2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多机器人协同围捕方法综述

周萌 李建宇 王昶 王晶 王力

周平, 赵向志. 面向建模误差PDF形状与趋势拟合优度的动态过程优化建模. 自动化学报, 2021, 47(10): 2402−2411 doi: 10.16383/j.aas.c200001
引用本文: 周萌, 李建宇, 王昶, 王晶, 王力. 多机器人协同围捕方法综述. 自动化学报, 2024, 50(12): 2325−2358 doi: 10.16383/j.aas.c240114
Zhou Ping, Zhao Xiang-Zhi. Optimized modeling of dynamic process oriented towards modeling error PDF shape and goodness of fit. Acta Automatica Sinica, 2021, 47(10): 2402−2411 doi: 10.16383/j.aas.c200001
Citation: Zhou Meng, Li Jian-Yu, Wang Chang, Wang Jing, Wang Li. Multi-robot cooperative hunting: A survey. Acta Automatica Sinica, 2024, 50(12): 2325−2358 doi: 10.16383/j.aas.c240114

多机器人协同围捕方法综述

doi: 10.16383/j.aas.c240114 cstr: 32138.14.j.aas.c240114
基金项目: 国家重点研发计划课题(2023YFB4704404), 北京市教育委员会科学研究计划项目(KM202410009014), 北京市属高等学校优秀青年人才培育计划项目(BPHR202203032), 北方工业大学毓秀创新项目(2024NCUTYXCX107)资助
详细信息
    作者简介:

    周萌:北方工业大学电气与控制工程学院教授. 主要研究方向为多机器人协同路径规划与控制, 复杂系统故障诊断与容错控制. E-mail: zhoumeng@ncut.edu.cn

    李建宇:北方工业大学电气与控制工程学院硕士研究生. 主要研究方向为多机器人协同围捕, 机器人安全运动控制. E-mail: li1296659870@163.com

    王昶:北京航天自动控制研究所高级工程师. 主要研究方向为智能多机协同, 软件自动化生成. E-mail: wwcc099@126.com

    王晶:北方工业大学电气与控制工程学院教授. 主要研究方向为多无人机系统协同自主控制, 复杂工业过程的建模、优化、先进控制及其工业应用. 本文通信作者. E-mail: jwang@ncut.edu.cn

    王力:北方工业大学电气与控制工程学院教授. 主要研究方向为网联交通智能控制, 公共交通系统风险控制. E-mail: li.wang@ncut.edu.cn

Multi-robot Cooperative Hunting: A Survey

Funds: Supported by National Key Research and Development Program of China (2023YFB4704404), R&D Program of Beijing Municipal Education Commission (KM202410009014), Project of Cultivation for Young Top-motch Talents of Beiiing Municipal Institutions (BPHR202203032), and Yuxiu Innovation Project of NCUT (2024NCUTYXCX107)
More Information
    Author Bio:

    ZHOU Meng Professor at the College of Electrical and Control Engineering, North China University of Technology. Her research interest covers multi-robot cooperative path planning and control, fault diagnosis and fault-tolerant control of complex systems

    LI Jian-Yu Master student at the College of Electrical and Control Engineering, North China University of Technology. His research interest covers multi-robot cooperative hunting and safe motion control of robots

    WANG Chang Senior engineer at the Beijing Aerospace Automatic Control Institute. His research interest covers intelligent multi-robot cooperation and software automated generation

    WANG Jing Professor at the College of Electrical and Control Engineering, North China University of Technology. Her research interest covers cooperative autonomous control of multiple unmanned aerial systems, modeling, optimization, advanced control, and industrial application of complex industrial processes. Corresponding author of this paper

    WANG Li Professor at the College of Electrical and Control Engineering, North China University of Technology. His research interest covers intelligent control of connected transportation and risk control of public transportation systems

  • 摘要: 多机协同围捕作为多机器人协同领域的一项重要分支, 着重研究多个机器人通过相互协作对动态可疑目标实现有效的追踪与围捕, 在军事侦查、紧急救援、协同探测等领域具有重要的研究意义与实际应用价值. 首先通过国内外科学引文数据库对多机协同围捕领域相关的文献进行全面检索, 深入剖析目前该领域前沿技术的发展现状与研究热点. 接下来从理论与技术层面分别针对多机协同围捕领域中的目标协同搜索、多机任务分配、协同围捕控制等方面进行全面总结, 重点阐述各研究内容常用方法与技术的工作原理、优缺点及适用范围等. 最后对该领域的发展现状进行总结, 并分析探讨目前尚未解决的难点, 对未来的发展方向提出展望.
  • 实际复杂工业过程如高炉炼铁过程、磨矿过程、造纸制浆过程、污水处理过程等, 通常涉及复杂的物理化学反应, 具有多变量、强耦合、非线性、大滞后等综合复杂动态特性, 利用传统的物理化学等机理方法时, 难以建立精确的数学模型[1-4]. 近年来, 随着大数据和人工智能技术的发展, 对于难以进行机理建模的工业过程, 甚至缺乏机理模型的复杂工业系统, 数据驱动建模常被看作是一种非常有效的建模方法[1, 4-5]. 目前, 数据驱动建模主要采用人工智能技术或多元统计分析技术来描述过程输入与输出之间的复杂未知动态关系, 在此基础上建立具有一定结构和适当模型参数的过程数据模型. 由于数据模型输出与实际过程输出之间存在一定的偏差, 为了最优化模型性能, 通常需要采用相关算法来优化关于建模误差的性能指标, 如均方根误差(Root mean square error, RMSE)、均方差(MSE)及平均绝对误差(Mean absolute error, MAE)等, 以此获得满意的数据模型参数[6].

    在实际工业过程建模时, 单纯的RMSE、MSE、MAE等性能指标均以最小化一维的统计建模误差均值为目标, 并不能完全描述和刻画动态系统建模过程的随机性和不确定性[6]. 在复杂工业过程中, 外部不确定因素和随机动态干扰往往具有非高斯特性, 将其假设为高斯分布特征时, 难以获得满意的建模效果[7]. 另一方面, 复杂工业过程中, 其建模误差通常是一个未知的随机变量, 因而建模误差在时空尺度上的二维概率密度函数(Probability density function, PDF)形状分布能够包含动态系统建模误差的所有分布和统计信息. 因此, 误差PDF形状优化的思想受到了越来越广泛的关注, 并逐渐用于复杂工业过程的数据建模与控制中, 如以非高斯动态系统PDF形状为目标的随机分布控制已成为解决随机动态系统控制的非常有效的方法, 得到了广泛的应用[7-8]. 近年, 面向建模误差PDF形状优化的数据建模方法也逐渐引起重视. 文献[6]中, 作为有界随机分布系统建模与控制方法的扩展, Zhou等将输出PDF控制或随机分布控制思想引入到过程建模中. 通过优化建模误差PDF形状, 进而对模型参数求解, 使得实际建模误差PDF形状接近设定的期望PDF形状[6]. 该方法不仅可以获得较为满意的建模效果, 而且一定程度降低建模过程中的随机性和不确定性. 此外, 文献[9]通过优化建模误差PDF形状, 建立了选矿过程精矿品位的最小支持向量机模型. 而文献[10]通过优化建模误差PDF形状, 间接对模型参数进行调节, 建立了间歇过程的模糊神经网络模型.

    上述方法均是期望实际模型的建模误差PDF形状更好地跟踪期望的高斯分布形状, 以此建立具有最优参数的过程数据模型. 然而, 不管是常规建模方法的误差RMSE指标, 还是上述改进方法提到的建模误差PDF指标, 均仅仅体现过程模型输出与实际输出之间的误差大小情况, 难以衡量模型输出与实际动态过程输出之间拟合趋势是否一致. 实际上, 实际工业动态系统中, 过程输出变化趋势的估计和预测, 对于基于模型的预测控制、生产过程运行态势的把握与调控等诸多工程应用, 都具有十分重要的作用. 因此, 在动态系统建模时, 除了需要优化建模误差的PDF形状, 同时也需要考虑建模输出与样本数据之间拟合趋势最接近, 即曲线拟合动态变化趋势的相似度最大[11].

    针对上述动态系统建模的实际需求和现有方法的不足, 本文以小波神经网络(Wavelet neural network, WNN)[12-13]数据建模为例, 提出一种新型的面向建模误差PDF形状与趋势拟合优度(相似度)多目标优化的动态系统数据建模方法. 所提方法不仅引入二维尺度的PDF指标来对动态建模误差在时间和空间进行全面刻画, 同时引入拟合优度(相似度)指标[11, 14]刻画动态系统数据建模的拟合趋势. 通过采用核密度估计(Kernel density estimation, KDE)[15-17]技术对实际建模误差PDF形状进行估计, 以及采用NSGA-II算法[18]对建模误差PDF形状的偏差以及拟合优度指标进行多目标优化, 从而建立具有最优模型参数的WNN模型. 数值仿真以及污水处理过程[19-20]数据验证表明所提方法的实际建模误差PDF能够更好地逼近设定的期望PDF, 并且模型输出与样本数据拟合趋势接近.

    小波神经网络是结合小波分析与神经网络的一种前馈型网络. WNN用小波函数代替传统Sigmoid函数作为激励函数, 通过仿射变换建立起小波变换与网络参数之间的连接, 能以任意精度对函数进行逼近[12-13]. 如图1所示, WNN通常采用三层网络结构, 其中: $ {x_1,x_2,\cdots,x_M} $为WNN的输入变量, $ {y_1,y_2, \cdots,y_N} $为输出变量, ${\omega _{{{I}},ji}}$${\omega _{{{H}},lj}}$分别是输入层到隐含层的连接权值以及隐含层到输出层的连接权值, $ {\theta_H,_j} , {\theta_O,_l} $分别为隐含层和输出层节点阈值, $ {a_j} $$ {b_j} $分别为小波基函数的伸缩因子和平移因子.

    图 1  WNN结构图
    Fig. 1  Structure diagram of WNN

    WNN隐层激励函数$ {\phi(t)} $通常采用如下的Morlet母小波函数[12]:

    $$ {\phi(t)} = \cos(1.75t)\exp\left(-{\frac{t^2}{2}}\right) $$ (1)

    输出层激励函数$ {f(t)} $则采用Sigmoid函数, 即:

    $$ f(t) = {(1 + {{\rm e}^{ - t}})^{ - 1}} $$ (2)

    此外, 定义三层WNN的输入层、隐含层、输出层节点数分别为M, nN, 则隐含层第j个节点的输入$ {\rm{ne}}{{\rm{t}}_j} $和输出$ {z_j} $分别为:

    $$ \begin{split} &{ne{t_j} = \sum\limits_i {{\omega _{I,ji}}} {x_i} - {\theta _{H,j}},i = 1, \cdots ,M,}\\ &\qquad\qquad{j = 1,2, \cdots ,n} \end{split} $$ (3)
    $$ {z_j} = \varphi \left(\frac{{ne{t_j} - {b_j}}}{{{a_j}}}\right),\qquad j = 1, \cdots ,n $$ (4)

    式中, $ {b_j} $为小波基函数$ \varphi (t) $的平移因子, $ {a_j} $为小波基函数的伸缩因子, $ \varphi (t) $为Morlet母小波函数, $ {\theta _{H,\;j}} $为隐含层节点的阈值, 则WNN的最终输出为:

    $$ \begin{split} &{{{\hat y}_l} = f\left( {\sum\limits_j {{\omega _{H,lj}}} {z_j} - {\theta _{O,l}}} \right),}\\ &{j = 1, \cdots ,n,l = 1, \cdots ,N} \end{split} $$ (5)

    式中, $ {\theta _{O,\;l}} $为输出层节点的阈值, 函数$ f( \cdot ) $为输出层的激励函数.

    对于常规WNN等现有多数建模方法, 通常采用如下均方根误差(RMSE)、均方差(MSE)、平均绝对误差(MAE)等单一的误差性能指标, 通过性能指标数值大小来评价建模精度.

    $$ \left\{ \begin{array}{l} {J_{{\rm{RMSE}}}} = \sqrt {\dfrac{1}{m}\displaystyle\sum\limits_{l = 1}^m {{{({y_l} - {{\hat y}_l})}^2}} } \\ {J_{{\rm{MSE}}}} = \dfrac{1}{m}\displaystyle\sum\limits_{l = 1}^m {{{({y_l} - {{\hat y}_l})}^2}} \\ {J_{{\rm{MAE}}}} = \dfrac{1}{m}\displaystyle\sum\limits_{l = 1}^m {\left| {{y_l} - {{\hat y}_l}} \right|} \end{array} \right. $$ (6)

    然而, 式(6)所示传统性能指标是从建模误差的均值角度评价模型精度, 并不能全面描述动态系统建模误差在时空尺度上的随机特性. 此外, 对于时序相关动态系统建模, 运行数据拟合趋势的估计对于建模效果有很大影响, 并且更有实际意义. 而式(6)所示常规建模性能评价指标仅希望建模输出与实际数据之间偏差最小, 却难以描述动态系统的拟合趋势好坏.

