2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态视觉传感器的铝基盘片表面缺陷检测

马居坡 陈周熠 吴金建

马居坡, 陈周熠, 吴金建. 基于动态视觉传感器的铝基盘片表面缺陷检测. 自动化学报, 2024, 50(12): 1−13 doi: 10.16383/j.aas.c240307
引用本文: 马居坡, 陈周熠, 吴金建. 基于动态视觉传感器的铝基盘片表面缺陷检测. 自动化学报, 2024, 50(12): 1−13 doi: 10.16383/j.aas.c240307
Ma Ju-Po, Chen Zhou-Yi, Wu Jin-Jian. Dynamic vision sensor based defect detection for the surface of aluminum disk. Acta Automatica Sinica, 2024, 50(12): 1−13 doi: 10.16383/j.aas.c240307
Citation: Ma Ju-Po, Chen Zhou-Yi, Wu Jin-Jian. Dynamic vision sensor based defect detection for the surface of aluminum disk. Acta Automatica Sinica, 2024, 50(12): 1−13 doi: 10.16383/j.aas.c240307

基于动态视觉传感器的铝基盘片表面缺陷检测

doi: 10.16383/j.aas.c240307 cstr: 32138.14.j.aas.c240307
基金项目: 国家重点研发计划(2023YFA1008500), 陕西省自然科学基础研究计划(2024JC-YBQN-0627), 中央高校基本科研业务费专项资金(XJSJ23079, ZYTS24006)资助
详细信息
    作者简介:

    马居坡:西安电子科技大学人工智能学院讲师. 主要研究方向为仿生动态视觉处理和视觉缺陷检测. E-mail: majupo@xidian.edu.cn

    陈周熠:西安电子科技大学人工智能学院博士研究生. 主要研究方向为仿生动态视觉处理和视觉缺陷检测. E-mail: chenzhouyi@stu.xidian.edu.cn

    吴金建:西安电子科技大学人工智能学院教授. 主要研究方向为高质量成像和图像智能处理. 本文通信作者. E-mail: jinjian.wu@mail.xidian.edu.cn

Dynamic Vision Sensor based Defect Detection for the Surface of Aluminum Disk

Funds: Supported by National Key Research and Development Program of China (2023YFA1008500), Natural Science Basic Research Program of Shaanxi (2024JC-YBQN-0627), and the Fundamental Research Funds for the Central Universities (XJSJ23079, ZYTS24006)
More Information
    Author Bio:

    MA Ju-Po Lecturer at the School of Artificial Intelligence, Xidian University. His research interest covers bionic dynamic vision processing and visual defect detection

    CHEN Zhou-Yi Ph.D. candidate at the School of Artificial Intelligence, Xidian University. His research interest covers bionic dynamic vision processing and visual defect detection

    WU Jin-Jian Professor at the School of Artificial Intelligence, Xidian University. His research interest covers high-quality imaging and intelligent image processing. Corresponding author of this paper

  • 摘要: 现有视觉缺陷检测技术通常基于传统电荷耦合器件(Charge-coupled device, CCD)或互补金属氧化物半导体(Complementary metal-oxide-semiconductor, CMOS)相机进行缺陷成像和后端检测算法开发. 然而, 现有技术存在成像速度慢、动态范围小、背景干扰大等问题, 难以实现对高反光产品表面弱小瑕疵的快速检测. 针对上述挑战, 创新性地提出了一套基于动态视觉传感器(Dynamic vision sensor, DVS)的缺陷检测新模式, 以实现对具有高反光特性的铝基盘片表面缺陷的高效检测. DVS是一种新型的仿生视觉传感器, 具有成像速度快、动态范围大、运动目标捕捉能力强等优势. 首先开展了面向铝基盘片高反光表面弱小瑕疵的DVS成像实验, 并分析总结了DVS缺陷成像的特性与优势. 随后, 构建了第一个基于DVS的缺陷检测数据集(Event-based defect detection dataset, EDD-10k), 包含划痕、点痕、污渍三类常见缺陷类型. 最后, 针对缺陷形态多变、纹理稀疏、噪声干扰等问题, 提出了一种基于时序不规则特征聚合框架的DVS缺陷检测算法(Temporal irregular feature aggregation framework for event-based defect detection, TIFF-EDD), 实现对缺陷目标的有效检测.
    1)  11 1微米 = 10000
    2)  32 由于在事件可视化时采用了同样大小的时间窗口, 快速运动的目标会产生更多的事件. 因此, 图6(c)比图6(a)具有更粗的边缘或拖影.
    3)  23 某些缺陷盘片表面可能同时具有多种缺陷, 因此表1中不同类别的总事件流数量相加之后大于116.
  • 图  1  DVS缺陷成像机理说明

