2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态事件触发通信协议的多智能体系统自适应可靠控制

范泉涌 张乃宗 唐勇 许斌

范泉涌, 张乃宗, 唐勇, 许斌. 基于动态事件触发通信协议的多智能体系统自适应可靠控制. 自动化学报, 2024, 50(5): 924−936 doi: 10.16383/j.aas.c230766
引用本文: 范泉涌, 张乃宗, 唐勇, 许斌. 基于动态事件触发通信协议的多智能体系统自适应可靠控制. 自动化学报, 2024, 50(5): 924−936 doi: 10.16383/j.aas.c230766
Fan Quan-Yong, Zhang Nai-Zong, Tang Yong, Xu Bin. Adaptive reliable control of multi-agent systems based on dynamic event-triggered communication protocol. Acta Automatica Sinica, 2024, 50(5): 924−936 doi: 10.16383/j.aas.c230766
Citation: Fan Quan-Yong, Zhang Nai-Zong, Tang Yong, Xu Bin. Adaptive reliable control of multi-agent systems based on dynamic event-triggered communication protocol. Acta Automatica Sinica, 2024, 50(5): 924−936 doi: 10.16383/j.aas.c230766

基于动态事件触发通信协议的多智能体系统自适应可靠控制

doi: 10.16383/j.aas.c230766
基金项目: 国家自然科学基金(61933010, U23A20337), 陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-92), 陕西省重点研发计划(2021GXLH-01-13), 陕西省自然科学基础研究计划(2024JC-YBMS-469)资助
详细信息
    作者简介:

    范泉涌:西北工业大学自动化学院副教授. 主要研究方向为非线性系统智能控制与可靠控制, 无人系统强化学习. E-mail: fanquanyong@nwpu.edu.cn

    张乃宗:西北工业大学自动化学院硕士研究生. 2021 年获得中国矿业大学学士学位. 主要研究方向为事件触发控制, 多智能体系统的容错控制. E-mail: naizongzhang@mail.nwpu.edu.cn

    唐勇:中航(成都)无人机系统股份有限公司总设计师. 主要研究方向为无人系统设计. E-mail: tangyonguas@126.com

    许斌:西北工业大学教授. 2006年获得西北工业大学学士学位, 2012年获得清华大学博士学位. 主要研究方向为智能控制, 自适应控制及其应用. 本文通信作者. E-mail: smileface.binxu@gmail.com

Adaptive Reliable Control of Multi-agent Systems Based on Dynamic Event-triggered Communication Protocol

Funds: Supported by National Natural Science Foundation of China (61933010, U23A20337), Qinchuangyuan “Scientist + Engineer” Team Construction Program of Shaanxi Province (2022KXJ-92), Key Research and Development Program of Shaanxi Province (2021GXLH-01-13), and Natural Science Basic Research Program of Shaanxi Province (2024JC-YBMS-469)
More Information
    Author Bio:

    FAN Quan-Yong Associate professor at the School of Automation, Northwestern Polytechnical University. His research interest covers intelligent control and reliable control of nonlinear systems and reinforcement learning for unmanned systems

    ZHANG Nai-Zong Master student at the School of Automation, Northwestern Polytechnical University. He received his bachelor degree from China University of Mining and Technology in 2021. His research interest covers event-triggered control and fault-tolerant control of multi-agent systems

    TANG Yong Chief designer of AVIC (Chengdu) UAS Co., Ltd. His main research interest is design of unmanned systems

    XU Bin Professor at Northwestern Polytechnical University. He received his bachelor degree from Northwestern Polytechnical University in 2006, and received his Ph.D. degree from Tsinghua University in 2012. His research interest covers intelligent control and adaptive control with applications. Corresponding author of this paper

  • 摘要: 针对多智能体系统中邻居节点间通信资源受限的情况, 研究基于动态事件触发通信协议的多智能体系统自适应可靠一致性控制问题. 首先, 设计一种基于自适应参数估计技术的容错控制策略, 来应对未知执行器故障. 其次, 提出一种新型动态事件触发函数, 通过增加具有自适应调节能力的动态变量来延长事件触发间隔. 在此基础上, 证明在智能体之间非连续通信的情况下, 所提方法仅依靠智能体与邻居在触发时刻的交互信息就可以确保一致性误差的收敛. 此外, 从理论上说明智能体间的事件触发通信不存在芝诺现象. 最后, 针对无人船编队系统开展仿真, 结果能够说明所提自适应事件触发可靠控制方法的有效性.
  • 图  1  网络通信拓扑