    为了解决上述问题, 本文以WNN智能建模为基础, 通过引入建模误差概率密度函数(PDF)指标从时空二维角度对建模误差进行全面刻画, 以及引入拟合优度指标对动态系统数据建模的拟合趋势进行相似性评估, 从而提出图2所示的面向建模误差PDF形状与趋势拟合优度的动态系统优化建模方法, 具体如下:

    图 2  面向建模误差PDF形状与趋势拟合优度的优化建模策略
    Fig. 2  Optimized modeling strategy towards modeling error PDF shape and goodness of fit

    1)首先, 构建动态系统数据建模的实际建模误差PDF与期望建模误差PDF的偏差平方积分作为多目标优化计算的第一个评价指标, 如下所示:

    $$ {J_1} = \int_{ - \infty }^{ + \infty } {{{(\Gamma (e) - {\Gamma _{\rm target}}(e))}^2}{\rm d}e} $$ (7)

    式中, $ \Gamma(e) $${\Gamma _{\rm target}}(e)$分别为实际建模误差PDF和期望建模误差PDF. 本文实际建模误差PDF是采用核密度估计技术对所建立数据模型的建模误差序列进行求解获得, 而期望建模误差PDF是设置的一个较为理想的(即均值为0、方差尽量小)高斯分布形状的PDF, e为建模误差PDF的自变量.

    2)其次, 引入式(8)所示的拟合优度指标$ {\rho _{AB}} $[11, 14]对动态系统数据建模的动态拟合趋势进行相似性评估, 然后构建式(9)所示关于拟合优度的性能指标作为第二个评价指标.

    $$ {\rho _{AB}} = \frac{{\sum\limits_m {\sum\limits_n {({A_{mn}} - \bar A)} } ({B_{mn}} - \bar B)}}{{\sqrt {\left( {{{\sum\limits_m {\sum\limits_n {({A_{mn}} - \bar A)} } }^2}} \right)\left( {{{\sum\limits_m {\sum\limits_n {({B_{mn}} - \bar B)} } }^2}} \right)} }} $$ (8)
    $$ {J_2} = \frac{1}{\rho_{AB}} $$ (9)

    式中, $ A,B $为两个数据矩阵, $ \bar A,\bar B $分别为数据矩阵$ A,B $的均值. 事实上, $ {\rho _{AB}} $是衡量数据矩阵A和B之间近似程度的量, $ \left| {{\rho _{AB}}} \right| \to 1 $表示数据矩阵A和B之间相关性很强, 而$ \left| {{\rho _{AB}}} \right| \to 0 $意味着数据矩阵A和B之间相关性较弱. 由于本文要衡量建模输出与实际输出的时序相关数据之间的动态拟合趋势, 所以本文式(8)中A和B分别表示小波神经网络模型输出和实际过程输出所构成的时序相关数据矩阵.

    3)最后, 分别将式(8)和式(9)作为数据建模的综合性能评价指标的适应度函数, 采用运算速度快、解集收敛性好的NSGA-II算法[11]来获得WNN模型的最优参数集$[{\omega _{{{I}},ji}},{\omega _{{{H}},lj}},{a_j},{b_j},{\theta _{{{H,}}j}},{\theta _{{{O,}}l}}]$.

    所提方法的具体建模算法包括如下几个过程: 首先,采用式$(1) \sim (5)$所示算法构建初始的WNN数据模型, 通过比较WNN数据模型输出与过程输出或者相应的实际值, 可以得到特定时间内的建模误差序列. 然后, 采用第3.1节的核密度估计技术对实际建模误差PDF进行计算. 最后, 采用NSGA-II算法优化式(8)和式(9)所示的多目标性能指标, 获得同时具有较好建模误差PDF形状与拟合优度值的多组WNN模型参数集解.

    核密度估计(Kernel density estimation, KDE)是由Parzen提出的一种非参数估计方法[15-17], 用于求解给定随机变量数据集合分布的概率密度函数. 假设$ {x_i} \in R,i = 1, \cdots,n $为独立同分布的随机变量数据集, 其所服从的分布密度函数为$f(x),x \in {\bf R},$$ f(x) $的核密度估计$ {\hat f_h}(x) $定义如下:

    $$ {\hat f_h}(x) = \frac{1}{{n{h_p}}}\sum\limits_{i = 1}^n {\phi \left(\frac{{{x_i} - x}}{{{h_p}}}\right), \quad x \in {\bf R}} $$ (10)

    式中, 窗宽$ {h_p} $是一个给定的正数, $ \phi (x) $为核函数, n为样本数.

    对于所提建模方法, 采用KDE对建模误差PDF进行估计, 可以得到估计的建模误差概率密度函数$ {\Gamma _e} $为:

    $$ {\Gamma _e} = \frac{1}{K}\sum\limits_{k = 1}^K {\frac{1}{{{h_p}}}\phi \left( - \frac{{e - e(k)}}{{{h_p}}}\right)} $$ (11)

    式中, K为建模误差样本数目, 通过设置期望的建模误差PDF, 可以构造式(7)所示的性能指标. 式(11)所示基于KDE的WNN实际建模误差PDF估计求解步骤如下:

    1)选择核函数: 在估计随机变量未知概率密度函数时, 常用的核函数有高斯核函数、矩形窗核函数、Epanechnikov核函数等. 核函数的不同选择在KDE中不敏感, 当样本数据很大时, 对核函数密度估计的结果影响不大. 本文选取高斯核函数, 其表式如下:

    $$ \phi (x) = \frac{1}{{\sqrt {2\pi } }}{{\rm e}^{ - \frac{{{{\left\| x \right\|}^2}}}{2}}} $$ (12)

    2)选择窗宽: 窗宽$ {h_p} $的选择对核函数的密度估计起着局部光滑的作用, 如果$ {h_p} $过大会使模型误差PDF形状很光滑, 使其主要部分的某些特征(如多峰性)被掩盖起来, 从而增加估计量的偏差; 而若$ {h_p} $过小, 则整个密度函数表现粗糙. 本文基于正态参照规则方法[17]进行窗宽选择, 假设建模误差服从正态分布, 则窗宽$ {h_p} $设置为$ {h_p} = 1.06\sigma {K^{ - 1/5}} $其中$ \sigma $$ \min \{ s,{Q / {1.34}}\} $估计, s表示样本标准差, Q为四分位数间距.

    3)求解模型误差PDF: 根据步骤1)和2)选择合适窗函数和窗宽参数, 然后代入式(11), 可以得到WNN建模误差PDF函数的估计值为:

    $$ \begin{split} {\Gamma _e} =& \left( {x(k),y(k),{\theta _{WNN}},\varphi (e),{h_p}} \right)=\\ & \frac{1}{K}\sum\limits_{k = 1}^K {\frac{1}{{{h_p}}}\varphi \left( - \frac{{e - \Theta \left( {x(k),y(k),{\theta _{WNN}}} \right)}}{{{h_p}}}\right)} \end{split} $$ (13)

    式(1) ~ (5)所示基本WNN数据模型的参数主要包括: 输入层连接权值$ {\omega _{I,ji}} $、隐含层连接权值$ {\omega _{H,lj}} $、隐含层阈值$ {\theta _{H,j}} $、输出层阈值$ {\theta _{O,l}} $、小波基函数的伸缩因子$ {a_j} $以及平移因子$ {b_j} $. 这些参数的取值直接决定了WNN数据模型的性能, 因而基于前述构建的多目标建模性能指标, 采用NSGA-II算法对模型参数进行优化, 步骤如下:

    1)网络参数的编码. 将WNN模型参数集$ {\theta _{WNN}} = $$[{\omega _{I,ji}},{\omega _{H,lj}},{a_j},{b_j},{\theta _{H,j}},{\theta _{O,l}}] $与每条染色体相对应, 即对WNN模型参数进行如下形式的编码:

    $$ \begin{split} R =\;& [{\omega _{I,11}}, \cdots ,{\omega _{I,1n}}, \cdots ,{\omega _{I,Mn}},\\ &{\omega _{H,11}}, \cdots ,{\omega _{H,1m}}, \cdots ,{\omega _{H,nN}},\\ &{a_1}, \cdots ,{a_n},{b_1}, \cdots ,{b_n},{\theta _{H,1}}, \cdots ,\\ &{\theta _{H,n}},{\theta _{O,1}}, \cdots ,{\theta _{O,n}}] \end{split} $$

    式中, 染色体基因数为S = (M + 3)n + (n + 1)N, $P = {[{S_1},{S_2}, \cdots ,{S_i}, \cdots ,{S_Q}]^{\rm T}}$表示包含Q条染色体的初始种群.

    2)个体适应度计算. 每条染色体中的各个基因分别代表WNN的各个参数, 将第t代种群中第h条染色体上的各个基因代入下式的第t代、第h个个体多适应度函数中:

    $$ F_{C1}^{t,h} = \int_{ - \infty }^{ + \infty } {{{(\Gamma (e) - {\Gamma _{\rm target}}(e))}^2}{\rm d}e} $$ (14)
    $$ F_{C2}^{t,h} = \frac{1}{\rho _{{{AB}}}} $$ (15)

    3)选择算子. 根据非支配排序结果, 选择非支配排序中支配层较低的个体. 如果有多个个体在同一支配层, 从种群多样性角度考虑, 选择拥挤度距离较大的个体.

    4) 模拟二进制交叉. 基于实数编码, 交叉后代为父代的线性组合, 即

    $$ \begin{split}& G_{1,i}^{t + 1} = 0.5\left[ {(1 - {\beta _k}(\varepsilon ))G_{1,i}^t + (1 + {\beta _k}(\varepsilon ))G_{2,i}^t} \right]\\ &G_{2,i}^{t + 1} = 0.5\left[ {(1 + {\beta _k}(\varepsilon ))G_{1,i}^t + (1 - {\beta _k}(\varepsilon ))G_{2,i}^t} \right] \end{split} $$

    式中, $ \varepsilon $为在(0,1)内服从均匀分布的随机数. 当$ \varepsilon > $$ 0.5 $$ {\beta _k}(\varepsilon ) = {({[2(1 - \varepsilon )]^{{{({\eta _c} + 1)}^{ - 1}}}})^{ - 1}} ,$$ \varepsilon \le 0.5$ 时, $ {\beta _k}(\varepsilon ) = {(2\varepsilon )^{{{({\eta _c} + 1)}^{ - 1}}}} , {\eta _c} $为交叉分布指数, $ i = 1,2 $为目标函数的个数.

    5) 多项式变异. 二进制交叉后, 进行多项式变异, 变异后的个体为:

    $$ G_i^{t + 1} = G_i^{t + 1} + ({B^U} - {B^L}){\delta _k} $$

    式中,$ {B^U},{B^L} $分别为优化变量的上、下限, $ {\delta _k} $为变异参数. 当$ {r_k} > 0.5 $时, $ {\delta _k} = {(2{r_k})^{{{({\eta _m} + 1)}^{ - 1}}}} ,$而当$ {r_k} \le $$ 0.5 $时, $ {\delta _k} = {(1 - [2(1 - {r_k})])^{{{({\eta _m} + 1)}^{ - 1}}}} , {r_k} $为在(0,1)服从均匀分布的随机数, $ {\eta _m} $为变异分布指数.

    采用NSGA-II算法优化WNN模型参数时, 每个待优化的参数对应染色体上的一个基因. 在遗传算法中, 适应度函数的选择决定着遗传优化的精度和收敛速度. 描述个体性能的指标主要通过适应度函数值体现, 依据适应度值的大小对个体进行优胜劣汰. 本文多目标适应度函数为实际建模误差PDF与期望建模误差PDF之间的二维偏差平方和以及趋势拟合优度的倒数, 并通过基因之间的选择、二进制交叉、变异产生最优个体即最优模型参数.

    为了验证所提方法的有效性和优越性, 首先使用下述两输入一输出非线性动态系统进行数值验证:

    $$ y(k + 1) = {u^3}(k) + \frac{{y(k)}}{{1 + {y^2}(k)}} + \omega (k) $$ (16)

    式中, $ y(0) = 0.1, u(k) $为在区间(0, 1)内服从均匀分布的随机序列, $ \omega (k) $为通过参数$ \sigma $描述的、服从瑞利分布的非高斯随机干扰序列. 针对以上非线性系统, 利用提出的建模方法进行建模, 所要建立的WNN数据模型可以表示为:

    $$ \tilde y(k + 1) = {f_{WNN}}(y(k),u(k),\;\omega (k),{\theta _{WNN}}) $$

    假设$ \omega $为随机产生、服从瑞利分布且参数为0.2的非高斯干扰. WNN隐层节点数选择为6, 迭代优化步长r为0.003. 采用NSGA-II算法对WNN模型参数进行寻优时, 交叉分布指数${\eta _c} = 20 ,$变异分布指数$ {\eta _m}{\rm{ = }}20, $优化变量的上限与下限分别设定为1和−1, 交叉率和突变率分别设为0.9和0.1.

    建模后, 得到60组Pareto前沿解进化过程如图3所示, 而图4为60组多目标优化解对应的拟合优度变化曲线, 这里将所提方法与常规WNN方法以及近年文献[6]中提出的面向建模误差PDF优化的WNN方法进行比较. 由于文献[6]是采用梯度下降方法来优化WNN模型的建模误差PDF, 因而本文将其称为GD-WNN. 从图4可以看出, 采用所提建模方法可以获得具有较大动态变化趋势拟合优度的一组解集, 这些解对应的拟合优度均远好于常规WNN方法以及GD-WNN方法. 所提方法得到的解对应的拟合优度指标最高达到0.96, 而文献[6]中方法的拟合优度指标仅为0.83, 以及常规WNN方法的拟合优度指标甚至仅为0.75. 并且图4还可以看出所提方法有39组解的拟合优化度指标好于文献[6]中方法得到的拟合优度值. 图5图3中1到60号解对应的建模误差PDF曲线变化图, 可以看出60号解对应模型的建模误差PDF最好. 图6为多目标优化后30号解与60号解的建模误差PDF曲线与其他两种现有方法的建模误差PDF曲线的对比图, 本文设置的期望PDF为均值为0方差为0.25的高斯型概率密度函数.