    Fig.  1  Explanation of the mechanism of DVS-based defect imaging

    图  2  事件产生数量与光强变化大小的关系示意图 ((a) 当$\Delta t$时间内光强变化小时, 产生的事件数量少; (b) 当$\Delta t$ 时间内光强变化大时, 产生的事件数量也相应变多)

    Fig.  2  Relationship diagram between the number of generated events and the magnitude of light intensity change ((a) When the change of light intensity in $\Delta t$ is small, fewer events are generated; (b) When the change of light intensity in $\Delta t$ is large, the number of generated events increases accordingly)

    图  3  缺陷检测实验平台示意图

    Fig.  3  Diagram of the defect detection experimental platform

    图  4  弱小缺陷、环境倒影的成像效果对比

    Fig.  4  Comparison of imaging effects of small defects and environmental reflections

    图  5  大动态范围成像效果对比

    Fig.  5  Comparison of high dynamic range imaging effects

    图  6  在不同运动速度下的缺陷成像效果对比

    Fig.  6  Comparison of defect imaging effects under different motion speeds

    图  7  不同缺陷类别的事件图像以及标注框的可视化结果 ((a)点痕; (b)划痕; (c)污渍)

    Fig.  7  Visualization results of event images and annotation boxes for different defect categories ((a) Point; (b) Scratch; (c) Stain)

    图  8  数据集EDD-10k 统计特性

    Fig.  8  Statistical characteristics of the EDD-10k dataset

    图  9  缺陷检测器的主要网络框架

    Fig.  9  Main network framework of the defect detector

    图  10  基于决策级时序预测融合的后处理模块工作流程图

    Fig.  10  The workflow diagram of the post-processing module based on decision-level temporal prediction fusion

    表  1  事件流在训练集和测试集中的数量分布

    Table  1  Quantity distribution of event streams in the training set and testing set

    类别事件流总数训练集事件流数量测试集事件流数量
    点痕35278
    划痕39309
    污渍443410
    合格422
    下载: 导出CSV

    表  2  EDD-10k数据集中每一类缺陷标签的数量

    Table  2  The number of labels for each defect category in EDD-10k dataset

    类别事件流总数训练集事件流数量测试集事件流数量
    点痕28652381484
    划痕21591781378
    污渍407030601010
    合格909472221872
    下载: 导出CSV

    表  3  与其他算法在EDD-10k数据集上的对比实验

    Table  3  Comparison experiments with other algorithms on the EDD-10k dataset

    方法mAP@0.4AP@点痕AP@划痕AP@污渍
    Faster R-CNN[41]0.2100.0000.5360.095
    YOLOv50.5690.3930.7560.559
    YOLOv7[42]0.5430.4710.6440.514
    RDN[47]0.5120.5530.4760.507
    MEGA[48]0.4010.3560.5090.349
    YOLOV[49]0.5370.1120.6280.670
    SSD-event[40]0.2360.0870.6260.138
    SODformer-event[25]0.3940.3630.1610.495
    TIFF-EDD0.6170.5120.7010.639
    下载: 导出CSV

