-
摘要: 无人机因其极高的灵活性, 在临地安防, 灾后救援, 地质勘测, 农业植保等领域发挥着重要作用, 因此受到了越来越多的关注. 定位导航作为无人机中的关键技术, 对于无人机是否能够顺利执行任务至关重要. 当前主要的定位导航算法包括全球卫星定位系统, 惯性定位以及景象匹配定位导航等. 其中, 景象匹配定位导航方法利用计算机视觉技术, 对无人机飞行时采集的航空影像进行数字化特征编码. 随后, 通过构建相似性度量与检索模型, 将航空影像特征与预先获取的遥感地图库特征进行相似性度量, 从而完成景象匹配. 最后, 根据无人机航空影像与遥感卫星地图的匹配结果, 获取相应的地理位置信息, 并更新为无人机的定位结果. 景象匹配定位导航方法摆脱了定位系统对定位信号的依赖, 实现了无人机飞行定位的自主化. 本文以景象匹配算法中的特征提取方式为线索, 分别针对基于模板匹配, 基于手工特征以及基于度量学习的景象匹配, 梳理其发展过程, 并总结了景象匹配定位导航方法中的关键问题. 最后, 针对景象匹配算法的发展现状, 总结了无人机景象匹配定位方法中亟待解决的问题.Abstract: Drones play an important role in vicinagearth security, post-disaster rescue, geological survey, agricultural plant protection, and other fields due to their high flexibility, and they receive increasing attention. As a key technology in drones, positioning and navigation are crucial for whether the drone can successfully perform tasks. Currently, the main positioning and navigation algorithms include the global navigation satellite system, inertial positioning, and scene matching positioning and navigation. Among them, the scene matching positioning and navigation method uses computer vision technology to encode the digital features of aerial images collected during the flight of drones. Then, by constructing a similarity measurement and retrieval model, it measures the similarity between the aerial image features and the pre-obtained remote sensing map library features to complete the scene matching. Finally, based on the matching results of drone aerial images and remote sensing satellite maps, it obtains the corresponding geographic position information and updates it as the positioning result of the drone. The scene matching positioning and navigation method eliminates the dependence of the positioning system on positioning signals and realizes the autonomy of drone flight positioning. This paper follows the feature extraction methods in the scene matching algorithm and outlines the development process of scene matching based on template matching, manual feature-based, and metric learning-based approaches while summarizing the key problems in the positioning and navigation methods of scene matching. Finally, this paper summarizes the urgent problems that need to be solved in drone scene matching localization methods based on the current development status of scene matching algorithms.
-
Key words:
- Vicinagearth security /
- drone /
- visual geo-localization /
- scene matching /
- metric learning /
- multi-view changes
-
表 1 定位算法对比结果
Table 1 Comparison results of localization algorithms
分类 方法 精度 抗干扰性 实时性 发展现状 相对定位 INS 短时精度高 强 强 较为成熟 绝对定位 GPS 较高 弱 强 成熟 绝对定位 SMS 较低 强 强 亟待研究 表 2 代表性方法汇总
Table 2 Summary of representative methods
方法 算法分类 实现方式 地图数据来源 无人机数据来源 航拍影像尺寸 定位/匹配精度 Dalen[16] 模板匹配 NCC 谷歌地图 真实拍摄 — 12.5 m Yol[18] 模板匹配 MI 谷歌地图 真实拍摄 — 10.36 m Fan[19] 模板匹配 NCC 谷歌地图 谷歌地球 — — Levin[20] 模板匹配 CC DEM数据 DEM 数据 — — Lin[55] 模板匹配 MI 谷歌地图 谷歌地球 720$ \times $480 1.91 m Huang[56] 模板匹配 MI 谷歌地图 真实拍摄 640$ \times $480 — Wan[57] 模板匹配 PC 卫星数据 真实拍摄 3 648$ \times $2 736 3 m Patel[58] 模板匹配 NID 谷歌地图 真实拍摄 560$ \times $315 — Shan[23] 特征点法 HOG 谷歌地图 真实拍摄 850$ \times $500 3 m Masselli[27] 特征点法 ORB 谷歌地图 真实拍摄 640$ \times $480 9.5 m Chiu[30] 特征点法 2D-3D点 DARPA 真实拍摄 — 13.98 m Mantelli[31] 特征点法 abBREIF 谷歌地图 真实拍摄 — 17.78 m Shan[33] 特征点法 MSD+ LSS 谷歌地图 真实拍摄 — — Woo[34] 特征点法 角点 谷歌地图 真实拍摄 — 96% Pluckter[59] 特征点法 ORB 谷歌地图 真实拍摄 — — Pan[61] 特征点法 SIFT 谷歌地图 真实拍摄 586$ \times $452 5.2pix Couturier[81] 特征点法 ORB — 真实拍摄 — — Couturier[82] 特征点法 SURF — 真实拍摄 1 920$ \times $1 080 5.2 m Goforth[42] 深度学习 VGG16 谷歌地图 真实拍摄 4 608$ \times $2 592 25 m Amer[44] 深度学习 VGG16 谷歌地图 Bing地图 500$ \times $500 91.2% Nassar[47] 深度学习 U-Net 谷歌地图+Bing地图 谷歌地球 — — Marcu[60] 深度学习 MSMT OpenStreetMap — 1 500$ \times $1 500 — Schleiss[52] 深度学习 cGAN+SSD — 真实拍摄 — — Zheng[64] 深度学习 ResNet 谷歌地图 谷歌地球 512$ \times $512 70.54% Workman[65] 深度学习 — 谷歌地图 谷歌街景/Flickr — — Hays[66] 深度学习 — 网络爬取 Flickr — — Weyand[62] 深度学习 LSTM 谷歌地图 谷歌地球 — — Wu[63] 深度学习 Lucas-Kanade 真实拍摄 仿真数据 5 632$ \times $5 376 9.8 m Li[96] 深度学习 channel attention 真实拍摄 真实拍摄 — 44.7% Jouko[97] 深度学习 正交投影 谷歌地图 真实拍摄 4 800$ \times $2 987 11.2 m Wen[98] 深度学习 SiamRPN 谷歌地图 真实拍摄 — — Wang[78] 深度学习 LPN 谷歌地图 谷歌地球 512$ \times $512 79.14% Dai[99] 深度学习 FSRA 谷歌地图 谷歌地球 512$ \times $512 87.32% Tian[100] 深度学习 PCL 谷歌地图 谷歌地球 512$ \times $512 87.53% Zhu[101] 深度学习 SUES-200 谷歌地图 真实拍摄 512$ \times $512 80.67% -