    图 3  Pareto前沿解进化过程
    Fig. 3  Evolution process of Pareto front
    图 4  不同优化解对应的拟合优度值变化曲线
    Fig. 4  Change curve of goodness of fit corresponding to different optimization solutions
    图 5  不同优化解对应的建模误差PDF变化曲面
    Fig. 5  PDF changing surface corresponding to different optimization solutions
    图 6  不同方法建模误差PDF比较
    Fig. 6  Comparison of modeling error PDF with different methods

    可以看出, 本文方法获得的非最优30号解对应的建模误差PDF曲线也要远好于常规WNN方法和GD-WNN方法. 所提方法得到的建模误差PDF较高且较窄, 与其他方法相比方差更小, 即模型的随机性和不确定性更小, 这也表明所提方法的有效性和优越性. 图7图8分别是本文方法中非最优的30号解对应的建模效果和新样本测试效果, 可以看出所提方法得到非最优解对应的模型不论是建模和新样本测试均好于其他两种方法.

    图 7  所提方法30号优化解对应的建模效果
    Fig. 7  Modeling result corresponding to the 30th optimization solution of the proposed method
    图 8  所提方法30号优化解对应的测试效果
    Fig. 8  Testing result corresponding to the 30th optimization solution of the proposed method

    目前, 城市污水处理广泛采用活性污泥法[3, 19-22]. 图9为典型活性污泥污水处理的工艺流程图, 主要包括三个级别的处理过程. 一级处理主要进行物理反应, 除去原生污水中的悬浮固体. 二级处理过程包括曝气池及二沉池处理两个部分. 曝气池是污水处理的核心部分, 主要进行微生物自身的代谢活动, 从而达到对污水中有机污染物如氮、磷的去除以及有氧生物的降解.

    图 9  典型活性污泥法污水处理过程工艺流程图
    Fig. 9  Flow chart of a typical activated sludge wastewater treatment process

    经过曝气池处理后的污水流入二沉池进行固液分离, 上层是澄清的液体, 下层的污泥一部分回流至曝气池, 以维持曝气池内的污泥浓度, 另一部分污泥排出系统. 经过二级处理后的污水进入三级处理过程, 通过加入药剂进而得到达标的出水. 判断水质是否达标主要通过水质参数进行衡量. 在众多水质参数指标中, 出水COD含量不仅代表污水中含有的有机物的量, 同时还包括污水中还原性无机物被氧化时所消耗的氧气量. COD数值越小, 在氧化过程中氧气的消耗量就越少, 即水体中有机物的量越少. 因此, 该指标能够反映有机污染物受纳的程度, 是非常重要的出水水质指标. 虽然目前有许多COD含量的在线检测仪, 但是都存在检测周期长、价格昂贵的问题. 所以, 通过基于数据的智能建模技术来预测曝气池出水COD含量对于判断出水水质是否达标具有重要意义.

    影响污水出水COD含量的参数较多, 包括: 入水流量(Q)、入水化学需氧量(COD)、溶解氧浓度(DO)、污泥浓度(MLSS)、悬浮固体浓度(SS)、出水PH值等. 为此, 根据过程机理分析, 确定出水COD预测建模的输入变量为: 入水COD、入水流量(Q)和污泥浓度(MLSS). 为消除变量间的量纲影响, 建模所用训练与测试数据都归一化处理. 设定WNN隐层节点数为6, 迭代优化步长为0.003, 得到的100组多目标优化Pareto前沿解如图10所示. 图11图12分别为100组多目标优化解对应的拟合优度变化曲线和建模误差PDF变化曲线. 同样, 这里也将所提方法与常规WNN方法以及文献[6]中的GD-WNN方法进行比较. 可以看出, 采用所提建模方法可以获得具有较大动态趋势拟合优度的70余组解, 这些解对应的拟合优度均远好于常规WNN方法以及文献[6]中的GD-WNN方法, 并且所提方法所得解的最优拟合优度已非常接近1. 从图12所有多目标优化解的建模误差PDF变化曲线可以看出, 从第1号解到第100号解, 建模误差PDF的形状越来越窄而尖, 并且越来越接近设定的理想PDF形状, 即模型的随机性和不确定性很小.

    图 10  COD含量建模Pareto前沿进化过程
    Fig. 10  Pareto front evolution process of COD content modeling
    图 11  不同优化解对应的拟合优度值变化曲线
    Fig. 11  Change curve of goodness of fit corresponding to different optimization solutions
    图 12  不同优化解对应的COD含量建模误差PDF变化曲面
    Fig. 12  PDF changing surface of COD content modeling error corresponding to different optimization solutions

    图13为50号解与100号解的建模误差PDF曲线与其它方法的建模误差PDF曲线对比图, 这里设置的期望PDF为均值为0方差为0.3的高斯型概率密度函数. 图中可以看出, 本文方法获得的非最优50号解对应的建模误差PDF形状为窄而高的形状, 仍然远好于常规WNN方法和GD-WNN方法. 图14图15分别是本文方法所得非最优50号解的建模效果以及对新样本的测试效果, 虽然是选取的本文方法的非最优解, 但是从图中可以看出非最优解的建模和新样本测试效果均好于其他两种对比方法.

    图 13  不同方法COD含量建模误差PDF比较
    Fig. 13  PDF comparison of COD content modeling error with different methods
    图 14  所提方法50号优化解对应的COD含量建模效果
    Fig. 14  Modeling result of COD content corresponding to the 50th optimization solution of the proposed method
    图 15  所提方法50号优化解对应的COD含量测试效果
    Fig. 15  Testing result of COD content corresponding to the 50th optimization solution of the proposed method

    基于误差最小的数据驱动工业系统建模时, 通常基于单一的RMSE等一维性能指标. 但是RMSE等时间维度的一维性能指标并不能充分体现动态系统建模的随机性和不确定性. 同时, 对于传统动态系统建模方法, 并没有考虑模型输出和动态系统实际输出之间的拟合趋势. 为此, 本文基于数据驱动小波神经网络智能建模、多目标参数优化以及核密度估计技术, 提出综合考虑建模误差PDF形状与趋势拟合优度的动态系统优化建模方法. 其中多目标参数优化的性能指标分别为实际建模误差PDF与期望建模误差PDF之间二维偏差平方、趋势拟合优度. 仿真实验以及污水处理过程数据验证表明: 相比于对比的两种现有建模方法, 所提方法不仅具有更好的建模精度和泛化能力, 还可控制建模误差的空间分布状态, 使得所提方法的建模误差PDF比传统建模方法的建模误差PDF更高、更窄, 即模型中含有的随机性和不确定性更小. 此外, 所提方法还可以获得一大类具有建模误差PDF形状接近期望分布形状, 且模型输出与实际输出的趋势拟合优度值较大的数据模型参数解, 因而具有更好的实用性.

  • 图  1  现有成果逐年发表情况

    Fig.  1  Publication status of existing achievements by year

    图  2  关键词同现网络图

    Fig.  2  Keyword co-occurrence network diagram

    图  3  复杂动态环境下围捕场景

    Fig.  3  Hunting scenario in complex dynamic environments

    图  4  覆盖式搜索原理图

    Fig.  4  The schematic of coverage search method

    图  5  搜索机器人传感器的探测区域

    Fig.  5  Detection zones of search robot sensors

    图  6  覆盖式搜索方法运动模式

    Fig.  6  Motion patterns of coverage search methods

    图  7  搜索机器人等效搜索路径图

    Fig.  7  Equivalent search path diagram of search robots

    图  8  扫描式搜索盲区示意图

    Fig.  8  The schematic of scanning search blind zones

    图  9  精准式搜索原理图

    Fig.  9  The principle diagram of precision search

    图  10  滚动优化

    Fig.  10  Rolling optimization

    图  11  围捕任务分配问题

    Fig.  11  Hunting task allocation problem

    图  12  围捕点位置分布

    Fig.  12  Distribution of hunting points

    图  13  集中式求解方法

    Fig.  13  Centralized solution method

    图  14  遗传算法围捕分配模型

    Fig.  14  Genetic algorithm hunting allocation model

    图  15  粒子群优化围捕分配模型

    Fig.  15  Particle swarm optimization hunting allocation model

    图  16  合同网络示意图

    Fig.  16  The schematic of contract network

    图  17  拍卖算法示意图

    Fig.  17  The schematic of auction algorithm

    图  18  德劳内三角形构造方式

    Fig.  18  Delaunay triangulation construction method

    图  19  超平面构造方式

    Fig.  19  Hyperplane construction method

    图  20  博弈围捕方法分类

    Fig.  20  Classification of game-based hunting methods

    图  21  优势区域

    Fig.  21  Advantageous zones

    图  22  几何优势区域

    Fig.  22  Geometric advantageous zones

    图  23  智能体优势区域

    Fig.  23  Agent advantageous zone

    图  24  强化学习围捕流程

    Fig.  24  Reinforcement learning hunting process

    图  25  强化学习方法

    Fig.  25  Reinforcement learning methods

    图  26  通讯拓扑

    Fig.  26  Communication topology

    表  1  多机协同搜索方法总结

    Table  1  Summary of multi-robot cooperative search methods

    搜索环境 搜索方法 优点 缺点 覆盖范围
    静态目标搜索图搜索法[56]搜索半径自适应调整、较低轨迹误差不适应复杂环境、需要准确的本地化信息不完全覆盖
    概率图[7]避免寻优过程的局部最优解不确定信息带来的复杂性不完全覆盖
    快速探索随机数[8]最短路径无法确定最后搜索时间完全覆盖
    启发式算法[9]无需先验知识、无需对搜索环境进行划分没有考虑能耗完全覆盖
    动态目标搜索覆盖直线搜索[1011]简单、高效、容易实现无法对资源进行灵活分配完全覆盖
    预测概率图[1214]高成功率、低搜索时间计算复杂不完全覆盖
    下载: 导出CSV

    表  2  围捕机器人常见运动学与动力学约束

    Table  2  Common kinematic and dynamic constraints of hunting robots

    运动学与动力学约束 约束描述
    最小、最大运动速度约束 围捕机器人速度须介于最小速度和最大速度之间
    最小、最大运动加速度约束 围捕机器人加速度须介于最小加速度和最大加速度之间
    最小步长约束 围捕机器人轨迹从当前状态到改变行进方向的下一状态之间的直线运动距离须大于最小步长
    最小转弯半径约束 围捕机器人轨迹的转弯半径须大于最小转弯半径
    最大航偏角约束 围捕机器人运动过程中的航偏角须小于最大航偏角
    下载: 导出CSV

    表  3  多机器人协同围捕任务分配方法总结

    Table  3  Summary of multi-robot cooperative hunting task allocation methods

    任务分配算法 架构特点 优点 缺点
    贪婪算法[91] 集中式 实时性高, 简单易实现 局部最优解, “死锁”分配
    匈牙利算法[7475] 集中式 效率高, 局部最优解, 简单易实现 不适合大规模任务分配场景, 只适合一对一分配
    遗传算法[81] 集中式 全局搜索能力, 适应性和鲁棒性, 并行性 计算成本高, 难以收敛, 参数设置敏感, 编码方式选择困难
    粒子群算法[88, 90] 集中式 快速收敛, 简单易实现, 适应性强 过早收敛, 参数敏感
    契约合同网络方法[9596] 分布式 分布式协作, 动态灵活性, 适应性 高复杂性和通讯开销大, 信任建立和信息共享困难
    拍卖算法[106107] 分布式 分布式协作, 灵活性, 任务动态调整 竞争激烈可能导致效率下降, 存在信息不对称, 对于大规模问题不再适用
    下载: 导出CSV

    表  4  生物启发式神经网络方法分析

    Table  4  Biologically inspired neural network method analysis

    领域内容优点缺点
    路径规划[125126, 128]解决机器人路径规划、防碰撞问题实时性好仅适用于二维平面
    多机围捕[137]首次将围捕问题与生物神经网络模型对应兼顾围捕任务目标搜索、任务分配过程模型设计复杂
    路径规划[129]引入假想非障碍物相邻点, 考虑转角因素解决路径错判问题计算效率低
    路径规划[130]模型考虑相邻神经元权值影响使模型更具网络特性增加碰撞检测计算节点
    路径规划[131132]决策项考虑洋流影响使方法更贴合实际环境缺乏高效任务分配方法
    多机围捕[133134]决策项考虑洋流影响使方法更贴合实际环境规划路径可能并非最优解
    多机围捕[135]设计基于协商思想的任务分配方法增加围捕任务效率仅适用于低维环境
    多机围捕[136]将方法拓展至三维环境增强方法的可拓展性奖励函数设计复杂、计算效率低
    下载: 导出CSV
  • [1] Motes J, Chen T, Bretl T, Aguirre M M, Amato N M. Hypergraph-based multi-robot task and motion planning. IEEE Transactions on Robotics, 2023, 39(5): 4166−4186 doi: 10.1109/TRO.2023.3297011
    [2] Liu W H, Hu J W, Zhang H, Wang M Y, Xiong Z H. A novel graph-based motion planner of multi-mobile robot systems with formation and obstacle constraints. IEEE Transactions on Robotics, 2024, 40: 714−728 doi: 10.1109/TRO.2023.3339989
    [3] Robin C, Lacroix S. Multi-robot target detection and tracking: Taxonomy and survey. Autonomous Robots, 2016, 40(4): 729−760 doi: 10.1007/s10514-015-9491-7
    [4] 寇立伟, 项基. 基于输出反馈线性化的多移动机器人目标包围控制. 自动化学报, 2022, 48(5): 1285−1291

