[1]
|
Dougherty S, Guay M. An extremum-seeking controller for distributed optimization over sensor networks. IEEE Transactions on Automatic Control, 2017, 62(2): 928−933 doi: 10.1109/TAC.2016.2566806
|
[2]
|
Chang T H, Nedic A, Scaglione A. Distributed constrained optimization by consensus-based primal-dual perturbation method. IEEE Transactions on Automatic Control, 2014, 59(6): 1524−1538 doi: 10.1109/TAC.2014.2308612
|
[3]
|
Jaleel H, Shamma J S. Distributed optimization for robot networks: From real-time convex optimization to game-theoretic self-organization. Proceedings of the IEEE, 2020, 108(11): 1953−1967 doi: 10.1109/JPROC.2020.3028295
|
[4]
|
杨涛, 柴天佑. 分布式协同优化的研究现状与展望. 中国科学: 技术科学, 2020, 50(11): 1414−1425 doi: 10.1360/SST-2020-0040Yang Tao, Chai Tian-You. Research status and prospects of distributed collaborative optimization. Scientia Sinica Technologica, 2020, 50(11): 1414−1425 doi: 10.1360/SST-2020-0040
|
[5]
|
Yang T, Yi X L, Wu J F, Yuan Y, Wu D, Meng Z Y, et al. A survey of distributed optimization. Annual Reviews in Control, 2019, 47: 278−305 doi: 10.1016/j.arcontrol.2019.05.006
|
[6]
|
杨涛, 徐磊, 易新蕾, 张圣军, 陈蕊娟, 李渝哲. 基于事件触发的分布式优化算法. 自动化学报, 2022, 48(1): 133−143Yang Tao, Xu Lei, Yi Xin-Lei, Zhang Sheng-Jun, Chen Rui-Juan, Li Yu-Zhe. Event-triggered distributed optimization algorithms. Acta Automatica Sinica, 2022, 48(1): 133−143
|
[7]
|
朱文博, 王庆领. 基于梯度估计的多智能体系统有限时间分布式优化. 控制理论与应用, 2023, 40(4): 615−623Zhu Wen-Bo, Wang Qing-Ling. Gradient estimations based distributed finite-time optimization for multiagent systems. Control Theory & Applications, 2023, 40(4): 615−623
|
[8]
|
Nedic A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization. IEEE Transactions on Automatic Control, 2009, 54(1): 48−61 doi: 10.1109/TAC.2008.2009515
|
[9]
|
Shi W, Ling Q, Wu G, Yin W. EXTRA: An exact first-order algorithm for decentralized consensus optimization. SIAM Journal on Optimization, 2015a, 25(2): 944−966 doi: 10.1137/14096668X
|
[10]
|
Gharesifard B, Cortes J. Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Transactions on Automatic Control, 2014, 59(3): 781−786 doi: 10.1109/TAC.2013.2278132
|
[11]
|
Kia S S, Cortes J, Martinez S. Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication. Automatica, 2015, 55: 254−264 doi: 10.1016/j.automatica.2015.03.001
|
[12]
|
Wang X H, Hong Y G, Ji H B. Distributed optimization for a class of nonlinear multiagent systems with disturbance rejection. IEEE Transactions on Cybernetics, 2016, 46(7): 1655−1666 doi: 10.1109/TCYB.2015.2453167
|
[13]
|
Wang D, Wang Z, Wen C Y. Distributed optimal consensus control for a class of uncertain nonlinear multiagent networks with disturbance rejection using adaptive technique. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(7): 4389−4399 doi: 10.1109/TSMC.2019.2933005
|
[14]
|
Liu T F, Qin Z Y, Hong Y G, Jiang Z P. Distributed optimization of nonlinear multiagent systems: A small-gain approach. IEEE Transactions on Automatic Control, 2022, 67(2): 676−691 doi: 10.1109/TAC.2021.3053549
|
[15]
|
Tang Y T, Deng Z H, Hong Y G. Optimal output consensus of high-order multiagent systems with embedded technique. IEEE Transactions on Cybernetics, 2019, 49(5): 1768−1779 doi: 10.1109/TCYB.2018.2813431
|
[16]
|
