所提算法共用相同的触发参数、噪声信号等, 只有触发条件各不相同.

    首先比较以上三种事件触发自适应控制算法在计算负担方面的差异. 算法[48]的总触发次数为4010次, 而算法[49]的总触发次数为4875次. 相较之下, 本文所提的事件触发自适应控制算法的总触发次数仅为595次, 显著降低了触发频率.

    在事件触发控制过程中, 算法[48]和[49]执行触发条件的计算次数均为6000次. 而本文算法由于引入死区运算, 只在$ \left\| x_i \right\| > D_i $时才执行触发条件(44)的计算, 总计算次数为4246次, 再次显示了本文所提算法在降低控制过程中计算频次方面的能力.

    为进一步精确比较上述3种事件触发机制下计算负担的差异, 进一步考虑整个控制过程的累计加/乘/开方等运算次数. 三种算法在控制器内部的加/乘/开方等计算次数相同, 每次触发时刻均需进行14次运算方可获得更新后的控制信号值. 在触发条件的计算上, 现有算法[48]在每次事件触发时刻需要进行17次计算, 算法[49]需要进行29次计算, 而本文算法需要进行32次计算. 此外, 由于引入死区运算技术, 在非触发采样时刻, 本文算法仍需执行5次加/乘/开方运算以得到$ \left\| x_i \right\| $.

    经精确计算后, 可得算法[48]的加/乘/开方运算总计算次数为$ 4\;010 \times 14 + 6\;000 \times 17 = 158\;140 $次, 算法[49]为$ 4\;875 \times 14 + 6\;000 \times 29 = 242\;250 $次, 而本文所提出算法的总计算次数则为$ 595 \times 14 + 4\;246 \times 32 + (6\;000-4\;246) \times 5 = 151\;782 $次. 经过比较可以看出, 本文所提出的动态事件触发自适应控制算法在总计算负荷方面显著低于已有的事件触发自适应控制算法[48]和[49], 在减少计算量和提高效率方面具有明显优势. 这表明, 本文所提算法在确保控制性能的同时, 显著降低了计算负荷, 具有更高的实际应用价值.

    本文提出一种面向未知非线性大规模互联系统的分散式自适应事件触发控制策略. 首先利用辨识器进行系统动态的重构, 随后分别设计静态事件触发和动态事件触发控制机制下的分散式控制方案以确保互联系统的稳定, 并减少通信网络在数据传输过程中的负担. 接着从理论上证明使用本文所设计的事件触发控制条件不会引发Zeno现象. 文章最后通过一个数值示例和一个实际工程示例验证了所提方法的有效性.

  • 图  1  固定原型和自适应原型生成示例 (5类5样本)

    Fig.  1  Examples of fixed prototype and adaptive prototype generation (5-way-5-shot)

    图  2  基于5类5样本的方法框架图

    Fig.  2  Model framework based on 5-way-5-shot

    图  3  自适应原型特征生成模块

    Fig.  3  Adaptive prototype features generation module

    图  4  数据集部分代表性图像

    Fig.  4  Representative images in the datasets

    图  5  在不同数据集上自适应原型和预训练模块的性能比较

    Fig.  5  Performance comparison of adaptive prototype and pre-training module on different datasets

    图  6  应用不同NK样本设置的性能比较

    Fig.  6  Performance comparison using different N-way-K-shot settings

    图  7  CRAPF的可视化对比

    Fig.  7  Visual comparison of CRAPF

    表  1  数据集基本信息

    Table  1  Basic information of datasets

    数据集 样本数量 训练/验证/测试类别数量 图片尺寸(像素)
    MiniImageNet 60000 64/16/20 84$ \times $84
    CIFAR-FS 60000 64/16/20 32$ \times $32
    FC100 60000 60/20/20 32$ \times $32
    下载: 导出CSV

    表  2  应用不同网络的实验结果 (%)

    Table  2  Experimental results using different networks (%)

    网络 数据集 ProtoNet CRAPF
    ResNet12 MiniImageNet 72.08 77.08
    CIFAR-FS 75.68 85.11
    FC100 50.96 54.56
    ResNet18 MiniImageNet 73.68 74.40
    CIFAR-FS 72.83 84.93
    FC100 47.50 53.33
    下载: 导出CSV

    表  3  MiniImageNet数据集上的对比实验结果 (%)

    Table  3  Comparative experimental results on the MiniImageNet dataset (%)

    方法 网络 5类1样本 5类5样本
    TEAM ResNet18 60.07 75.90
    TransCNAPS ResNet18 55.60 73.10
    MTUNet ResNet18 58.13 75.02
    IPN ResNet10 56.18 74.60
    ProtoNet* ResNet12 53.42 72.08
    TADAM ResNet12 58.50 76.70
    SSR ResNet12 68.10 76.90
    MDM-Net ResNet12 59.88 76.60
    CRAPF* ResNet12 59.38 77.08
    下载: 导出CSV

    表  4  CIFAR-FS数据集上的对比实验结果 (%)

    Table  4  Comparative experimental results on the CIFAR-FS dataset (%)