    表  4  在EDD-10k数据集上的消融实验结果

    Table  4  Ablation experimental results on the EDD-10k dataset

    基线MIFECTAAVFLossDPFmAP@0.4
    TIFF-B$\checkmark$0.577
    TIFF-MIFE$\checkmark$$\checkmark$0.590
    TIFF-CTAA$\checkmark$$\checkmark$$\checkmark$0.607
    TIFF-VF$\checkmark$$\checkmark$$\checkmark$$\checkmark$0.612
    TIFF-EDD$\checkmark$$\checkmark$$\checkmark$$\checkmark$$\checkmark$0.617
    下载: 导出CSV
  • [1] 金侠挺, 王耀南, 张辉, 刘理, 钟杭, 贺振东. 基于贝叶斯CNN和注意力网络的钢轨表面缺陷检测系统. 自动化学报, 2019, 45(12): 2312−2327

    Jin Xia-Ting, Wang Yao-Nan, Zhang Hui, Liu Li, Zhong Hang, He Zhen-Dong. DeepRail: Automatic visual detection system for railway surface defect using Bayesian CNN and attention network. Acta Automatica Sinica, 2019, 45(12): 2312−2327
    [2] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述. 自动化学报, 2021, 47(5): 1017−1034

    Tao Xian, Hou Wei, Xu De. A survey of surface defect detection methods based on deep learning. Acta Automatica Sinica, 2021, 47(5): 1017−1034
    [3] Chen Y Q, Pan J W, Lei J Y, Zeng D Y, Wu Z Z, Chen C S. EEE-Net: Efficient edge enhanced network for surface defect detection of glass. IEEE Transactions on Instrumentation and Measurement, 2023, 72: Article No. 5029013
    [4] Jiang W B, Liu M, Peng Y N, Wu L H, Wang Y N. HDCB-Net: A neural network with the hybrid dilated convolution for pixel-level crack detection on concrete bridges. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5485−5494 doi: 10.1109/TII.2020.3033170
    [5] Zheng Y J, Zheng L X, Yu Z F, Shi B X, Tian Y H, Huang T J. High-speed image reconstruction through short-term plasticity for spiking cameras. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 6354−6363
    [6] Xu X Y, Sun D Q, Pan J S, Zhang Y J, Pfister H, Yang M H. Learning to super-resolve blurry face and text images. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 251−260
    [7] 李家宁, 田永鸿. 神经形态视觉传感器的研究进展及应用综述. 计算机学报, 2021, 44(6): 1258−1286

    Li Jia-Ning, Tian Yong-Hong. Recent advances in neuromorphic vision sensors: A survey. Chinese Journal of Computers, 2021, 44(6): 1258−1286
    [8] Pan L Y, Hartley R, Scheerlinck C, Liu M M, Yu X, Dai Y C. High frame rate video reconstruction based on an event camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2519−2533
    [9] Han J, Yang Y X, Duan P Q, Zhou C, Ma L, Xu C, et al. Hybrid high dynamic range imaging fusing neuromorphic and conventional images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 8553−8565 doi: 10.1109/TPAMI.2022.3231334
    [10] Hu Y H, Liu S C, Delbruck T. V2e: From video frames to realistic DVS events. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Nashville, USA: IEEE, 2021. 1312−1321
    [11] 冯维, 徐仕楠, 王恒辉, 熊芝, 王选择, 翟中生. 逐像素调制的高反光表面三维测量方法. 中国光学, 2022, 15(3): 488−497 doi: 10.37188/CO.2021-0220

    Feng Wei, Xu Shi-Nan, Wang Heng-Hui, Xiong Zhi, Wang Xuan-Ze, Zhai Zhong-Sheng. Three-dimensional measurement method of highly reflective surface based on per-pixel modulation. Chinese Optics, 2022, 15(3): 488−497 doi: 10.37188/CO.2021-0220
    [12] 王颖, 倪育博, 孟召宗, 高楠, 郭彤, 杨泽青, 等. 彩色高反光表面自适应编码条纹投影轮廓术. 光学学报, 2024, 44(7): Article No. 0712001