Tang Y T, Wang X H. Optimal output consensus for nonlinear multiagent systems with both static and dynamic uncertainties. IEEE Transactions on Automatic Control, 2021, 66(4): 1733−1740 doi: 10.1109/TAC.2020.2996978
|
[17]
|
Wang Q L, Wu W Q. A distributed finite-time optimization algorithm for directed networks of continuous-time agents. International Journal of Robust and Nonlinear Control, 2024, 34(6): 4032−4050 doi: 10.1002/rnc.7176
|
[18]
|
Zhang J, Liu L, Ji H B. Optimal output consensus of second-order uncertain nonlinear systems on weight-unbalanced directed networks. International Journal of Robust and Nonlinear Control, 2022, 32(8): 4878−4898 doi: 10.1002/rnc.6059
|
[19]
|
Gkesoulis A K, Psillakis H E, Lagos A R. Optimal consensus via OCPI regulation for unknown pure-feedback agents with disturbances and state delays. IEEE Transactions on Automatic Control, 2022, 67(8): 4338−4345 doi: 10.1109/TAC.2022.3179218
|
[20]
|
时侠圣, 杨涛, 林志赟, 王雪松. 基于连续时间的二阶多智能体分布式资源分配算法. 自动化学报, 2021, 47(8): 2050−2060Shi Xia-Sheng, Yang Tao, Lin Zhi-Yun, Wang Xue-song. Distributed resource allocation algorithm for second-order multi-agent systems in continuous-time. Acta Automatica Sinica, 2021, 47(8): 2050−2060
|
[21]
|
杨正全, 杨秀伟, 陈增强. 非平衡有向网络下带约束的连续时间分布式优化算法设计. 控制理论与应用, 2023, 40(6): 1053−1060Yang Zheng-Quan, Yang Xiu-Wei, Chen Zeng-Qiang. Continuous time with constraints in general directed networks distributed optimization algorithm design. Control Theory & Applications, 2023, 40(6): 1053−1060
|
[22]
|
刘奕葶, 马铭莙, 付俊. 基于有向图的分布式连续时间非光滑耦合约束凸优化分析. 自动化学报, 2024, 50(1): 66−75Liu Yi-Ting, Ma Ming-Jun, Fu Jun. Distributed continuous-time non-smooth convex optimization analysis with coupled constraints over directed graphs. Acta Automatica Sinica, 2024, 50(1): 66−75
|
[23]
|
Zhu Y N, Yu W W, Wen G H, Ren W. Continuous-time coordination algorithm for distributed convex optimization over weight-unbalanced directed networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(7): 1202−1206
|
[24]
|
Li Z H, Ding Z T, Sun J Y, Li Z K. Distributed adaptive convex optimization on directed graphs via continuous-time algorithms. IEEE Transactions on Automatic Control, 2018, 63(5): 1434−1441 doi: 10.1109/TAC.2017.2750103
|
[25]
|
Psillakis H E. PI consensus error transformation for adaptive cooperative control of nonlinear multi-agent systems. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2019, 356(18): 11581−11604 doi: 10.1016/j.jfranklin.2019.09.024
|
[26]
|
Khalil H K, Nonlinear Systems, 3rd ed. Prentice-Hall, New Jersey, 2002
|
[27]
|
Theodorakopoulos A, Rovithakis G A. Guaranteeing preselected tracking quality for uncertain strict-feedback systems with deadzone input nonlinearity and disturbances via low-complexity control. Automatica, 2015, 54: 135−145 doi: 10.1016/j.automatica.2015.01.038
|
[28]
|
Bechlioulis C P, Rovithakis G A. A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica, 2014, 50(4): 1217−1226 doi: 10.1016/j.automatica.2014.02.020
|
[29]
|
张晋熙, 柴天佑, 王良勇. 时延非线性系统无模型预设性能控制. 自动化学报, 2024, 50(5): 939−948Zhang Jin-Xi, Chai Tian-You, Wang Liang-Yong. Model-free prescribed performance control of time-delay nonlinear systems. Acta Automatica Sinica, 2024, 50(5): 939−948
|
[30]
|
Na J. Adaptive prescribed performance control of nonlinear systems with unknown dead zone. International Journal of Adaptive Control and Signal Processing, 2013, 27(5): 426−446 doi: 10.1002/acs.2322
|