    Fig.  1  Network communication topology

    图  2  纵荡位置

    Fig.  2  Surge position

    图  7  偏航速率

    Fig.  7  Yaw rate

    图  8  无人船集群状态

    Fig.  8  States of unmanned ship cluster

    图  3  横荡位置

    Fig.  3  Sway position

    图  4  偏航角

    Fig.  4  Yaw angle

    图  5  纵荡速度

    Fig.  5  Surge velocity

    图  6  横荡速度

    Fig.  6  Sway velocity

    图  9  基于触发通信协议(8)的触发时刻和触发间隔, (a)、(b)、(c)、(d) 和(e)分别表示智能体1、智能体2、智能体3、智能体4和智能体5的触发时刻和触发间隔

    Fig.  9  Triggering moment and triggering interval for each agent by communication protocol (8), where (a), (b), (c), (d) and (e) indicate the triggering moment and triggering interval of the agent 1, agent 2, agent 3, agent 4 and agent 5 respectively

    图  10  基于文献[25]的触发时刻和触发间隔, (a)、(b)、(c)、(d) 和(e)分别表示智能体1、智能体2、智能体3、智能体4和智能体5的触发时刻和触发间隔

    Fig.  10  Triggering moment and triggering interval for each agent in reference [25], where (a), (b), (c), (d) and (e) indicate the triggering moment and triggering interval of the agent 1, agent 2, agent 3, agent 4 and agent 5 respectively