    方法 网络 5类1样本 5类5样本
    ProtoNet* ResNet12 56.86 75.68
    Shot-Free ResNet12 69.20 84.70
    TEAM ResNet12 70.40 80.30
    DeepEMD ResNet12 46.50 63.20
    DSN ResNet12 72.30 85.10
    MTL ResNet12 69.50 84.10
    DSMNet ResNet12 60.66 79.26
    MTUNet ResNet18 67.43 82.81
    CRAPF* ResNet12 72.34 85.11
    下载: 导出CSV

    表  5  FC100数据集上的对比实验结果 (%)

    Table  5  Comparative experimental results on the FC100 dataset (%)

    方法 网络 5类1样本 5类5样本
    ProtoNet* ResNet12 37.50 50.96
    SimpleShot ResNet10 40.13 53.63
    Baseline2020 ResNet12 36.82 49.72
    TADAM ResNet12 40.10 56.10
    CRAPF* ResNet12 40.44 54.56
    下载: 导出CSV
  • [1] Jiang H, Diao Z, Shi T, Zhou Y, Wang F, Hu W, et al. A review of deep learning-based multiple-lesion recognition from medical images: Classification, detection and segmentation. Computers in Biology and Medicine, 2023, 157: Article No. 106726
    [2] 赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述. 软件学报, 2021, 32(2): 349−369

    Zhao Kai-Lin, Jin Xiao-Long, Wang Yuan-Zhuo. Survey on few-shot learning. Journal of Software, 2021, 32(2): 349−369
    [3] 赵一铭, 王佩瑾, 刁文辉, 孙显, 邓波. 基于通道注意力机制的小样本SAR飞机图像分类方法. 南京大学学报(自然科学版), 2024, 60(3): 464−476

    Zhao Yi-Ming, Wang Pei-Jin, Diao Wen-Hui, Sun Xian, Deng Bo. Few-shot SAR aircraft image classification method based on channel attention mechanism. Journal of Nanjing University (Natural Science), 2024, 60(3): 464−476
    [4] Li F F, Fergus R, Perona P. A Bayesian approach to unsupervised one-shot learning of object categories. In: Proceedings of the IEEE International Conference on Computer Vision. Nice, Franc: IEEE, 2003. 1134−1141
    [5] 刘颖, 雷研博, 范九伦, 王富平, 公衍超, 田奇. 基于小样本学习的图像分类技术综述. 自动化学报, 2021, 47(2): 297−315