    Kou Li-Wei, Xiang Ji. Target fencing control of multiple mobile robots using output feedback linearization. Acta Automatica Sinica, 2022, 48(5): 1285−1291
    [5] Duberg D, Jensfelt P. UFOExplorer: Fast and scalable sampling-based exploration with a graph-based planning structure. IEEE Robotics and Automation Letters, 2022, 7(2): 2487−2494 doi: 10.1109/LRA.2022.3142923
    [6] Li Q B, Lin W Z, Liu Z, Prorok A. Message-aware graph attention networks for large-scale multi-robot path planning. IEEE Robotics and Automation Letters, 2021, 6(3): 5533−5540 doi: 10.1109/LRA.2021.3077863
    [7] Hu J W, Xie L H, Lum K Y, Xu J. Multiagent information fusion and cooperative control in target search. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1223−1235 doi: 10.1109/TCST.2012.2198650
    [8] Lin Y C, Saripalli S. Sampling-based path planning for UAV collision avoidance. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11): 3179−3192 doi: 10.1109/TITS.2017.2673778
    [9] Phung M D, Ha Q P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Applied Soft Computing, 2021, 107: Article No. 107376 doi: 10.1016/j.asoc.2021.107376
    [10] 彭辉, 沈林成, 霍霄华. 多UAV协同区域覆盖搜索研究. 系统仿真学报, 2007, 19(11): 2472−2476 doi: 10.3969/j.issn.1004-731X.2007.11.022

    Peng Hui, Shen Lin-Cheng, Huo Xiao-Hua. Research on multiple UAV cooperative area coverage searching. Journal of System Simulation, 2007, 19(11): 2472−2476 doi: 10.3969/j.issn.1004-731X.2007.11.022
    [11] 王洪民, 田家强, 韦凌云, 庄育锋. 多运动目标的多无人机协同搜索追踪策略. 控制理论与应用, 2021, 38(7): 971−978 doi: 10.7641/CTA.2021.00565

    Wang Hong-Min, Tian Jia-Qiang, Wei Ling-Yun, Zhuang Yu-Feng. Multi-unmanned aerial vehicles cooperative searching and tracking strategy for multiple moving targets. Control Theory & Applications, 2021, 38(7): 971−978 doi: 10.7641/CTA.2021.00565
    [12] Sun L, Baek S, Pack D. Distributed probabilistic search and tracking of agile mobile ground targets using a network of unmanned aerial vehicles. Human Behavior Understanding in Networked Sensing: Theory and Applications of Networks of Sensors. Cham: Springer, 2014. 301–319
    [13] 轩永波, 黄长强, 吴文超, 王勇, 翁兴伟, 李望西. 多无人机协同搜索随机目标决策. 控制与决策, 2013, 28(5): 711−715

    Xuan Yong-Bo, Huang Chang-Qiang, Wu Wen-Chao, Wang Yong, Weng Xing-Wei, Li Wang-Xi. Cooperative search stategies of multi-UAVs for random targets. Control and Decision, 2013, 28(5): 711−715
    [14] El-Hady Kassem M A, El-Hadidy M A A. Optimal multiplicative Bayesian search for a lost target. Applied Mathematics and Computation, 2014, 247: 795−802 doi: 10.1016/j.amc.2014.09.039
    [15] Xu X L, Yang L X, Meng W, Cai Q Q, Fu M Y. Multi-agent coverage search in unknown environments with obstacles: A survey. In: Proceedings of the Chinese Control Conference (CCC). Guangzhou, China: IEEE, 2019. 2317–2322
    [16] 张世勇, 张雪波, 苑晶, 方勇纯. 旋翼无人机环境覆盖与探索规划方法综述. 控制与决策, 2022, 37(3): 513−529

    Zhang Shi-Yong, Zhang Xue-Bo, Yuan Jing, Fang Yong-Chun. A survey on coverage and exploration path planning with multi-rotor micro aerial vehicles. Control and Decision, 2022, 37(3): 513−529
    [17] Barrientos A, Colorado J, del Cerro J, Martinez A, Rossi C, Sanz D, et al. Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. Journal of Field Robotics, 2011, 28(5): 667−689 doi: 10.1002/rob.20403
    [18] Bast H, Hert S. The area partitioning problem. In: Proceedings of the 12th Annual Canadian Conference on Computational Geometry (CCCG-00). Fredericton, Canada: University of New Brunswick, 2000. 163–171
    [19] Chen J C, Du C L, Zhang Y, Han P C, Wei W. A clustering-based coverage path planning method for autonomous heterogeneous UAVs. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25546−25556 doi: 10.1109/TITS.2021.3066240
    [20] Mei Y G, Lu Y H, Hu Y C, Lee C S G. Deployment of mobile robots with energy and timing constraints. IEEE Transactions on Robotics, 2006, 22(3): 507−522 doi: 10.1109/TRO.2006.875494
    [21] Bouzid Y, Bestaoui Y, Siguerdidjane H. Quadrotor-UAV optimal coverage path planning in cluttered environment with a limited onboard energy. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada: IEEE, 2017. 979–984
    [22] 轩永波, 黄长强, 吴文超, 于文波, 王勇, 翁兴伟. 运动目标的多无人机编队覆盖搜索决策. 系统工程与电子技术, 2013, 35(3): 539−544 doi: 10.3969/j.issn.1001-506X.2013.03.15

    Xuan Yong-Bo, Huang Chang-Qiang, Wu Wen-Chao, Yu Wen-Bo, Wang Yong, Weng Xing-Wei. Coverage search strategies for moving targets using multiple unmanned aerial vehicle teams. Systems Engineering and Electronics, 2013, 35(3): 539−544 doi: 10.3969/j.issn.1001-506X.2013.03.15
    [23] 王勋, 姚佩阳, 梅权. 多无人机协同运动目标搜索问题研究. 电光与控制, 2016, 23(8): 18−22 doi: 10.3969/j.issn.1671-637X.2016.08.005

    Wang Xun, Yao Pei-Yang, Mei Quan. On multi-UAV cooperation for moving target searching. Electronics Optics & Control, 2016, 23(8): 18−22 doi: 10.3969/j.issn.1671-637X.2016.08.005
    [24] 曾国奇, 白宇, 林伟, 丁文锐. 地面运动目标的多UAV协同搜索方法. 系统工程与电子技术, 2018, 40(7): 1498−1505 doi: 10.3969/j.issn.1001-506X.2018.07.13

    Zeng Guo-Qi, Bai Yu, Lin Wei, Ding Wen-Rui. Multi-UAV cooperative search method for ground moving targets. Systems Engineering and Electronics, 2018, 40(7): 1498−1505 doi: 10.3969/j.issn.1001-506X.2018.07.13
    [25] Nam L H, Huang L L, Li X J, Xu J F. An approach for coverage path planning for UAVs. In: Proceedings of the IEEE 14th International Workshop on Advanced Motion Control (AMC). Auckland, New Zealand: IEEE, 2016. 411–416
    [26] Xing C, Wang J L, Xu Y M. Overlap analysis of the images from unmanned aerial vehicles. In: Proceedings of the International Conference on Electrical and Control Engineering. Wuhan, China: IEEE, 2010. 1459–1462
    [27] Valente J, Sanz D, del Cerro J, Barrientos A, de Frutos M Á. Near-optimal coverage trajectories for image mosaicing using a mini quad-rotor over irregular-shaped fields. Precision Agriculture, 2013, 14(1): 115−132 doi: 10.1007/s11119-012-9287-0
    [28] di Franco C, Buttazzo G. Coverage path planning for UAVs photogrammetry with energy and resolution constraints. Journal of Intelligent & Robotic Systems, 2016, 83(3): 445−462
    [29] Cabreira T M, di Franco C, Ferreira P R, Buttazzo G C. Energy-aware spiral coverage path planning for UAV photogrammetric applications. IEEE Robotics and Automation Letters, 2018, 3(4): 3662−3668 doi: 10.1109/LRA.2018.2854967
    [30] 赵发, 綦秀利, 余晓晗, 张所娟, 李本凌. 基于多无人机自主协作任务规划的区域搜索与目标围捕问题研究. 电子技术与软件工程, 2022(11): 141−146

    Zhao Fa, Qi Xiu-Li, Yu Xiao-Han, Zhang Suo-Juan, Li Ben-Ling. Research on area search and target rounding problem based on multi-UAV autonomous collaborative mission planning. Electronic Technology & Software Engineering, 2022(11): 141−146
    [31] 刘云辉, 石永康. 未知环境下多无人机协同搜索与围捕策略研究. 现代电子技术, 2023, 46(6): 98−104

    Liu Yun-Hui, Shi Yong-Kang. Research on cooperative search and round up strategy of multiple-UAV in unknown environment. Modern Electronics Technique, 2023, 46(6): 98−104
    [32] Sauter J, Matthews R, Parunak H, Brueckner S. Demonstration of digital pheromone swarming control of multiple unmanned air vehicles. In: Proceedings of the Infotech@Aerospace. Arlington, Virginia: AIAA, 2005. Article No. 7046
    [33] Aznar F, Pujol M, Rizo R, Rizo C. Modelling multi-rotor UAVs swarm deployment using virtual pheromones. PLoS One, 2018, 13(1): Article No. e0190692 doi: 10.1371/journal.pone.0190692
    [34] 甄子洋. 无人机集群作战协同控制与决策. 北京: 国防工业出版社, 2022.

    Zhen Zi-Yang. Cooperative Control and Decision of UAV Swarm Operations. Beijing: National Defense Industry Press, 2022.
    [35] 高炳霞, 张波涛, 王坚, 吴秋轩. 一种基于概率地图的移动机器人最优期望时间目标搜索. 控制与决策, 2022, 37(4): 944−952

    Gao Bing-Xia, Zhang Bo-Tao, Wang Jian, Wu Qiu-Xuan. An expected-time optimal target search method based on probabilistic maps. Control and Decision, 2022, 37(4): 944−952
    [36] Hu J W, Xie L H, Xu J, Xu Z. Multi-agent cooperative target search. Sensors, 2014, 14(6): 9408−9428 doi: 10.3390/s140609408
    [37] Sharma R, Yoder J, Kwon H, Pack D. Vision based mobile target geo-localization and target discrimination using Bayes detection theory. Distributed Autonomous Robotic Systems: The 11th International Symposium. Berlin, Heidelberg: Springer, 2014. 59–71
    [38] 黄书召, 田军委, 乔路, 王沁, 苏宇. 基于改进遗传算法的无人机路径规. 计算机应用, 2021, 41(2): 390−397

    Huang Shu-Zhao, Tian Jun-Wei, Qiao Lu, Wang Qin, Su Yu. Unmanned aerial vehicle path planning based on improved genetic algorithm. Journal of Computer Applications, 2021, 41(2): 390−397
    [39] 朱梦圆, 吕娜, 陈柯帆, 钟赟, 刘创, 高维廷. 航空集群协同搜索马尔科夫运动目标方法. 系统工程与电子技术, 2019, 41(9): 2041−2047 doi: 10.3969/j.issn.1001-506X.2019.09.17

    Zhu Meng-Yuan, Lv Na, Chen Ke-Fan, Zhong Yun, Liu Chuang, Gao Wei-Ting. Collaborative aeronautic swarm search of Markov moving targets. Systems Engineering and Electronics, 2019, 41(9): 2041−2047 doi: 10.3969/j.issn.1001-506X.2019.09.17
    [40] Xin Y, Liang H W, Mei T, Huang R L, Du M B, Sun C, et al. A new occupancy grid of the dynamic environment for autonomous vehicles. In: Proceedings of the IEEE Intelligent Vehicles Symposium Proceedings. Dearborn, USA: IEEE, 2014. 787–792
    [41] Sharifi F, Mirzaei M, Zhang Y M, Gordon B W. Cooperative multi-vehicle search and coverage problem in an uncertain environment. Unmanned Systems, 2015, 3(1): 35−47 doi: 10.1142/S230138501550003X
    [42] 沈东, 魏瑞轩, 祁晓明, 关旭宁. 基于MTPM和DPM的多无人机协同广域目标搜索滚动时域决策. 自动化学报, 2014, 40(7): 1391−1403

    Shen Dong, Wei Rui-Xuan, Qi Xiao-Ming, Guan Xu-Ning. Receding horizon decision method based on MTPM and DPM for multi-UAVs cooperative large area target search. Acta Automatica Sinica, 2014, 40(7): 1391−1403
    [43] Steyer S, Tanzmeister G, Wollherr D. Grid-based environment estimation using evidential mapping and particle tracking. IEEE Transactions on Intelligent Vehicles, 2018, 3(3): 384−396 doi: 10.1109/TIV.2018.2843130
    [44] Lum C, Rysdyk R, Pongpunwattana A. Occupancy based map searching using heterogeneous teams of autonomous vehicles. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, Colorado: AIAA, 2006. Article No. 6196
    [45] Erignac C. An exhaustive swarming search strategy based on distributed pheromone maps. In: Proceedings of the AIAA Infotech@Aerospace 2007 Conference and Exhibit. Rohnert Park, California: AIAA, 2007. Article No. 2822
    [46] 范衠, 孙福赞, 马培立, 李文姬, 石泽, 王诏君, 等. 基于共识主动性的群体机器人目标搜索与围捕. 北京理工大学学报, 2022, 42(2): 158−167

    Fan Zhun, Sun Fu-Zan, Ma Pei-Li, Li Wen-Ji, Shi Ze, Wang Zhao-Jun, et al. Stigmergy-based swarm robots for target search and trapping. Transactions of Beijing Institute of Technology, 2022, 42(2): 158−167
    [47] 彭辉, 沈林成, 朱华勇. 基于分布式模型预测控制的多UAV协同区域搜索. 航空学报, 2010, 31(3): 593−601

    Peng Hui, Shen Lin-Cheng, Zhu Hua-Yong. Multiple UAV cooperative area search based on distributed model predictive control. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 593−601
    [48] 彭辉. 分布式多无人机协同区域搜索中的关键问题研究 [博士学位论文], 国防科学技术大学, 中国, 2009.