    图  11  自适应参数$ \hat{\rho}_{ij} $

    Fig.  11  Adaptive parameter $ \hat{\rho}_{ij} $

    图  12  动态变量$ \eta_i(t) $

    Fig.  12  Dynamic variable $ \eta_i(t) $

  • [1] Yang X K, Wang W, Huang P. Distributed optimal consensus with obstacle avoidance algorithm of mixed-order UAVs-USVs-UUVs systems. ISA Transactions, 2020, 107: 270−286 doi: 10.1016/j.isatra.2020.07.028
    [2] Shou Y X, Xu B, Zhang A D, Mei T. Virtual guidance-based coordinated tracking control of multi-autonomous underwater vehicles using composite neural learning. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5565−5574 doi: 10.1109/TNNLS.2021.3057068
    [3] Nair A S, Hossen T, Campion M, Selvaraj D F, Goveas N, Kaabouch N, et al. Multi-agent systems for resource allocation and scheduling in a smart grid. Technology and Economics of Smart Grids and Sustainable Energy, 2018, 3: Article No. 15 doi: 10.1007/s40866-018-0038-9
    [4] Shou Y X, Xu B, Lu H B, Zhang A D, Mei T. Finite-time formation control and obstacle avoidance of multi-agent system with application. International Journal of Robust and Nonlinear Control, 2022, 32(5): 2883−2901 doi: 10.1002/rnc.5641
    [5] Seyboth G S, Ren W, Allgower F. Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization. Automatica, 2016, 68: 132−139 doi: 10.1016/j.automatica.2016.01.068
    [6] Li Y J, Tan C. A survey of the consensus for multi-agent systems. Systems Science & Control Engineering, 2019, 7(1): 468−482
    [7] Xie C H, Yang G H. Cooperative guaranteed cost fault-tolerant control for multi-agent systems with time-varying actuator faults. Neurocomputing, 2016, 214: 382−390 doi: 10.1016/j.neucom.2016.06.022
    [8] Liu Y, Yang G H. Integrated design of fault estimation and fault-tolerant control for linear multi-agent systems using relative outputs. Neurocomputing, 2019, 329: 468−475 doi: 10.1016/j.neucom.2018.11.005
    [9] Khalili M, Zhang X D, Polycarpou M M, Parisini T, Cao Y C. Distributed adaptive fault-tolerant control of uncertain multi-agent systems. Automatica, 2018, 87: 142−151 doi: 10.1016/j.automatica.2017.09.002
    [10] Deng C, Yang G H. Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems. Automatica, 2019, 103: 62−68 doi: 10.1016/j.automatica.2019.01.013
    [11] Wang X, Yang G H. Adaptive reliable coordination control for linear agent networks with intermittent communication constraints. IEEE Transactions on Control of Network Systems, 2018, 5(3): 1120−1131
    [12] Yang P, Ma B, Dong Y, Liu J W. Fault-tolerant consensus of leader-following multi-agent systems based on distributed fault estimation observer. International Journal of Control, Automation and Systems, 2018, 16(5): 2354−2362 doi: 10.1007/s12555-017-0223-y
    [13] Lü S Y, Jin X Z, Wu X M, Ding L J, Chi J. Robust adaptive event-triggered fault-tolerant control for time-varying systems against perturbations and faulty actuators. Applied Mathematics and Computation, 2022, 426: Article No. 127133 doi: 10.1016/j.amc.2022.127133
    [14] Li H Y, Wu Y, Chen M. Adaptive fault-tolerant tracking control for discrete-time multiagent systems via reinforcement learning algorithm. IEEE Transactions on Cybernetics, 2021, 51(3): 1163−1174
    [15] Zhao G L, Wang Z, Fu X W. Fully distributed dynamic event-triggered semiglobal consensus of multi-agent uncertain systems with input saturation via low-gain feedback. International Jour nal of Control, Automation and Systems, 2021, 19(4): 1451−1460 doi: 10.1007/s12555-019-1080-7
    [16] Guo X G, Zhang D Y, Wang J L, Ahn C K. Adaptive memory event-triggered observer-based control for nonlinear multi-agent systems under DoS attacks. IEEE/CAA Journal of Automatica Sinica, 2021, 8(10): 1644−1656 doi: 10.1109/JAS.2021.1004132
    [17] Bernuau E, Moulay E, Coirault P, Isfoula F. Practical consensus of homogeneous sampled-data multiagent systems. IEEE Transactions on Automatic Control, 2019, 64(11): 4691−4697 doi: 10.1109/TAC.2019.2904442
    [18] Josse F, Bernuau E, Moulay E, Coirault P. Robustness of sampled-data homogeneous systems. Automatica, 2021, 123: Article No. 109345 doi: 10.1016/j.automatica.2020.109345
    [19] Xu Y, Wu Z G. Data-based collaborative learning for multi-agent systems under distributed denial-of-service attacks. IEEE Transactions on Cognitive and Developmental Systems, 2024, 16 (1): 75−85
    [20] Zheng S Q, Shi P, Agarwal R K, Lim C P. Periodic event-triggered output regulation for linear multi-agent systems. Automatica, 2020, 122: Article No. 109223 doi: 10.1016/j.automatica.2020.109223
    [21] Zhang H, Feng G, Yan H C, Chen Q J. Observer-based output feedback event-triggered control for consensus of multi-agent systems. IEEE Transactions on Industrial Electronics, 2014, 61(9): 4885−4894
    [22] Liu T, Cao M, De Persis C, Hendrickx J M. Distributed event-triggered control for asymptotic synchronization of dynamical networks. Automatica, 2017, 86: 199−204 doi: 10.1016/j.automatica.2017.08.026