[1] 李学龙. 临地安防. 中国计算机学会通讯, 2022, 18(11): 44−52Li Xue-Long. Vicinagearth security. Communications of the CCF, 2022, 18(11): 44−52 [2] 陈杰, 方浩, 曾宪琳. 面向高危行业的无人平台智能化发展. 中国科学: 信息科学, 2021, 51: 1397−1410 doi: 10.1360/SSI-2021-0154Chen Jie, Fang Hao, Zeng Xian-Lin. On the intelligent development of unmanned platforms in high-risk industries. SCIENTIA SINICA Informationis, 2021, 51: 1397−1410 doi: 10.1360/SSI-2021-0154 [3] “十四五”民用航空发展规划. 中国民用航空局, 2021 [4] 赵春晖, 周昳慧, 林钊, 等. 无人机景象匹配视觉导航技术综述. 中国科学: 信息科学, 2019, 49: 507−519 doi: 10.1360/N112018-00316Zhao Chun-Hui, Zhou Yi-Hui, Lin Zhao, et al. Review of scene matching visual navigation for unmanned aerial vehicles. SCIENTIA SINICA Informationis, 2019, 49: 507−519 doi: 10.1360/N112018-00316 [5] Huang G. Visual-inertial navigation: A concise review. In: Proceedings of International Conference on Robotics and Automation, 2019: 9572−9582 [6] Li S, Stopher P. Review of GPS travel survey and GPS data-processing methods. Transport Reviews, 2014(3): 316−3 [7] Couturier A, AkhloufiM A. A review on absolute visual localization for UAV. Robotics and Autonomous Systems, 2021, 135: 103666 doi: 10.1016/j.robot.2020.103666 [8] Ma J, Jiang X, Fan A, et al. Image matching from handcrafted to deep features: A survey. International Journal Computer Vision, 2021, 129: 23−79 doi: 10.1007/s11263-020-01359-2 [9] Zitová B, Flusser J. Image registration methods: A survey. Image and Vision Computing, 2003, 21: 977−1000 doi: 10.1016/S0262-8856(03)00137-9 [10] Moigne J, Campbell W. Cromp R. An automated parallel image registration technique based on the correlation of wavelet features. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40: 1849−1864 doi: 10.1109/TGRS.2002.802501 [11] Pan W, Wei S, Lai S. Efficient NCC-based image matching in Walsh-Hadamard domain. In: Proceedings of European Conference on Computer Vision, 2008: 468−480 [12] Liu H, Guo B, Feng Z. Pseudo-log-polar Fourier transform for image registration. IEEE Signal Processing Letters, 2006, 13: 17−20 doi: 10.1109/LSP.2005.860549 [13] Cain S, Hayat M, Armstrong E. Projection based image registration in the presence of fixed pattern noise. IEEE Transactions on Image Processing, 2001, 10: 1860−1872 doi: 10.1109/83.974571 [14] Dalen G, Magree D, Johnson E. Absolute localization using image alignment and particle filtering. In: Proceedings of AIAA Guidance. Navigation, and Control Conference, 2016: 647 [15] Klein S. Staring M. Pluim J. Evaluation of optimization methods for nonrigid medical image registration using mutual information and b-splines. IEEE Transactions on Image Processing, 2007, 16: 2879−2890 doi: 10.1109/TIP.2007.909412 [16] Loeckx D. Slagmolen P. Maes F., et al. Nonrigid image registration using conditional mutual information. IEEE Transactions on Medical Imaging, 2010, 29: 19−29 doi: 10.1109/TMI.2009.2021843 [17] Viola P. Alignment by maximization of mutual information. International Journal of Computer Vision, 1997, 24: 137−154 doi: 10.1023/A:1007958904918 [18] Yol A, Delabarre B, Dame A, etc. Vision-based absolute localization for unmanned aerial vehicles. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, 2014, 1: 3429–3434 [19] Fan B, Du Y, Zhu L, et al. The registration of UAV down-looking aerial images to satellite images with image entropy and edges. In: Proceedings of International Conference on Intelligent Robotics and Applications, 2010, 1: 609−617 [20] Levin E, Kupiec S, Forrester T, et al. GIS-based UAV real-time path planning and navigation. In: Proceedings of Sensors, and Command, Control, Communications, and Intelligence Technologies for Homeland Defense and Law Enforcement, 2002, 4708: 296−303 [21] Lowe D. Object recognition from local scale-invariant features. In: Proceedings of IEEE International Conference on Computer Vision, 1999, 2: 1150−1157 [22] Lowe D. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 2004, 60: 91−110 doi: 10.1023/B:VISI.0000029664.99615.94 [23] Shan M, Wang F, Lin F, et al. Google map aided visual navigation for UAVs in GPS-denied environment. In: Proceedings of IEEE International Conference on Robotics and Biomimetics, 2015, 1: 114–119 [24] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2005, 1: 886–893 [25] Sun D, Roth S, Black M. Secrets of optical flow estimation and their principles. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2010, 1: 2432−2439 [26] Rublee E, Rabaud V, Konolige K, et al. ORB: An efficient alternative to SIFT or SURF. In: Proceedings of International Conference on Computer Vision, 2011, 1: 2564–2571 [27] Masselli A, Richard H, Andreas Z. Localization of unmanned aerial vehicles using terrain classification from aerial images. Intelligent Autonomous Systems, 2016, 13: 831−842 [28] Alcantarilla P, Nuevo J, Bartoli A. Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: Proceedings of British Machine Vision Conference, 2013, 13: 1−11 [29] Leutenegger S, Chli M, Siegwart R. BRISK: Binary robust invariant scalable keypoints. In: Proceedings of International Conference on Computer Vision, 2011, 1: 2548–2555 [30] Chiu H, Das A, Miller P, et al. Precise vision-aided aerial navigation. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, 2014, 1: 688–695 [31] Mantelli M, Pittol D, Neuland R, et al. A novel measurement model based on abBRIEF for global localization of a UAV over satellite images. Robotics and Autonomous Systems, 2019, 112: 304−319 doi: 10.1016/j.robot.2018.12.006 [32] Masselli A, Hanten R, Zell A. Localization of unmanned aerial vehicles using terrain classification from aerial images. Advances in Intelligent Systems and Computing, 2016, 1: 831−842 [33] Shan M, Charan A. Google map referenced UAV navigation via simultaneous feature detection and description. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, 2015 [34] Woo J, Son K, Li T, et al. Vision-based UAV navigation in mountain area. In: Proceedings of MVA, 2007, 1: 236−239 [35] Han X, Leung T, Jia Y, etc. Matchnet: Unifying feature and metric learning for patch-based matching. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2015, 1: 3279–3286 [36] Chang J, Lan Z, Cheng C, et al. Data uncertainty learning in face recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2020, 1: 5710–5719 [37] Tian Y, Deng X, Zhu Y, et al. Cross-time and orientation-invariant overhead image geolocalization using deep local features. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision, 2020, 1: 2501–2509 [38] Nassar A, Amer K, ElHakim R, et al. A deep CNN-based framework for enhanced aerial imagery registration with applications to UAV geolocalization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, 1: 1594–159410 [39] Noh H, Araujo A, Sim J. Large-scale image retrieval with attentive deep local features. In: Proceedings of IEEE International Conference on Computer Vision, 2017, 1: 3476–3485 [40] Teichmann M, Araujo A, Zhu M. Detect-to-retrieve: Efficient regional aggregation for image search. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2019, 1: 5109–5118 [41] Hinzmann T, Siegwart R. Deep UAV localization with reference view rendering. arXiv preprint, 2020, arXiv: 2008.04619 [42] Goforth H, Lucey S. GPS-denied UAV localization using pre-existing satellite imagery. In: Proceedings of International Conference on Robotics and Automation, 2019, 1: 2974–2980 [43] Jouko K, Verdoja F, Kyrki V. Season-invariant GNSS-denied visual localization for UAVs. arXiv preprint, 2021, arXiv: 2110.01967 [44] Amer K, Samy M, ElHakim R, et al. Convolutional neural network-based deep urban signatures with application to drone localization. In: Proceedings of IEEE International Conference on Computer Vision Workshops, 2017, 1: 2138–2145 [45] Google地图, 2020, https://cloud.google.com/mapplatform/ [46] Bing地图, 2020, https://www.bing.com/map [47] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint, 2014, arXiv: 1409.1556 [48] Nassar A, Amer K, ElHakim R, et al. A deep CNN-based framework for enhanced aerial imagery registration with applications to UAV geolocalization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, 1: 1513–1523 [49] Nassar A, ElHelw M. Aerial imagery registration using deep learning for UAV geolocalization. Deep Learning in Computer Vision: Principles and Applications, 2020, 7: 183−210 [50] Fischler M, Bolles R. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communication ACM, 1981, 24: 381−395 doi: 10.1145/358669.358692 [51] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, 1: 234–241 [52] Schleiss M. Translating aerial images into street-map representations for visual self-localization of UAVs. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 2019, 4213: 575−580 [53] Isola P, Zhu J, Zhou T, et al. Image-to-image translation with conditional adversarial networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017, 1: 1125–1134 [54] OpenStreetMap, 2020, https://www.openstreetmap.org/. [55] Lin Y, Medioni G. Map-enhanced UAV image sequence registration and synchronization of multiple image sequences. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007, 1: 1−7 [56] Huang S, Huang C, Chou C. Image registration among UAV image sequence and Google satellite image under quality mismatch. In: Proceedings of International Conference on ITS Telecommunications, 2012, 1: 311−315 [57] Wan X, Liu J, Yan H, Morgan G. Illumination-invariant image matching for autonomous UAV localisation based on optical sensing. ISPRS J. Photogramm. Remote Sens, 2016, 1: 198−213 [58] Patel B. Visual localization for UAVs in outdoor GPS-denied environments. University of Toronto, 2019 [59] Kevin P, Scherer S. Precision UAV landing in unstructured environments. In: Proceedings of International Symposium on Experimental Robotics, 2018 [60] Marcu A, Costea D, Slusanschi E, et al. A multi-stage multi-task neural network for aerial scene interpretation and geolocalization. arXiv preprint, 2018, arXiv: 1804.01322 [61] Pan A, Yang Y. Remote sensing images registration with different viewpoints. In: Proceedings of International Conference on Audio, Language and Image Processing, 2016, 1: 699–704 [62] Weyand T, Kostrikov I, Philbin J. Planet-photo geolocation with convolutional neural networks. In: Proceedings of European Conference on Computer Vision, 2016, 1: 37−55 [63] Wu S, Du C, Chen H, et al. Coarse-to-fine UAV image geo-localization using multi-stage Lucas-Kanade networks. In: Proceedings of 2021 2nd Information Communication Technologies Conference, 2021, 1: 220–224 [64] Zheng Z, Wei Y, Yang Y. University-1652: A multi-view multi-source benchmark for drone-based geo-localization. arXiv preprint, 2020, arXiv: 2002.12186 [65] Workman S, Souvenir R, Jacobs N. Wide-area image geolocalization with aerial reference imagery. In: Proceedings of IEEE International Conference on Computer Vision, 2015, 1: 3961–3969 [66] Hays J, Efros A. IM2GPS: Estimating geographic information from a single image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2008, 1: 1–8 [67] Yang H, Lu X, Zhu Y. Cross-view geo-localization with evolving transformer. arXiv preprint, 2021, arXiv: 2107.00842 [68] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In: Proceedings of International Conference on Learning Representations, 2021 [69] Shi Y, Liu