    Peng Hui. A Study of Key Issues in Distributed Multi-UAV Collaborative Area Searches [Ph.D. dissertation], National University of Defense Technology, China, 2009.
    [49] Delight M, Ramakrishnan S, Zambrano T, MacCready T. Developing robotic swarms for ocean surface mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE, 2016. 5309–5315
    [50] Khan A, Yanmaz E, Rinner B. Information exchange and decision making in micro aerial vehicle networks for cooperative search. IEEE Transactions on Control of Network Systems, 2015, 2(4): 335−347 doi: 10.1109/TCNS.2015.2426771
    [51] Shen Y K, Wei C, Sun Y B, Duan H B. Bird flocking inspired methods for multi-UAV cooperative target search. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(2): 702−706
    [52] 郑伟铭, 周贞文, 徐扬, 罗德林. 针对运动目标的多无人机协同鸽群优化搜索方法. 控制理论与应用, 2023, 40(4): 624−632 doi: 10.7641/CTA.2022.10466

    Zheng Wei-Ming, Zhou Zhen-Wen, Xu Yang, Luo De-Lin. Multi-UAV cooperative pigeon-inspired optimization search method for moving targets. Control Theory & Applications, 2023, 40(4): 624−632 doi: 10.7641/CTA.2022.10466
    [53] 周鹤翔, 徐扬, 罗德林. 针对动态目标的多无人机协同组合差分进化搜索方法. 控制与决策, 2023, 38(11): 3128−3136

    Zhou He-Xiang, Xu Yang, Luo De-Lin. A composite differential evolution algorithm for multi-UAV cooperative dynamic target search. Control and Decision, 2023, 38(11): 3128−3136
    [54] 岳伟, 辛弘, 林彬, 刘中常, 李莉莉. MAUV协同搜索多智能目标的路径规划. 控制理论与应用, 2022, 39(11): 2065−2073 doi: 10.7641/CTA.2022.11140

    Yue Wei, Xin Hong, Lin Bin, Liu Zhong-Chang, Li Li-Li. Path planning of MAUV cooperative search for multi-intelligent targets. Control Theory & Applications, 2022, 39(11): 2065−2073 doi: 10.7641/CTA.2022.11140
    [55] Zhen Z Y, Chen Y, Wen L D, Han B. An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic environment. Aerospace Science and Technology, 2020, 100: Article No. 105826 doi: 10.1016/j.ast.2020.105826
    [56] 过劲劲, 齐俊桐, 王明明, 吴冲, 徐士博. 未知区域中四旋翼无人机集群协同搜索与围捕算法. 北京航空航天大学学报, 2023, 49(8): 2001−2010

    Guo Jin-Jin, Qi Jun-Tong, Wang Ming-Ming, Wu Chong, Xu Shi-Bo. A cooperative search and encirclement algorithm for quadrotors in unknown areas. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(8): 2001−2010
    [57] 黄依新, 相晓嘉, 周晗, 闫超, 常远, 孙懿豪. 基于概率图模型的多机器人自组织协同围捕方法. 控制理论与应用, 2023, 40(12): 2225−2235 doi: 10.7641/CTA.2023.30245

    Huang Yi-Xin, Xiang Xiao-Jia, Zhou Han, Yan Chao, Chang Yuan, Sun Yi-Hao. Multi-robot self-organizing cooperative pursuit method based on probabilistic graphical model. Control Theory & Applications, 2023, 40(12): 2225−2235 doi: 10.7641/CTA.2023.30245
    [58] Jiang P Y, Ergu D, Liu F Y, Cai Y, Ma B. A review of Yolo algorithm developments. Procedia Computer Science, 2022, 199: 1066−1073 doi: 10.1016/j.procs.2022.01.135
    [59] Wu Z, Tang W L, Chen S J, Jiang L, Fu C W. CIA-SSD: Confident IoU-aware single-stage object detector from point cloud. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. AAAI, 2021. 3555–3562
    [60] Zhang H K, Chang H, Ma B P, Wang N Y, Chen X L. Dynamic R-CNN: Towards high quality object detection via dynamic training. In: Proceedings of the 16th European Conference. Glasgow, UK: Springer, 2020. 260–275
    [61] Qiao L M, Zhao Y X, Li Z Y, Qiu X, Wu J N, Zhang C. DeFRCN: Decoupled faster R-CNN for few-shot object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 8681–8690
    [62] Shi J F, Zhang T Q, He G H, Hao F. A review of abnormal personnel behavior detection based on deep learning. In: Proceedings of the 29th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Queenstown, New Zealand: IEEE, 2023. 1–5
    [63] Sabokrou M, Fayyaz M, Fathy M, Moayed Z, Klette R. Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes. Computer Vision and Image Understanding, 2018, 172: 88−97 doi: 10.1016/j.cviu.2018.02.006
    [64] Pang G S, Yan C, Shen C H, van den Hengel A, Bai X. Self-trained deep ordinal regression for end-to-end video anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020. 12173–12182
    [65] Ramachandra B, Jones M J, Vatsavai R R. Learning a distance function with a Siamese network to localize anomalies in videos. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Snowmass, USA: IEEE, 2020. 2598–2607
    [66] Wu P, Liu J, Shen F. A deep one-class neural network for anomalous event detection in complex scenes. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(7): 2609−2622
    [67] Samuel R D J, Fenil E, Manogaran G, Vivekananda G N, Thanjaivadivel T, Jeeva S, et al. Real time violence detection framework for football stadium comprising of big data analysis and deep learning through bidirectional LSTM. Computer Networks, 2019, 151: 191−200 doi: 10.1016/j.comnet.2019.01.028
    [68] Ravanbakhsh M, Nabi M, Sangineto E, Marcenaro L, Regazzoni C, Sebe N. Abnormal event detection in videos using generative adversarial nets. In: Proceedings of the IEEE International Conference on Image Processing (ICIP). Beijing, China: IEEE, 2017. 1577–1581
    [69] Ravanbakhsh M, Sangineto E, Nabi M, Sebe N. Training adversarial discriminators for cross-channel abnormal event detection in crowds. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE, 2019. 1896–1904
    [70] Yang Q, Fu S, Wang H G, Fang H. Machine-learning-enabled cooperative perception for connected autonomous vehicles: Challenges and opportunities. IEEE Network, 2021, 35(3): 96−101 doi: 10.1109/MNET.011.2000560
    [71] An Q E, Wang Y L, Shen Y. Sensor deployment for visual 3D perception: A perspective of information gains. IEEE Sensors Journal, 2021, 21(6): 8464−8478 doi: 10.1109/JSEN.2021.3050325
    [72] 李新德, 杨伟东, Dezert Jean. 一种飞机图像目标多特征信息融合识别方法. 自动化学报, 2012, 38(8): 1298−1307 doi: 10.3724/SP.J.1004.2012.01298

    Li Xin-De, Yang Wei-Dong, Dezert Jean. An airplane image target's multi-feature fusion recognition method. Acta Automatica Sinica, 2012, 38(8): 1298−1307 doi: 10.3724/SP.J.1004.2012.01298
    [73] 王峰, 黄子路, 韩孟臣, 邢立宁, 王凌. 基于KnCMPSO算法的异构无人机协同多任务分配. 自动化学报, 2023, 49(2): 399−414

    Wang Feng, Huang Zi-Lu, Han Meng-Chen, Xing Li-Ning, Wang Ling. A knee point based coevolution multi-objective particle swarm optimization algorithm for heterogeneous UAV cooperative multi-task allocation. Acta Automatica Sinica, 2023, 49(2): 399−414
    [74] Liao J, Liu C, Liu H H T. Model predictive control for cooperative hunting in obstacle rich and dynamic environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Xi'an, China: IEEE, 2021. 5089–5095
    [75] Zhu J L, Fang B F. Emotional robot pursuit task allocation algorithm based on emotional constraint. In: Proceedings of the 3rd International Conference on Robotics and Artificial Intelligence. Shanghai, China: ACM, 2017. 110–115
    [76] Xia G Q, Sun X X, Xia X M. Multiple task assignment and path planning of a multiple unmanned surface vehicles system based on improved self-organizing mapping and improved genetic algorithm. Journal of Marine Science and Engineering, 2021, 9(6): Article No. 556 doi: 10.3390/jmse9060556
    [77] 杜永浩, 邢立宁, 姚锋, 陈盈果. 航天器任务调度模型、算法与通用求解技术综述. 自动化学报, 2021, 47(12): 2715−2741

    Du Yong-Hao, Xing Li-Ning, Yao Feng, Chen Ying-Guo. Survey on models, algorithms and general techniques for spacecraft mission scheduling. Acta Automatica Sinica, 2021, 47(12): 2715−2741
    [78] Holland J H. Genetic algorithms. Scientific American, 1992, 267(1): 66−72 doi: 10.1038/scientificamerican0792-66
    [79] Liau Y Y, Ryu K. Genetic algorithm-based task allocation in multiple modes of human-robot collaboration systems with two cobots. The International Journal of Advanced Manufacturing Technology, 2022, 119(11−12): 7291−7309 doi: 10.1007/s00170-022-08670-x
    [80] Saeedvand S, Aghdasi H S, Baltes J. Robust multi-objective multi-humanoid robots task allocation based on novel hybrid metaheuristic algorithm. Applied Intelligence, 2019, 49(12): 4097−4127 doi: 10.1007/s10489-019-01475-8
    [81] Ye F, Chen J, Tian Y, Jiang T. Cooperative multiple task assignment of heterogeneous UAVs using a modified genetic algorithm with multi-type-gene chromosome encoding strategy. Journal of Intelligent & Robotic Systems, 2020, 100(2): 615−627
    [82] Zhou X, Wang H M, Ding B, Hu T J, Shang S N. Balanced connected task allocations for multi-robot systems: An exact flow-based integer program and an approximate tree-based genetic algorithm. Expert Systems With Applications, 2019, 116: 10−20 doi: 10.1016/j.eswa.2018.09.001
    [83] Kruekaew B, Kimpan W. Multi-objective task scheduling optimization for load balancing in cloud computing environment using hybrid artificial bee colony algorithm with reinforcement learning. IEEE Access, 2022, 10: 17803−17818 doi: 10.1109/ACCESS.2022.3149955
    [84] Pendharkar P C. An ant colony optimization heuristic for constrained task allocation problem. Journal of Computational Science, 2015, 7: 37−47 doi: 10.1016/j.jocs.2015.01.001
    [85] de Oca M A M, Stutzle T, Birattari M, Dorigo M. Frankenstein's PSO: A composite particle swarm optimization algorithm. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 1120−1132 doi: 10.1109/TEVC.2009.2021465
    [86] Geng N, Chen Z T, Nguyen Q A, Gong D W. Particle swarm optimization algorithm for the optimization of rescue task allocation with uncertain time constraints. Complex & Intelligent Systems, 2021, 7(2): 873−890
    [87] Wei C Y, Ji Z, Cai B L. Particle swarm optimization for cooperative multi-robot task allocation: A multi-objective approach. IEEE Robotics and Automation Letters, 2020, 5(2): 2530−2537 doi: 10.1109/LRA.2020.2972894
    [88] Zhu Z X, Tang B W, Yuan J P. Multirobot task allocation based on an improved particle swarm optimization approach. International Journal of Advanced Robotic Systems, 2017, 14(3): Article No. 1729881417710312
    [89] Kong X J, Gao Y P, Wang T Y, Liu J H, Xu W T. Multi-robot task allocation strategy based on particle swarm optimization and greedy algorithm. In: Proceedings of the IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China: IEEE, 2019. 1643–1646
    [90] 李炜, 张伟. 基于粒子群算法的多无人机任务分配方法. 控制与决策, 2010, 25(9): 1359−1363

    Li Wei, Zhang Wei. Method of tasks allocation of multi-UAVs based on particles swarm optimization. Control and Decision, 2010, 25(9): 1359−1363
    [91] Pierson A, Wang Z J, Schwager M. Intercepting rogue robots: An algorithm for capturing multiple evaders with multiple pursuers. IEEE Robotics and Automation Letters, 2017, 2(2): 530−537 doi: 10.1109/LRA.2016.2645516
    [92] 翟政, 何明, 徐鹏, 彭志新. 基于市场机制的无人集群任务分配研究综述. 计算机应用研究, 2023, 40(7): 1921−1928

    Zhai Zheng, He Ming, Xu Peng, Peng Zhi-Xin. Research review of task allocation for unmanned swarm based on market mechanism. Application Research of Computers, 2023, 40(7): 1921−1928
    [93] 李娟, 张昆玉. 基于改进合同网算法的异构多AUV协同任务分配. 水下无人系统学报, 2017, 25(6): 418−423