    Wang Ying, Ni Yu-Bo, Meng Zhao-Zong, Gao Nan, Guo Tong, Yang Ze-Qing, et al. Adaptive coding fringe projection profilometry on color reflective surfaces. Acta Optica Sinica, 2024, 44(7): Article No. 0712001
    [13] Lichtsteiner P, Posch C, Delbruck T. A 128 × 128 120db 30mw asynchronous vision sensor that responds to relative intensity change. In: Proceedings of the IEEE International Solid State Circuits Conference-Digest of Technical Papers. San Francisco, USA: IEEE, 2006. 2060−2069
    [14] Chen S S, Guo M H. Live demonstration: CeleX-V: A 1M pixel multi-mode event-based sensor. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, USA: IEEE, 2019. 1682−1683
    [15] Brandli C, Muller L, Delbruck T. Real-time, high-speed video decompression using a frame- and event-based DAVIS sensor. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). Melbourne, Australia: IEEE, 2014. 686−689
    [16] Gallego G, Delbrück T, Orchard G, Bartolozzi C, Taba B, Censi A, et al. Event-based vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 154−180 doi: 10.1109/TPAMI.2020.3008413
    [17] Lagorce X, Orchard G, Galluppi F, Shi B E, Benosman R B. HOTS: A hierarchy of event-based time-surfaces for pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7): 1346−1359 doi: 10.1109/TPAMI.2016.2574707
    [18] Lazzaro J, Wawrzynek J, Mahowald M, Sivilotti M, Gillespie D. Silicon auditory processors as computer peripherals. In: Proceedings of the 5th International Conference on Neural Information Processing Systems. Denver, USA: ACM, 1992. 820−827
    [19] 马艳阳, 叶梓豪, 刘坤华, 陈龙. 基于事件相机的定位与建图算法: 综述. 自动化学报, 2021, 47(7): 1484−1494