L, Yu X, et al. Spatial-aware feature aggregation for image based cross-view geolocalization. In: Proceedings of Advances in Neural Information Processing Systems, 2019, 32: 10090–10100 [70] Liu L, Li H. Lending orientation to neural networks for cross-view geo-localization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2019, 1: 5624–5633 [71] Hu S, Chang, X. Multi-view drone-based geo-localization via style and spatial alignment. CoRR, 2020 [72] Jin Y, Li C, Li Y, et al. Model latent views with multi-center metric learning for vehicle re-identification. IEEE Transactions on Intelligent Transportation Systems, 2021, 22: 1919−1931 doi: 10.1109/TITS.2020.3042558 [73] Sun B, Liu G, Yuan Y. F3-net: Multiview scene matching for drone-based geo-localization. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5610611 [74] Ding L, Zhou J, Meng L, et al. A practical cross-view image matching method between UAV and satellite for UAV-based geo-localization. Remote Sensing, 2021, 13: 47 [75] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: Proceedings of International Conference on Machine Learning, 2017, 1: 214–223 [76] Chan E, Monteiro M, Kellnhofer P, et al. Pi-GAN: Periodic implicit generative adversarial networks for 3D-aware image synthesis. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2021, 1: 5799–5809 [77] Shi Y, Yu X, Liu L, et al. Optimal feature transport for cross-view image geo-localization. In: Proceedings of AAAI Conference on Artificial Intelligence, 2020, 34: 11990–11997 [78] Wang T, Zheng Z, Yan C, et al. Each part matters: Local patterns facilitate cross-view geo-localization. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32: 867−879 [79] 司书斌, 赵大伟, 徐婉莹, 等. 视觉—惯性导航定位技术研究进展. 中国图象图形学报, 2021, 26: 1470−1482 doi: 10.11834/jig.200863Si Shu-Bin, Zhao Da-Wei, Xu Wan-Ying, et al. Review on visual-inertial navigation and positioning technology. Journal of Image and Graphics, 2021, 26: 1470−1482 doi: 10.11834/jig.200863 [80] Nadir C, Sylvie L. An improved shoe-mounted inertial navigation system. In: Proceedings of International Conference on Indoor Positioning and Indoor Navigation, 2010, 1: 1−6 [81] Couturier A, Akhloufi M. Relative visual localization for UAV navigation. Degraded Environments: Sensing, Processing, and Display, 2018, 1: 10642 [82] Couturier A, Akhloufi M. Conditional probabilistic relative visual localization for unmanned aerial vehicles. In: Proceedings of IEEE Canadian Conference of Electrical and Computer Engineering, 2020, 1: 391–394 [83] Luca C, Sertac K. Attention and anticipation in fast visual-inertial navigation. IEEE Transactions on Robotics, 2019, pp. 1−20. [84] Tan C, Park S. Design of accelerometer-based inertial navigation systems. IEEE Transactions on Instrumentation and Measurement, 2005, 54: 2520−2530 doi: 10.1109/TIM.2005.858129 [85] Zhao C, Rongzhi W, Tianwu Z, et al. Visual odometry and scene matching integrated navigation system in UAV. In: Proceedings of International Conference on Information Fusion. IEEE, 2014: 1−6. [86] Li Y, Pan Q, Zhao C, et al. Scene matching based EKF-SLAM visual navigation. In: Proceedings of Chinese Control Conference. IEEE, 2012: 5094−5099. [87] Liu P, Heng L, Sattler T, et al. Direct visual odometry for a fisheye-stereo camera. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017, 1: 1746−1752 [88] Wisely B, Soohwan K, Yan Z, et al. σ-DVO: Sensor noise model meets dense visual odometry. In: Proceedings of IEEE International Symposium on Mixed and Augmented Reality, 2016, 1: 18−26 [89] Martin B, Volker W. How to distinguish inliers from outliers in visual odometry for high-speed automotive applications. in Proc. IEEE Intelligent Vehicles Symposium, 2016, 1: 478−483 [90] Frank S, Jürgen S, Daniel C. Real-time visual odometry from dense RGB-D images. In: Proceedings of IEEE International Conference on Computer Vision Workshops, 2011, 1: 719−722 [91] Koide K, Yokozuka M, Oishi S. Globally consistent 3D LiDAR mapping with GPU-accelerated GICP matching cost factors. IEEE Robotics and Automation Letters, 2021, 6: 8591−8598 doi: 10.1109/LRA.2021.3113043 [92] Joel H, Dimitrios K, Sean B, et al. Consistency analysis and improvement of vision-aided inertial navigation. IEEE Transactions on Robotics, 2019, 30: 158−176 [93] 朱启举, 樊振辉, 梅春波, 等. 