    Li Juan, Zhang Kun-Yu. Heterogeneous multi-AUV cooperative task allocation based on improved contract net algorithm. Journal of Unmanned Undersea Systems, 2017, 25(6): 418−423
    [94] Zhen Z Y, Wen L D, Wang B L, Hu Z, Zhang D M. Improved contract network protocol algorithm based cooperative target allocation of heterogeneous UAV swarm. Aerospace Science and Technology, 2021, 119: Article No. 107054 doi: 10.1016/j.ast.2021.107054
    [95] 李瑞珍, 杨惠珍, 萧丛杉. 基于动态围捕点的多机器人协同策略. 控制工程, 2019, 26(3): 510−514

    Li Rui-Zhen, Yang Hui-Zhen, Xiao Cong-Shan. Cooperative hunting strategy for multi-mobile robot systems based on dynamic hunting points. Control Engineering of China, 2019, 26(3): 510−514
    [96] 付光远, 李源. 多移动机器人动态联盟围捕策略. 计算机应用, 2019, 39(S1): 1−7

    Fu Guang-Yuan, Li Yuan. Dynamic alliance pursuit strategy for multiple mobile robots. Journal of Computer Applications, 2019, 39(S1): 1−7
    [97] 吴蔚楠, 崔乃刚, 郭继峰. 基于目标信息估计的分布式局部协调任务分配方法. 控制理论与应用, 2018, 35(4): 566−576 doi: 10.7641/CTA.2017.70172

    Wu Wei-Nan, Cui Nai-Gang, Guo Ji-Feng. Distributed task assignment method based on local information consensus and target estimation. Control Theory & Applications, 2018, 35(4): 566−576 doi: 10.7641/CTA.2017.70172
    [98] 王孟阳, 张栋, 唐硕, 许斌, 赵军民. 基于动态联盟策略的无人机集群在线任务规划方法. 兵工学报, 2023, 44(8): 2207−2223

    Wang Meng-Yang, Zhang Dong, Tang Shuo, Xu Bin, Zhao Jun-Min. UAV swarm on-line mission planning method based on dynamic allocation strategy. Acta Armamentarii, 2023, 44(8): 2207−2223
    [99] Sujit P B, Manathara J G, Ghose D, de Sousa J B. Decentralized multi-UAV coalition formation with limited communication ranges. Handbook of Unmanned Aerial Vehicles. Dordrecht: Springer, 2015. 2021–2048
    [100] 陈璞, 严飞, 刘钊, 成果达. 通信约束下异构多无人机任务分配方法. 航空学报, 2021, 42(8): Article No. 525844 doi: 10.7527/S1000-6893.2021.25844

    Chen Pu, Yan Fei, Liu Zhao, Cheng Guo-Da. Communication-constrained task allocation of heterogeneous UAVs. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): Article No. 525844 doi: 10.7527/S1000-6893.2021.25844
    [101] Braquet M, Bakolas E. Greedy decentralized auction-based task allocation for multi-agent systems. IFAC-PapersOnLine, 2021, 54(20): 675−680 doi: 10.1016/j.ifacol.2021.11.249
    [102] Li X H, Liang Y N. An optimal online distributed auction algorithm for multi-UAV task allocation. In: Proceedings of the 11th International Conference on Logistics, Informatics and Service Sciences. Springer, 2022. 537–548
    [103] Choi H L, Brunet L, How J P. Consensus-based decentralized auctions for robust task allocation. IEEE Transactions on Robotics, 2009, 25(4): 912−926 doi: 10.1109/TRO.2009.2022423
    [104] 唐嘉钰, 李相民, 代进进, 薄宁. 复杂约束条件下异构多智能体联盟任务分配. 控制理论与应用, 2020, 37(11): 2413−2422 doi: 10.7641/CTA.2020.90868

    Tang Jia-Yu, Li Xiang-Min, Dai Jin-Jin, Bo Ning. Coalition task allocation of heterogeneous multiple agents with complex constraints. Control Theory & Applications, 2020, 37(11): 2413−2422 doi: 10.7641/CTA.2020.90868
    [105] Hunt S, Meng Q G, Hinde C, Huang T W. A consensus-based grouping algorithm for multi-agent cooperative task allocation with complex requirements. Cognitive Computation, 2014, 6(3): 338−350 doi: 10.1007/s12559-014-9265-0
    [106] Dong D B, Zhu Y H, Du Z Z, Yu D X. Multi-target dynamic hunting strategy based on improved K-means and auction algorithm. Information Sciences, 2023, 640: Article No. 119072 doi: 10.1016/j.ins.2023.119072
    [107] Dong D B, Du Z Z, Min J C, Lu R T, Liu J M, Yu D X. Fuzzy dual-hunting control based on auction algorithm. International Journal of Fuzzy Systems, 2023, 25(7): 2816−2827 doi: 10.1007/s40815-023-01531-z
    [108] 潘子双, 苏析超, 韩维, 柳文林, 郁大照, 汪节. 基于动态一致性联盟算法的异构无人机集群协同作战联盟组建. 兵工学报, DOI: 10.12382/bgxb.2023.0914

    Pan Zi-Shuang, Su Xi-Chao, Han Wei, Liu Wen-Lin, Yu Da-Zhao, Wang Jie. Cooperative combat coalition formation with heterogeneous UAV swarm based on dynamic consensus-based grouping algorithm. Acta Armamentarii, DOI: 10.12382/bgxb.2023.0914
    [109] Zhou M, Wang Z H, Wang J, Cao Z C. Multi-robot collaborative hunting in cluttered environments with obstacle-avoiding Voronoi cells. IEEE/CAA Journal of Automatica Sinica, 2024, 11(7): 1643−1655 doi: 10.1109/JAS.2023.124041
    [110] Bhattacharya P, Gavrilova M L. Roadmap-based path planning-using the Voronoi diagram for a clearance-based shortest path. IEEE Robotics & Automation Magazine, 2008, 15(2): 58−66
    [111] Chi W Z, Ding Z Y, Wang J K, Chen G D, Sun L N. A generalized Voronoi diagram-based efficient heuristic path planning method for RRTs in mobile robots. IEEE Transactions on Industrial Electronics, 2022, 69(5): 4926−4937 doi: 10.1109/TIE.2021.3078390
    [112] Xia N, Wang C, Yu Y T, Du H Z, Xu C N, Zheng J G. A path forming method for water surface mobile sink using Voronoi diagram and dominating set. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7608−7619 doi: 10.1109/TVT.2018.2832096
    [113] Wang J K, Meng M Q H. Optimal path planning using generalized Voronoi graph and multiple potential functions. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10621−10630 doi: 10.1109/TIE.2019.2962425
    [114] Bakolas E, Tsiotras P. Optimal pursuit of moving targets using dynamic Voronoi diagrams. In: Proceedings of the 49th IEEE Conference on Decision and Control (CDC). Atlanta, USA: IEEE, 2010. 7431–7436
    [115] Wang Y, He G H, Ma Y D, Kong G J, Gong J W. Research on multi-robots self-organizing cooperative pursuit algorithm based on Voronoi graph. In: Proceedings of the 39th Chinese Control Conference (CCC). Shenyang, China: IEEE, 2020. 3840–3844
    [116] 张云赫, 苏立晨, 董云帆, 刘瑜, 李宇萌. 基于Voronoi图最近邻协商的多机协同追捕方法. 哈尔滨工程大学学报, 2023, 44(2): 284−291 doi: 10.11990/jheu.202203002

    Zhang Yun-He, Su Li-Chen, Dong Yun-Fan, Liu Yu, Li Yu-Meng. Cooperative pursuit of multiple UAVs based on Voronoi partition nearest neighbor negotiation. Journal of Harbin Engineering University, 2023, 44(2): 284−291 doi: 10.11990/jheu.202203002
    [117] Zhou D J, Wang Z J, Bandyopadhyay S, Schwager M. Fast, on-line collision avoidance for dynamic vehicles using buffered Voronoi cells. IEEE Robotics and Automation Letters, 2017, 2(2): 1047−1054 doi: 10.1109/LRA.2017.2656241
    [118] Pierson A, Schwarting W, Karaman S, Rus D. Weighted buffered Voronoi cells for distributed semi-cooperative behavior. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Paris, France: IEEE, 2020. 5611–5617
    [119] Tian B L, Li P P, Lu H C, Zong Q, He L. Distributed pursuit of an evader with collision and obstacle avoidance. IEEE Transactions on Cybernetics, 2022, 52(12): 13512−13520 doi: 10.1109/TCYB.2021.3112572
    [120] Wang M Y, Schwager M. Distributed collision avoidance of multiple robots with probabilistic buffered Voronoi cells. In: Proceedings of the International Symposium on Multi-Robot and Multi-Agent Systems (MRS). New Brunswick, USA: IEEE, 2019. 169–175
    [121] Zhu H, Alonso-Mora J. B-UAVC: Buffered uncertainty-aware Voronoi cells for probabilistic multi-robot collision avoidance. In: Proceedings of the International Symposium on Multi-Robot and Multi-Agent Systems (MRS). New Brunswick, USA: IEEE, 2019. 162–168
    [122] Zhu H, Brito B, Alonso-Mora J. Decentralized probabilistic multi-robot collision avoidance using buffered uncertainty-aware Voronoi cells. Autonomous Robots, 2022, 46(2): 401−420 doi: 10.1007/s10514-021-10029-2
    [123] Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 1952, 117(4): 500−544 doi: 10.1113/jphysiol.1952.sp004764
    [124] Grossberg S. Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks, 1988, 1(1): 17−61 doi: 10.1016/0893-6080(88)90021-4
    [125] Yang S X, Luo C M. A neural network approach to complete coverage path planning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(1): 718−724 doi: 10.1109/TSMCB.2003.811769
    [126] Luo C M, Yang S X. A bioinspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environments. IEEE Transactions on Neural Networks, 2008, 19(7): 1279−1298 doi: 10.1109/TNN.2008.2000394
    [127] Yang S X, Meng M Q H. Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach. IEEE Transactions on Neural Networks, 2003, 14(6): 1541−1552 doi: 10.1109/TNN.2003.820618
    [128] Öǧmen H, Gagné S. Neural network architectures for motion perception and elementary motion detection in the fly visual system. Neural Networks, 1990, 3(5): 487−505 doi: 10.1016/0893-6080(90)90001-2
    [129] 王耀南, 潘琪, 陈彦杰. 改进型生物激励神经网络的路径规划方法. 控制工程, 2018, 25(4): 541−548

    Wang Yao-Nan, Pan Qi, Chen Yan-Jie. Path planning method based on improved biologically inspired neural network. Control Engineering of China, 2018, 25(4): 541−548
    [130] 朱大奇, 孙兵, 李利. 基于生物启发模型的AUV三维自主路径规划与安全避障算法. 控制与决策, 2015, 30(5): 798−806

    Zhu Da-Qi, Sun Bing, Li Li. Algorithm for AUV's 3-D path planning and safe obstacle avoidance based on biological inspired model. Control and Decision, 2015, 30(5): 798−806
    [131] 朱大奇, 刘雨, 孙兵, 刘清沁. 自治水下机器人的自主启发式生物启发神经网络路径规划算法. 控制理论与应用, 2019, 36(2): 183−191 doi: 10.7641/CTA.2018.70576

    Zhu Da-Qi, Liu Yu, Sun Bing, Liu Qing-Qin. Autonomous underwater vehicles path planning based on autonomous inspired Glasius bio-inspired neural network algorithm. Control Theory & Applications, 2019, 36(2): 183−191 doi: 10.7641/CTA.2018.70576
    [132] 刘晨霞, 朱大奇, 周蓓, 顾伟. 海流环境下多AUV多目标生物启发任务分配与路径规划算法. 控制理论与应用, 2022, 39(11): 2100−2107 doi: 10.7641/CTA.2022.11019

    Liu Chen-Xia, Zhu Da-Qi, Zhou Bei, Gu Wei. A novel algorithm of multi-AUVs task assignment and path planning based on biologically inspired neural network for ocean current environment. Control Theory & Applications, 2022, 39(11): 2100−2107 doi: 10.7641/CTA.2022.11019
    [133] Lv R F, Gan W Y, Sun B, Zhu D Q. A multi-AUV hunting algorithm with ocean current effect. In: Proceedings of the IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Shenyang, China: IEEE, 2015. 869–874
    [134] Liu Q Q, Sun B, Zhu D Q. A multi-AUVs cooperative hunting algorithm for environment with ocean current. In: Proceedings of the 37th Chinese Control Conference (CCC). Wuhan, China: IEEE, 2018. 5441–5444
    [135] Zhu D Q, Lv R F, Cao X, Yang S X. Multi-AUV hunting algorithm based on bio-inspired neural network in unknown environments. International Journal of Advanced Robotic Systems, 2015, 12(11): Article No. 166 doi: 10.5772/61555
    [136] Huang Z R, Zhu D Q, Sun B. A multi-AUV cooperative hunting method in 3-D underwater environment with obstacle. Engineering Applications of Artificial Intelligence, 2016, 50: 192−200 doi: 10.1016/j.engappai.2016.01.036
    [137] Ni J J, Yang S X. Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments. IEEE Transactions on Neural Networks, 2011, 22(12): 2062−2077 doi: 10.1109/TNN.2011.2169808
    [138] Niu Z Y, Zhong G Q, Yu H. A review on the attention mechanism of deep learning. Neurocomputing, 2021, 452: 48−62 doi: 10.1016/j.neucom.2021.03.091
    [139] 李登峰. 微分对策及其应用. 北京: 国防工业出版社, 2000.