    Liu Ying, Lei Yan-Bo, Fan Jiu-Lun, Wang Fu-Ping, Gong Yan-Chao, Tian Qi. Survey on image classification technology based on small sample learning. Acta Automatica Sinica, 2021, 47(2): 297−315
    [6] Li X, Yang X, Ma Z, Xue J. Deep metric learning for few-shot image classification: A review of recent developments. Pattern Recognition, 2023, 138: Article No. 109381
    [7] Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: 2017. 4077−4087
    [8] Qiang W, Li J, Su B, Fu J, Xiong H, Wen J. Meta attention-generation network for cross-granularity few-shot learning. IEEE International Journal of Computer Vision, 2023, 131(5): 1211−1233 doi: 10.1007/s11263-023-01760-7
    [9] Li W, Wang L, Xu J, Huo J, Gao Y, Luo J. Revisiting local descriptor based image-to-class measure for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 7260−7268
    [10] Xu W, Xu Y, Wang H, Tu Z. Attentional constellation nets for few-shot learning. In: Proceedings of the International Conference on Learning Representations. Vienna, Austria: ICLR, 2021. 1−12
    [11] Huang H, Zhang J, Yu L, Zhang J, Wu Q, Xu C. TOAN: Target-oriented alignment network for fine-grained image categorization with few labeled samples. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(2): 853−866
    [12] Xie J, Long F, Lv J, Wang Q, Li P. Joint distribution matters: Deep Brownian distance covariance for few-shot classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022. 7972−7981
    [13] Luo X, Wei L, Wen L, Yang J, Xie L, Xu Z, et al. Rectifying the shortcut learning of background for few-shot learning. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. Virtual Event: 2021. 13073−13085
    [14] Kwon H, Jeong S, Kim S, Sohn K. Dual prototypical contrastive learning for few-shot semantic segmentation. arXiv preprint arXiv: 2111.04982, 2021.
    [15] Li J, Liu G. Few-shot image classification via contrastive self-supervised learning. arXiv preprint arXiv: 2008.09942, 2020.
    [16] Sung F, Yang Y, Zhang L, Xiang T, Torr P H, Hospedales T M. Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 1199− 1208
    [17] Hao F, He F, Cheng J, Wang L, Cao J, Tao D. Collect and select: Semantic alignment metric learning for few-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, South Korea: IEEE, 2019. 8460−8469
    [18] Li W, Xu J, Huo J, Wang L, Gao Y, Luo J. Distribution consistency based covariance metric networks for few-shot learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu, USA: 2019. 8642−8649
    [19] Zhu W, Li W, Liao H, Luo J. Temperature network for few-shot learning with distribution-aware large margin metric. Pattern Recognition, 2021, 112: Article No. 109381
    [20] Allen K, Shelhamer E, Shin H, Tennbaum J B. Infinite mixture prototypes for few-shot learning. In: Proceedings of the International Conference on Machine Learning. Long Beach, USA: ICML, 2019. 232−241
    [21] Liu J, Song L, Qin Y. Prototype rectification for few-shot learning. In: Proceedings of the European Conference Computer Vision. Glasgow, UK: Springer, 2020. 741−756
    [22] Li X, Li Y, Zheng Y, Zhu R, Ma Z, Xue J, et al. ReNAP: Relation network with adaptive prototypical learning for few-shot classification. Neurocomputing, 2023, 520: 356−364 doi: 10.1016/j.neucom.2022.11.082
    [23] Vinyals O, Blundell C, Lillicrap T, Kavukcuoglu K, Wierstra D. Matching networks for one shot learning. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: 2016. 3637−3645
    [24] Bertinetto L, Henriques J, Torr P, Vedaldi A. Meta-learning with differentiable closed-form solvers. In: Proceedings of the International Conference on Learning Representations. New Orleans, USA: ICLR, 2019. 1−13
    [25] Oreshkin B, Rodríguez Loópez P, Lacoste A. TADAM: Task dependent adaptive metric for improved few-shot learning. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: 2018. 719−729
    [26] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115: 211−252 doi: 10.1007/s11263-015-0816-y
    [27] Ravi S, Larochelle H. Optimization as a model for few-shot learning. In: Proceedings of the International Conference on Learning Representations. San Juan, Puerto Rico: ICLR, 2016. 1−11
    [28] Krizhevsky A. Learning Multiple Layers of Features From Tiny Images [Master thesis], Toronto University, Canada, 2009.
    [29] Bertinetto L, Henriques J F, Valmadre J, Torr P H S, Vedaldi A. Learning feed-forward one-shot learners. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: 2016. 523−531
    [30] Qiao L, Shi Y, Li J, Wang Y, Huang T, Tian Y. Transductive episodic-wise adaptive metric for few-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, South Korea: IEEE, 2019. 3603−3612
    [31] Bateni P, Barber J, van de meent J W, Wood F. Enhancing few-shot image classification with unlabelled examples. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, USA: IEEE, 2022. 2796−2805
    [32] Wang B, Li L, Verma M, Nakashima Y, Kawasaki R, Nagahara H. Match them up: Visually explainable few-shot image classification. Applied Intelligence, 2023, 53: 10956−10977 doi: 10.1007/s10489-022-04072-4
    [33] Ji Z, Chai X, Yu Y, Pang Y, Zhang Z. Improved prototypical networks for few-shot learning. Pattern Recognition Letters, 2020, 140: 81−87 doi: 10.1016/j.patrec.2020.07.015
    [34] Shen X, Xiao Y, Hu S X, Sbai O, Aubry M. Re-ranking for image retrieval and transductive few-shot classification. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. Virtual Event: 2021. 25932−25943
    [35] Gao F, Cai L, Yang Z, Song S, Wu C. Multi-distance metric network for few-shot learning. International Journal of Machine Learning and Cybernetics, 2022, 13(9): 2495−2506 doi: 10.1007/s13042-022-01539-1
    [36] Ravichandran A, Bhotika R, Soatto S. Few-shot learning with embedded class models and shot-free meta training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, South Korea: IEEE, 2019. 331−339
    [37] Zhang C, Cai Y, Lin G, Shen C. DeepEMD: Few-shot image classification with differentiable earth mover's distance and structured classifiers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020. 12203−12213
    [38] Simon C, Koniusz P, Nock R, Harandi M. Adaptive subspaces for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020. 4136−4145
    [39] Wang H, Zhao H, Li B. Bridging multi-task learning and meta-learning: Towards efficient training and effective adaptation. In: Proceedings of the International Conference on Machine Learning. Vienna, Austria: ICML, 2021. 10991−11002
    [40] Yan L, Li F, Zhang L, Zheng X. Discriminant space metric network for few-shot image classification. Applied Intelligence, 2023, 53: 17444−17459 doi: 10.1007/s10489-022-04413-3
    [41] Wang Y, Chao W L, Weinberger K Q, Maaten L. SimpleShot: Revisiting nearest-neighbor classification for few-shot learning. arXiv preprint arXiv: 1911.04623, 2019.
    [42] Ramprasaath R, Michael C, Abhishek D, Ramakrishna V, Devi P, Dhruv B. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 618−626
    [43] Dhillon G S, Chaudhari P, Ravichandran A, Soattoet S. A baseline for few-shot image classification. In: Proceedings of the International Conference on Learning Representations. Addis Ababa, Ethiopia: ICLR, 2020. 1−12
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  162
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-03
  • 录用日期:  2024-08-29
  • 网络出版日期:  2024-09-22
  • 刊出日期:  2025-02-20

目录

/

返回文章
返回