    Ma Yan-Yang, Ye Zi-Hao, Liu Kun-Hua, Chen Long. Event-based visual localization and mapping algorithms: A survey. Acta Automatica Sinica, 2021, 47(7): 1484−1494
    [20] Li Y Z, Wang H L, Yuan S H, Liu M, Zhao D B, Guo Y W, et al. Myriad: Large multimodal model by applying vision experts for industrial anomaly detection. arXiv preprint arXiv: 2310.19070, 2023.
    [21] Song K C, Yan Y H. Micro surface defect detection method for silicon steel strip based on saliency convex active contour model. Mathematical Problems in Engineering, 2013, 2013: Article No. 429094
    [22] Tabernik D, Šela S, Skvarč J, Skočaj D. Segmentation-based deep-learning approach for surface-defect detection. Journal of Intelligent Manufacturing, 2020, 31(3): 759−776 doi: 10.1007/s10845-019-01476-x
    [23] Bergmann P, Fauser M, Sattlegger D, Steger C. MVTec AD——A comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 9584−9592
    [24] Wang J L, Xu C Q, Yang Z L, Zhang J, Li X O. Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition. IEEE Transactions on Semiconductor Manufacturing, 2020, 33(4): 587−596 doi: 10.1109/TSM.2020.3020985
    [25] Li D Z, Tian Y H, Li J N. SODFormer: Streaming object detection with transformer using events and frames. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 14020−14037 doi: 10.1109/TPAMI.2023.3298925
    [26] Nguyen A, Do T T, Caldwell D G. Real-time 6DOF pose relocalization for event cameras with stacked spatial LSTM networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, USA: IEEE, 2019. 1638−1645
    [27] Kim J, Bae J, Park G. N-ImageNet: Towards robust, fine-grained object recognition with event cameras. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, USA: IEEE, 2021. 2126−2136
    [28] Ge Z, Liu S T, Wang F, Li Z M, Sun J. YOLOX: Exceeding YOLO series in 2021. arXiv preprint arXiv: 2107.08430, 2021.
    [29] Duan K W, Bai S, Xie L X, Qi H G, Huang Q M, Tian Q. CenterNet: Keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019. 6568−6577
    [30] Xiong Y, Li Z, Chen Y, Wang F, Zhu X, Luo J, et al. Efficient deformable ConvNets: Rethinking dynamic and sparse operator for vision applications. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2024. 5652−5661
    [31] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint arXiv: 2004.10934, 2020.
    [32] Liu S, Qi L, Qin H F, Shi J P, Jia J Y. Path aggregation network for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 8759−8768
    [33] Wang C Y, Liao H Y M, Wu Y H, Chen P Y, Hsieh J W, Yeh I H. CSPNet: A new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, USA: IEEE, 2020. 1571−1580
    [34] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 770−778
    [35] Lin T Y, Dollár P, Girshick R, He K M, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 936−944
    [36] Liu B D, Xu C, Yang W, Yu H, Yu L. Motion robust high-speed light-weighted object detection with event camera. IEEE Transactions on Instrumentation and Measurement, 2023, 72: Article No. 5013113
    [37] Li J N, Li J, Zhu L, Xiang X J, Huang T J, Tian Y H. Asynchronous spatio-temporal memory network for continuous event-based object detection. IEEE Transactions on Image Processing, 2022, 31: 2975−2987 doi: 10.1109/TIP.2022.3162962
    [38] Wang X T, Chan K C K, Yu K, Dong C, Loy C C. EDVR: Video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, USA: IEEE, 2019. 1954−1963
    [39] Zhang H Y, Wang Y, Dayoub F, Sünderhauf N. VarifocalNet: An IoU-aware dense object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 8510−8519
    [40] Iacono M, Weber S, Glover A, Bartolozzi C. Towards event-driven object detection with off-the-shelf deep learning. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018. 1−9
    [41] Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: ACM, 2015. 91−99
    [42] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE, 2023. 7464−7475
    [43] Zhu X M, Wang S, Su J J, Liu F, Zeng L. High-speed and accurate cascade detection method for chip surface defects. IEEE Transactions on Instrumentation and Measurement, 2024, 73: Article No. 2506612
    [44] Yuan M H, Zhou Y B, Ren X Y, Zhi H, Zhang J, Chen H J. YOLO-HMC: An improved method for PCB surface defect detection. IEEE Transactions on Instrumentation and Measurement, 2024, 73: Article No. 2001611
    [45] Wang Y R, Song X K, Feng L L. MCI-GLA plug-in suitable for YOLO series models for transmission line insulator defect detection. IEEE Transactions on Instrumentation and Measurement, 2024, 73: Article No. 9002912
    [46] Zhu J, Pang Q W, Li S S. ADDet: An efficient multiscale perceptual enhancement network for aluminum defect detection. IEEE Transactions on Instrumentation and Measurement, 2024, 73: Article No. 5004714
    [47] Deng J J, Pan Y W, Yao T, Zhou W G, Li H Q, Mei T. Relation distillation networks for video object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019. 7022−7031
    [48] Chen Y H, Cao Y, Hu H, Wang L W. Memory enhanced global-local aggregation for video object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020. 10334−10343
    [49] Shi Y H, Wang N Y, Guo X J. YOLOV: Making still image object detectors great at video object detection. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence. Washington, USA: AAAI, 2023. 2254−2262
    [50] Jeong J, Park H, Kwak N. Enhancement of SSD by concatenating feature maps for object detection. arXiv preprint arXiv: 1705.09587, 2017.
  • 加载中
计量
  • 文章访问数:  197
  • HTML全文浏览量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-03
  • 录用日期:  2024-07-23
  • 网络出版日期:  2024-08-28

目录

    /

    返回文章
    返回