基于景象匹配的低精度MEMS航向修正与组合算法. 中国惯性技术学报, 2023, 31(09): 870−875Zhu Qi-Ju, Fan Zhen-Hui, Mei Chun-Bo, et al. Heading correction and combination algorithm for MEMS with low accuracy based on scene matching. Journal of Chinese Inertial of Technology, 2023, 31(09): 870−875 [94] Yin X, Wang X, Du X, etc. Scale recovery for monocular visual odometry using depth estimated with deep convolutional neural fields. In: Proceedings of IEEE International Conference on Computer Vision, 2017, 1: 5870−5878 [95] Ye W, Lan X, Chen S, et al. PVO: Panoptic visual odometry. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2023, 1: 9579−9589 [96] Li C, Liu G, Yuan Y. A multi-source image matching network for UAV visual location. In: Proceedings of IEEE International Conference on Image Processing, 2022, 1: 1651−1655 [97] Jouko K, Riccardo R, Francesco V, et al. LSVL: Large-scale season-invariant visual localization for UAVs. arXiv preprint, 2022, arXiv: 2212.03581 [98] Wen K, Jie C, Chen J, et al. MO SiamRPN with weight adaptive joint MIoU for UAV visual localization. Remote Sensing, 2022, 14: 4467 doi: 10.3390/rs14184467 [99] Dai M, Hu J, Zhuang J, et al. A transformer-based feature segmentation and region alignment method for UAV-view geo-localization. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(7): 4376−4389 [100] Tian X, Shao J, Ouyang D, et al. UAV-satellite view synthesis for cross-view geo-localization. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(7): 4804−4815 [101] Zhu R, Yin L, Yang M, et al. SUES-200: A multi-height multi-scene cross-view image benchmark across drone and satellite. IEEE Transactions on Circuits and Systems for Video Technology, 2023 [102] Lang C, Cheng G, Tu B, et al. Global rectification and decoupled registration for few-shot segmentation in remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5617211 [103] Zhang B, Wu Y, Zhao B, et al. Progress and challenges in intelligent remote sensing satellite systems. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1814−1822 doi: 10.1109/JSTARS.2022.3148139 [104] Zhang Z, Zheng L, Piao Y, et al. Blind remote sensing image deblurring using local binary pattern prior. Remote Sensing, 2022, 14(5): 1276 doi: 10.3390/rs14051276 [105] Guo J, Zhang Z, Mao Y, et al. Automatic extraction of discontinuity traces from 3D rock mass point clouds considering the influence of light shadows and color change. Remote Sensing, 2022, 14(21): 5314 doi: 10.3390/rs14215314 [106] Yao Y, Zhang Y, Wan Y, et al. Multi-modal remote sensing image matching considering co-occurrence filter. IEEE Transactions on Image Processing, 2022, 31: 2584−2597 doi: 10.1109/TIP.2022.3157450 [107] Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009: 248−255 [108] Wang C H, Huang K Y, Yao Y, et al. Lightweight deep learning: An overview. IEEE Consumer Electronics Magazine, 2022 [109] Jiang C, Zhao D, Zhang Q, et al. A multi-GNSS/IMU data fusion algorithm based on the mixed norms for land vehicle applications. Remote Sensing, 2023, 15(9): 2439 doi: 10.3390/rs15092439 [110] Bappy A M, Asfak-Ur-Rafi M D, Islam M S, et al. Design and development of unmanned aerial vehicle (drone) for civil applications. BRAC University, 2015 [111] Alberts I L, Mercolli L, Pyka T, et al. Large language models (LLM) and ChatGPT: What will the impact on nuclear medicine be. European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50(6): 1549−1552 doi: 10.1007/s00259-023-06172-w
计量
- 文章访问数: 145
- HTML全文浏览量: 71
- 被引次数: 0