    Li Deng-Feng. Differential Games and Applications. Beijing: National Defense Industry Press, 2000.
    [140] 方宝富, 潘启树, 洪炳镕, 丁磊, 蔡则苏. 多追捕者−单一逃跑者追逃问题实现成功捕获的约束条件. 机器人, 2012, 34(3): 282−291 doi: 10.3724/SP.J.1218.2012.00282

    Fang Bao-Fu, Pan Qi-Shu, Hong Bing-Rong, Ding Lei, Cai Ze-Su. Constraint conditions of successful capture in multi-pursuers vs one-evader games. Robot, 2012, 34(3): 282−291 doi: 10.3724/SP.J.1218.2012.00282
    [141] Bera R, Makkapati V R, Kothari M. A comprehensive differential game theoretic solution to a game of two cars. Journal of Optimization Theory and Applications, 2017, 174(3): 818−836 doi: 10.1007/s10957-017-1134-z
    [142] Pan T Y, Yuan Y. A region-based relay pursuit scheme for a pursuit-evasion game with a single evader and multiple pursuers. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(3): 1958−1969 doi: 10.1109/TSMC.2022.3210022
    [143] Sun W, Tsiotras P. Sequential pursuit of multiple targets under external disturbances via Zermelo-Voronoi diagrams. Automatica, 2017, 81: 253−260 doi: 10.1016/j.automatica.2017.03.015
    [144] 罗亚中, 李振瑜, 祝海. 航天器轨道追逃微分对策研究综述. 中国科学: 技术科学, 2020, 50(12): 1533−1545 doi: 10.1360/SST-2019-0174

    Luo Ya-Zhong, Li Zhen-Yu, Zhu Hai. Survey on spacecraft orbital pursuit-evasion differential games. Scientia Sinica Technologica, 2020, 50(12): 1533−1545 doi: 10.1360/SST-2019-0174
    [145] Nian X H, Niu F X, Yang Z. Distributed Nash equilibrium seeking for multicluster game under switching communication topologies. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(7): 4105−4116 doi: 10.1109/TSMC.2021.3090515
    [146] Zhu Y H, Zhao D B. Online minimax Q network learning for two-player zero-sum Markov games. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(3): 1228−1241 doi: 10.1109/TNNLS.2020.3041469
    [147] Li M, Qin J H, Ma Q C, Zheng W X, Kang Y. Hierarchical optimal synchronization for linear systems via reinforcement learning: A stackelberg-Nash game perspective. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1600−1611 doi: 10.1109/TNNLS.2020.2985738
    [148] Isaacs R. Differential Games. A Mathematical Theory With Applications to Warfare and Pursuit, Control and Optimization. Wiley, 1965.
    [149] Ramana M V, Kothari M. Pursuit strategy to capture high-speed evaders using multiple pursuers. Journal of Guidance, Control, and Dynamics, 2017, 40(1): 139−149 doi: 10.2514/1.G000584
    [150] Fang X, Wang C, Xie L H, Chen J. Cooperative pursuit with multi-pursuer and one faster free-moving evader. IEEE Transactions on Cybernetics, 2022, 52(3): 1405−1414 doi: 10.1109/TCYB.2019.2958548
    [151] García E, Murano D A. State estimation for a class of nonlinear differential games using differential neural networks. In: Proceedings of the American Control Conference. San Francisco, USA: IEEE, 2011. 2486–2491
    [152] Xue B, Easwaran A, Cho N J, Fränzle M. Reach-avoid verification for nonlinear systems based on boundary analysis. IEEE Transactions on Automatic Control, 2017, 62(7): 3518−3523 doi: 10.1109/TAC.2016.2615599
    [153] Chen M, Bansal S, Fisac J F, Tomlin C J. Robust sequential trajectory planning under disturbances and adversarial intruder. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1566−1582 doi: 10.1109/TCST.2018.2828380
    [154] Li W. Formulation of a Cooperative-Confinement-Escape problem of multiple cooperative defenders against an evader escaping from a circular region. Communications in Nonlinear Science and Numerical Simulation, 2016, 39: 442−457 doi: 10.1016/j.cnsns.2016.02.042
    [155] Li W. Escape analysis on the confinement-escape problem of a defender against an evader escaping from a circular region. IEEE Transactions on Cybernetics, 2016, 46(9): 2166−2172 doi: 10.1109/TCYB.2016.2541158
    [156] Fisac J F, Sastry S S. The pursuit-evasion-defense differential game in dynamic constrained environments. In: Proceedings of the 54th IEEE Conference on Decision and Control (CDC). Osaka, Japan: IEEE, 2015. 4549–4556
    [157] Zhang H G, Cui L L, Luo Y H. Near-optimal control for nonzero-sum differential games of continuous-time nonlinear systems using single-network ADP. IEEE Transactions on Cybernetics, 2013, 43(1): 206−216 doi: 10.1109/TSMCB.2012.2203336
    [158] Zhao D B, Zhang Q C, Wang D, Zhu Y H. Experience replay for optimal control of nonzero-sum game systems with unknown dynamics. IEEE Transactions on Cybernetics, 2016, 46(3): 854−865 doi: 10.1109/TCYB.2015.2488680
    [159] 王龙, 黄锋. 多智能体博弈、学习与控制. 自动化学报, 2023, 49(3): 580−613

    Wang Long, Huang Feng. An interdisciplinary survey of multi-agent games, learning, and control. Acta Automatica Sinica, 2023, 49(3): 580−613
    [160] Sutton R S, Barto A G. Reinforcement Learning: An Introduction (Second edition). Cambridge: MIT Press, 2018.
    [161] Kaelbling L P, Littman M L, Moore A W. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 1996, 4: 237−285 doi: 10.1613/jair.301
    [162] Zhang K Q, Yang Z R, Basar T. Multi-agent reinforcement learning: A selective overview of theories and algorithms. Handbook of Reinforcement Learning and Control. Cham: Springer, 2021. 321–384
    [163] Yang Y D, Wang J. An overview of multi-agent reinforcement learning from game theoretical perspective. arXiv: 2011.00583, 2020.
    [164] Xie S, Chu X M, Zheng M, Liu C G. A composite learning method for multi-ship collision avoidance based on reinforcement learning and inverse control. Neurocomputing, 2020, 411: 375−392 doi: 10.1016/j.neucom.2020.05.089
    [165] Watkins C J C H, Dayan P. Q-learning. Machine Learning, 1992, 8(3): 279−292
    [166] Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J, Bellemare M G, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529−533 doi: 10.1038/nature14236
    [167] Kocsis L, Szepesvári C. Bandit based Monte-Carlo planning. In: Proceedings of the 17th European Conference on Machine Learning. Berlin, Germany: Springer, 2006. 282–293
    [168] Shi X T, Li Y J, Hu W X, Du C L, Chen C Y, Gui W H. Optimal lateral path-tracking control of vehicles with partial unknown dynamics via DPG-based reinforcement learning methods. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 1701−1710 doi: 10.1109/TIV.2023.3319642
    [169] Gao H H, Wang X J, Wei W, Al-Dulaimi A, Xu Y S. Com-DDPG: Task offloading based on multiagent reinforcement learning for information-communication-enhanced mobile edge computing in the internet of vehicles. IEEE Transactions on Vehicular Technology, 2024, 73(1): 348−361 doi: 10.1109/TVT.2023.3309321
    [170] Centurelli A, Arleo L, Rizzo A, Tolu S, Laschi C, Falotico E. Closed-loop dynamic control of a soft manipulator using deep reinforcement learning. IEEE Robotics and Automation Letters, 2022, 7(2): 4741−4748 doi: 10.1109/LRA.2022.3146903
    [171] Guo D L, Tang L, Zhang X G, Liang Y C. Joint optimization of handover control and power allocation based on multi-agent deep reinforcement learning. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13124−13138 doi: 10.1109/TVT.2020.3020400
    [172] Han M H, Zhang L X, Wang J, Pan W. Actor-critic reinforcement learning for control with stability guarantee. IEEE Robotics and Automation Letters, 2020, 5(4): 6217−6224 doi: 10.1109/LRA.2020.3011351
    [173] Ge H W, Gao D W, Sun L, Hou Y Q, Yu C, Wang Y X, et al. Multi-agent transfer reinforcement learning with multi-view encoder for adaptive traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12572−12587 doi: 10.1109/TITS.2021.3115240
    [174] Wang Y D, Dong L, Sun C Y. Cooperative control for multi-player pursuit-evasion games with reinforcement learning. Neurocomputing, 2020, 412: 101−114 doi: 10.1016/j.neucom.2020.06.031
    [175] Lowe R, Wu Y, Tamar A, Harb J, Abbeel P, Mordatch I. Multi-agent actor-critic for mixed cooperative-competitive environments. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 6382–6393
    [176] Yu L L, Huo S X, Wang Z J, Li K Y. Hybrid attention-oriented experience replay for deep reinforcement learning and its application to a multi-robot cooperative hunting problem. Neurocomputing, 2023, 523: 44−57 doi: 10.1016/j.neucom.2022.12.020
    [177] 夏家伟, 朱旭芳, 张建强, 罗亚松, 刘忠. 基于多智能体强化学习的无人艇协同围捕方法. 控制与决策, 2023, 38(5): 1438−1447

    Xia Jia-Wei, Zhu Xu-Fang, Zhang Jian-Qiang, Luo Ya-Song, Liu Zhong. Research on cooperative hunting method of unmanned surface vehicle based on multi-agent reinforcement learning. Control and Decision, 2023, 38(5): 1438−1447
    [178] Bilgin A T, Kadioglu-Urtis E. An approach to multi-agent pursuit evasion games using reinforcement learning. In: Proceedings of the International Conference on Advanced Robotics (ICAR). Istanbul, Turkey: IEEE, 2015. 164–169
    [179] Vlahov B, Squires E, Strickland L, Pippin C. On developing a UAV pursuit-evasion policy using reinforcement learning. In: Proceedings of the 17th IEEE International Conference on Machine Learning and Applications (ICMLA). Orlando, USA: IEEE, 2018. 859–864
    [180] de Souza C, Newbury R, Cosgun A, Castillo P, Vidolov B, Kulić D. Decentralized multi-agent pursuit using deep reinforcement learning. IEEE Robotics and Automation Letters, 2021, 6(3): 4552−4559 doi: 10.1109/LRA.2021.3068952
    [181] Xia J W, Luo Y S, Liu Z K, Zhang Y L, Shi H R, Liu Z. Cooperative multi-target hunting by unmanned surface vehicles based on multi-agent reinforcement learning. Defence Technology, 2023, 29: 80−94 doi: 10.1016/j.dt.2022.09.014
    [182] Awheda M D, Schwartz H M. A fuzzy reinforcement learning algorithm using a predictor for pursuit-evasion games. In: Proceedings of the Annual IEEE Systems Conference (SysCon). Orlando, USA: IEEE, 2016. 1–8
    [183] Cao X, Zuo F. A fuzzy-based potential field hierarchical reinforcement learning approach for target hunting by multi-AUV in 3-D underwater environments. International Journal of Control, 2021, 94(5): 1334−1343 doi: 10.1080/00207179.2019.1648875
    [184] Wang L X, Wang M L, Yue T. A fuzzy deterministic policy gradient algorithm for pursuit-evasion differential games. Neurocomputing, 2019, 362: 106−117 doi: 10.1016/j.neucom.2019.07.038
    [185] Foerster J, Farquhar G, Afouras T, Nardelli N, Whiteson S. Counterfactual multi-agent policy gradients. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, USA: AAAI, 2018.
    [186] Zhang Z, Wang X H, Zhang Q R, Hu T J. Multi-robot cooperative pursuit via potential field-enhanced reinforcement learning. In: Proceedings of the International Conference on Robotics and Automation (ICRA). Philadelphia, USA: IEEE, 2022. 8808–8814
    [187] Fang B F, Zhu J L, Zhang H, Wang H, Wang Z J. Multi self-interested robot pursuit based on quantum game theory. In: Proceedings of the Chinese Automation Congress (CAC). Jinan, China: IEEE, 2017. 7368–7373
    [188] 晏亚林. 基于博弈论的多机器人追捕问题的研究 [硕士学位论文], 哈尔滨工程大学, 中国, 2014.