    [23] Ruan X L, Feng J W, Xu C, Wang J Y. Observer-based dynamic event-triggered strategies for leader-following consensus of multi-agent systems with disturbances. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 3148−3158 doi: 10.1109/TNSE.2020.3017493
    [24] Zhu W, Jiang Z P, Feng G. Event-based consensus of multi-agent systems with general linear models. Automatica, 2014, 50(2): 552−558 doi: 10.1016/j.automatica.2013.11.023
    [25] Deng C, Yang G H. Leaderless and leader-following consensus of linear multi-agent systems with distributed event-triggered estimators. Journal of the Franklin Institute, 2019, 356(1): 309−333 doi: 10.1016/j.jfranklin.2018.10.001
    [26] Deng C, Wen C Y, Wang W, Li X Y, Yue D. Distributed adaptive tracking control for high-order nonlinear multiagent systems over event-triggered communication. IEEE Transactions on Automatic Control, 2023, 68(2): 1176−1183
    [27] Guo X G, Liu P M, Wang J L, Ahn C K. Event-triggered adaptive fault-tolerant pinning control for cluster consensus of heterogeneous nonlinear multi-agent systems under aperiodic DoS attacks. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1941−1956 doi: 10.1109/TNSE.2021.3077766
    [28] Ge X H, Han Q L, Zhang X M, Ding D R. Dynamic event-triggered control and estimation: A survey. International Journal of Automation and Computing, 2021, 18(6): 857−886 doi: 10.1007/s11633-021-1306-z
    [29] Liu D, Yang G H. Dynamic event-triggered control for linear time-invariant systems with $L_2\text{-gain} $ performance. Internation al Journal of Robust and Nonlinear Control, 2019, 29(2): 507−518 doi: 10.1002/rnc.4403
    [30] Girard A. Dynamic triggering mechanisms for event-triggered control. IEEE Transactions on Automatic Control, 2015, 60(7): 1992−1997
    [31] Hao R L, Wang H B, Zheng W. Dynamic event-triggered adaptive command filtered control for nonlinear multi-agent systems with input saturation and disturbances. ISA Transactions, 2022, 130: 104−120 doi: 10.1016/j.isatra.2022.03.011
    [32] Qian Y Y, Liu L, Feng G. Distributed dynamic event-triggered control for cooperative output regulation of linear multiagent systems. IEEE Transactions on Cybernetics, 2020, 50(7): 3023−3032
    [33] Ruan X L, Xu C, Feng J W, Wang J Y, Zhao Y. Adaptive dynamic event-triggered control for multi-agent systems with matched uncertainties under directed topologies. Physica A: Statistical Mechanics and Its Applications, 2022, 586: Article No. 126450 doi: 10.1016/j.physa.2021.126450
    [34] Ye D, Chen M M, Yang H J. Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics. IEEE Transactions on Cybernetics, 2019, 49(3): 757−767
    [35] Xu Y, Wu Z G. Distributed adaptive event-triggered fault-tolerant synchronization for multiagent systems. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1537−1547
    [36] Hou Q H, Dong J X. Robust adaptive event-triggered fault-tolerant consensus control of multiagent systems with a positive minimum interevent time. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53 (7): 4003−4014
    [37] Sader M, Chen Z Q, Liu Z X, Deng C. Distributed robust fault-tolerant consensus control for a class of nonlinear multi-agent systems with intermittent communications. Applied Mathematics and Computation, 2021, 403: Article No. 126166 doi: 10.1016/j.amc.2021.126166
    [38] Huang J Y, Jia W, Wan T X, Xiao S Y, Wang L Q, Dong J X. Adaptive event-triggered fault-tolerant consensus of linear heterogeneous multiagent systems via hierarchical approach. Applied Mathematics and Computation, 2023, 447: Article No. 127909 doi: 10.1016/j.amc.2023.127909
    [39] Li H Y, Wu Y, Chen M, Lu R Q. Adaptive multigradient recursive reinforcement learning event-triggered tracking control for multiagent systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(1): 144−156
    [40] Zhu Z B, Wang F Y, Yin Y H, Liu Z X, Chen Z Q. Distributed fault-tolerant containment control for a class of non-linear multi-agent systems via event-triggered mechanism. Applied Mathematics and Computation, 2022, 430: Article No. 127250 doi: 10.1016/j.amc.2022.127250
    [41] Yang Y, Yue D, Xu C. Dynamic event-triggered leader-following consensus control of a class of linear multi-agent systems. Journal of the Franklin Institute, 2018, 355(15): 7706−7734 doi: 10.1016/j.jfranklin.2018.08.007
    [42] Zhang Z, Zhang S X, Li H P, Yan W S. Cooperative robust optimal control of uncertain multi-agent systems. Journal of the Franklin Institute, 2020, 357(14): 9467−9483 doi: 10.1016/j.jfranklin.2020.07.021
  • 加载中
图(12)
计量
  • 文章访问数:  777
  • HTML全文浏览量:  279
  • PDF下载量:  387
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 录用日期:  2024-03-21
  • 网络出版日期:  2024-04-24
  • 刊出日期:  2024-05-29

目录

    /

    返回文章
    返回