    Yan Ya-Lin. Research on Multi-Robot Pursuit-Evasion Problem Based on Game Theory [Master thesis], Harbin Engineering University, China, 2014.
    [189] 郑延斌, 樊文鑫, 韩梦云, 陶雪丽. 基于博弈论及Q学习的多Agent协作追捕算法. 计算机应用, 2020, 40(6): 1613−1620

    Zheng Yan-Bin, Fan Wen-Xin, Han Meng-Yun, Tao Xue-Li. Multi-agent collaborative pursuit algorithm based on game theory and Q-learning. Journal of Computer Applications, 2020, 40(6): 1613−1620
    [190] Qu X Q, Gan W H, Song D L, Zhou L Q. Pursuit-evasion game strategy of USV based on deep reinforcement learning in complex multi-obstacle environment. Ocean Engineering, 2023, 273: Article No. 114016 doi: 10.1016/j.oceaneng.2023.114016
    [191] Zhang R L, Zong Q, Zhang X Y, Dou L Q, Tian B L. Game of drones: Multi-UAV pursuit-evasion game with online motion planning by deep reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7900−7909 doi: 10.1109/TNNLS.2022.3146976
    [192] Gao Z K, Dai X Y, Yao M B, Xiao X M. A data enhancement strategy for multi-agent cooperative hunting based on deep reinforcement learning. In: Proceedings of the IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS). Wuhan, China: IEEE, 2023. 1–8
    [193] Asl Z D, Derhami V, Yazdian-Dehkordi M. A new approach on multi-agent multi-objective reinforcement learning based on agents' preferences. In: Proceedings of the Artificial Intelligence and Signal Processing Conference (AISP). Shiraz, Iran: IEEE, 2017. 75–79
    [194] Du B, Lin B, Zhang C M, Dong B T, Zhang W D. Safe deep reinforcement learning-based adaptive control for USV interception mission. Ocean Engineering, 2022, 246: Article No. 110477 doi: 10.1016/j.oceaneng.2021.110477
    [195] Deghat M, Davis E, See T, Shames I, Anderson B D O, Yu C B. Target localization and circumnavigation by a non-holonomic robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal: IEEE, 2012. 1227–1232
    [196] Deghat M, Shames I, Anderson B D O, Yu C B. Localization and circumnavigation of a slowly moving target using bearing measurements. IEEE Transactions on Automatic Control, 2014, 59(8): 2182−2188 doi: 10.1109/TAC.2014.2299011
    [197] Zheng R H, Liu Y H, Sun D. Enclosing a target by nonholonomic mobile robots with bearing-only measurements. Automatica, 2015, 53: 400−407 doi: 10.1016/j.automatica.2015.01.014
    [198] Lee B H, Ahn H S. Distributed formation control via global orientation estimation. Automatica, 2016, 73: 125−129 doi: 10.1016/j.automatica.2016.06.030
    [199] Yu X, Xu X, Liu L, Feng G. Circular formation of networked dynamic unicycles by a distributed dynamic control law. Automatica, 2018, 89: 1−7 doi: 10.1016/j.automatica.2017.11.021
    [200] Yamamoto Y, Yun X P. Coordinating locomotion and manipulation of a mobile manipulator. In: Proceedings of the 31st IEEE Conference on Decision and Control. Tucson, USA: IEEE, 1992. 2643–2648
    [201] Zhao S Y, Pan Y N, Du P H, Liang H J. Adaptive control for non-affine nonlinear systems with input saturation and output dead zone. Applied Mathematics and Computation, 2020, 386: Article No. 125506 doi: 10.1016/j.amc.2020.125506
    [202] Chen M, Ge S S, Ren B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 2011, 47(3): 452−465 doi: 10.1016/j.automatica.2011.01.025
    [203] 张红强, 章兢, 周少武, 曾照福, 吴亮红. 基于简化虚拟受力模型的未知复杂环境下群机器人围捕. 电子学报, 2015, 43(4): 665−674 doi: 10.3969/j.issn.0372-2112.2015.04.007

    Zhang Hong-Qiang, Zhang Jing, Zhou Shao-Wu, Zeng Zhao-Fu, Wu Liang-Hong. Hunting in unknown complex environments by swarm robots based on simplified virtual-force model. Acta Electronica Sinica, 2015, 43(4): 665−674 doi: 10.3969/j.issn.0372-2112.2015.04.007
    [204] 张红强, 章兢, 周少武, 曾照福, 吴亮红. 未知动态环境下非完整移动群机器人围捕. 控制理论与应用, 2014, 31(9): 1151−1165 doi: 10.7641/CTA.2014.31243

    Zhang Hong-Qiang, Zhang Jing, Zhou Shao-Wu, Zeng Zhao-Fu, Wu Liang-Hong. Nonholonomic mobile swarm robots hunting in unknown dynamic environments. Control Theory & Applications, 2014, 31(9): 1151−1165 doi: 10.7641/CTA.2014.31243
    [205] 张红强, 吴亮红, 周游, 章兢, 周少武, 刘朝华. 复杂环境下群机器人自组织协同多目标围捕. 控制理论与应用, 2020, 37(5): 1054−1062 doi: 10.7641/CTA.2019.90015

    Zhang Hong-Qiang, Wu Liang-Hong, Zhou You, Zhang Jing, Zhou Shao-Wu, Liu Zhao-Hua. Self-organizing cooperative multi-target hunting by swarm robots in complex environments. Control Theory & Applications, 2020, 37(5): 1054−1062 doi: 10.7641/CTA.2019.90015
    [206] 罗家祥, 许博喆, 刘海明, 蔡鹤, 高焕丽, 姚瞻楠. 感知范围受限的群机器人自主围捕算法. 控制理论与应用, 2021, 38(7): 933−946 doi: 10.7641/CTA.2021.00715

    Luo Jia-Xiang, Xu Bo-Zhe, Liu Hai-Ming, Cai He, Gao Huan-Li, Yao Zhan-Nan. Autonomous hunting algorithm for swarm robots subject to limited sensing range. Control Theory & Applications, 2021, 38(7): 933−946 doi: 10.7641/CTA.2021.00715
    [207] 黄天云, 陈雪波, 徐望宝, 周自维, 任志勇. 基于松散偏好规则的群体机器人系统自组织协作围捕. 自动化学报, 2013, 39(1): 57−68 doi: 10.1016/S1874-1029(13)60007-5

    Huang Tian-Yun, Chen Xue-Bo, Xu Wang-Bao, Zhou Zi-Wei, Ren Zhi-Yong. A self-organizing cooperative hunting by swarm robotic systems based on loose-preference rule. Acta Automatica Sinica, 2013, 39(1): 57−68 doi: 10.1016/S1874-1029(13)60007-5
    [208] Yu X, Liu L, Feng G. Distributed circular formation control of nonholonomic vehicles without direct distance measurements. IEEE Transactions on Automatic Control, 2018, 63(8): 2730−2737 doi: 10.1109/TAC.2018.2790259
    [209] Su Y X. Comments on “Controller design for rigid spacecraft attitude tracking with actuator saturation”. Information Sciences, 2016, 342: 150−152 doi: 10.1016/j.ins.2015.12.040
    [210] Wen G X, Ge S S, Chen C L P, Tu F W, Wang S N. Adaptive tracking control of surface vessel using optimized backstepping technique. IEEE Transactions on Cybernetics, 2019, 49(9): 3420−3431 doi: 10.1109/TCYB.2018.2844177
    [211] Zheng K M, Zhang Q J, Hu Y M, Wu B. Design of fuzzy system-fuzzy neural network-backstepping control for complex robot system. Information Sciences, 2021, 546: 1230−1255 doi: 10.1016/j.ins.2020.08.110
    [212] Ding S H, Park J H, Chen C C. Second-order sliding mode controller design with output constraint. Automatica, 2020, 112: Article No. 108704 doi: 10.1016/j.automatica.2019.108704
    [213] Huang C R, Fujisawa S, de Lima T F, Tait A N, Blow E C, Tian Y, et al. A silicon photonic-electronic neural network for fibre nonlinearity compensation. Nature Electronics, 2021, 4(11): 837−844 doi: 10.1038/s41928-021-00661-2
    [214] Ma H, Ren H R, Zhou Q, Lu R Q, Li H Y. Approximation-based Nussbaum gain adaptive control of nonlinear systems with periodic disturbances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 2591−2600 doi: 10.1109/TSMC.2021.3050993
    [215] Sun Y M, Chen B, Lin C, Wang H H, Zhou S W. Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach. Information Sciences, 2016, 369: 748−764 doi: 10.1016/j.ins.2016.06.010
    [216] Ghommam J, Saad M, Mnif F. Finite-time circular formation around a moving target with multiple underactuated ODIN vehicles. Mathematics and Computers in Simulation, 2021, 180: 230−250 doi: 10.1016/j.matcom.2020.08.026
    [217] Duan Y, Huang X, Yu X. Multi-robot dynamic virtual potential point hunting strategy based on FIS. In: Proceedings of the IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). Nanjing, China: IEEE, 2016. 332–335
    [218] Beke A, Kumbasar T. Game of spheros: A real-world pursuit-evasion game with type-2 fuzzy logic. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Naples, Italy: IEEE, 2017. 1–6
    [219] 胡俊, 朱庆保. 基于动态预测目标轨迹和围捕点的多机器人围捕算法. 电子学报, 2011, 39(11): 2480−2485

    Hu Jun, Zhu Qing-Bao. A multi-robot hunting algorithm based on dynamic prediction for trajectory of the moving target and hunting points. Acta Electronica Sinica, 2011, 39(11): 2480−2485
    [220] Wu Z Y, Cao Z Q, Yu Y Y, Pang L, Zhou C, Chen E K. A multi-robot cooperative hunting approach based on dynamic prediction of target motion. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO). Macao, China: IEEE, 2017. 587–592
    [221] Cui J F, Li D C, Liu P, Qin J, Ma Y D, Lu Z G. Game-model prediction hybrid path planning algorithm for multiple mobile robots in pursuit evasion game. In: Proceedings of the IEEE International Conference on Unmanned Systems (ICUS). Beijing, China: IEEE, 2021. 925–930
    [222] Cao X, Xu X Y. Hunting algorithm for multi-AUV based on dynamic prediction of target trajectory in 3D underwater environment. IEEE Access, 2020, 8: 138529−138538 doi: 10.1109/ACCESS.2020.3013032
    [223] Huang G Q. Visual-inertial navigation: A concise review. In: Proceedings of the International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019. 9572–9582
    [224] Yu H, Zhen W K, Yang W, Zhang J, Scherer S. Monocular camera localization in prior LiDAR maps with 2D-3D line correspondences. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, USA: IEEE, 2020. 4588–4594
    [225] Kim Y, Jeong J, Kim A. Stereo camera localization in 3D LiDAR maps. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018. 1–9
    [226] Srivastava S, Kumar M S, Mishra A, Chopra S, Jagannatham A K, Hanzo L. Sparse doubly-selective channel estimation techniques for OSTBC MIMO-OFDM systems: A hierarchical Bayesian Kalman filter based approach. IEEE Transactions on Communications, 2020, 68(8): 4844−4858 doi: 10.1109/TCOMM.2020.2995585
    [227] 张梦轩, 苏治宝, 索旭东. 移动机器人定位方法研究综述. 车辆与动力技术, 2023(4): 56−62 doi: 10.3969/j.issn.1009-4687.2023.04.010

    Zhang Meng-Xuan, Su Zhi-Bao, Suo Xu-Dong. Overview of research on localization methods for mobile robots. Vehicle & Power Technology, 2023(4): 56−62 doi: 10.3969/j.issn.1009-4687.2023.04.010
    [228] 王耀南, 江一鸣, 姜娇, 张辉, 谭浩然, 彭伟星, 等. 机器人感知与控制关键技术及其智能制造应用. 自动化学报, 2023, 49(3): 494−513

    Wang Yao-Nan, Jiang Yi-Ming, Jiang Jiao, Zhang Hui, Tan Hao-Ran, Peng Wei-Xing, et al. Key technologies of robot perception and control and its intelligent manufacturing applications. Acta Automatica Sinica, 2023, 49(3): 494−513
    [229] Yan T M, Gan Y Z, Xia Z Y, Zhao Q F. Segment-based disparity refinement with occlusion handling for stereo matching. IEEE Transactions on Image Processing, 2019, 28(8): 3885−3897 doi: 10.1109/TIP.2019.2903318
    [230] Yang L, Xu Y, Wang S R, Yuan C F, Zhang Z Q, Li B, et al. PDNet: Toward better one-stage object detection with prediction decoupling. IEEE Transactions on Image Processing, 2022, 31: 5121−5133 doi: 10.1109/TIP.2022.3193223
    [231] Chen Q, Tang S H, Yang Q, Fu S. Cooper: Cooperative perception for connected autonomous vehicles based on 3D point clouds. In: Proceedings of the IEEE 39th International Conference on Distributed Computing Systems (ICDCS). Dallas, USA: IEEE, 2019. 514–524
    [232] Du Y C, Qin B H, Zhao C, Zhu Y F, Cao J, Ji Y X. A novel spatio-temporal synchronization method of roadside asynchronous MMW radar-camera for sensor fusion. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22278−22289 doi: 10.1109/TITS.2021.3119079
    [233] 孙志娟. 多机器人协同通信技术研究 [硕士学位论文], 广西科技大学, 中国, 2019.

    Sun Zhi-Juan. Research on Multi-Robot Cooperative Communication Technology [Master thesis], Guangxi University of Science and Technology, China, 2019.
    [234] 李莹莹, 刘云辉, 樊玮虹, 蔡宣平, 李波. 基于移动通信网络的机器人遥操作. 通信学报, 2006, 27(5): 52−59 doi: 10.3321/j.issn:1000-436X.2006.05.010

    Li Ying-Ying, Liu Yun-Hui, Fan Wei-Hong, Cai Xuan-Ping, Li Bo. Teleoperation of robots via the mobile communication networks. Journal on Communications, 2006, 27(5): 52−59 doi: 10.3321/j.issn:1000-436X.2006.05.010
    [235] Marangoz S, Amasyal M F, Uslu E, Çakmak F, Altuntaş N, Yavuz S. More scalable solution for multi-robot-multi-target assignment problem. Robotics and Autonomous Systems, 2019, 113: 174−185 doi: 10.1016/j.robot.2019.01.005
    [236] Lin E S, Agmon N, Kraus S. Multi-robot adversarial patrolling: Handling sequential attacks. Artificial Intelligence, 2019, 274: 1−25 doi: 10.1016/j.artint.2019.02.004
  • 加载中
图(26) / 表(4)
计量
  • 文章访问数:  1288
  • HTML全文浏览量:  714
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 录用日期:  2024-07-23
  • 网络出版日期:  2024-08-12
  • 刊出日期:  2024-12-20

目录

/

返回文章
返回