Dynamic Multi-objective Evolutionary Algorithm Based on Classification of Decision Variable Temporal Change Characteristics
-
摘要: 动态多目标优化问题(Dynamic multi-objective optimization problems, DMOPs) 广泛存在于科学研究和工程实践中, 其主要考虑在动态环境下同时联合优化多个冲突目标. 现有方法往往关注于目标空间的时域特征, 忽视了对单个决策变量变化特性的探索与利用, 从而在处理更复杂的问题时不能有效引导种群收敛. 为此, 提出一种基于决策变量时域变化特征分类的动态多目标进化算法(Dynamic multi-objective evolutionary algorithm based on classification of decision variable temporal change characteristics, FT-DMOEA). 所提算法在环境动态变化时, 首先基于决策变量时域变化特征分类方法将当前时刻决策变量划分为线性变化和非线性变化两种类型; 然后分别采用拉格朗日外插法和傅里叶预测模型对线性和非线性变化决策变量进行下一时刻的初始化操作. 为了更有效地识别非线性决策变量变化模式, 傅里叶预测模型通过傅里叶变换将历史种群数据从时域转换到频域, 在分析周期性频率特征后, 使用自回归模型进行频谱估计后再反变换至时域. 在多个基准数据集上和其他算法进行对比, 实验结果表明, 所提算法是有效的.Abstract: Dynamic multi-objective optimization problems (DMOPs) are widely encountered in scientific research and engineering practice, where the main focus is on jointly optimizing multiple conflicting objectives in dynamic environments. Existing methods often emphasize the temporal characteristics of the objective space, neglecting the exploration and utilization of the characteristics of individual decision variable changes, thus failing to effectively guide population convergence when dealing with more complex problems. To address this issue, a dynamic multi-objective evolutionary algorithm based on classification of decision variable temporal change characteristics (FT-DMOEA) is proposed. When the environment undergoes dynamic changes, the algorithm first classifies the decision variables at the current time into two types: Linear change and nonlinear change, based on the decision variable temporal change feature classification method. Subsequently, the algorithm uses Lagrange interpolation and Fourier prediction models to initialize the linear and nonlinear change decision variables for the next time step, respectively. In order to more effectively identify patterns of nonlinear decision variable changes, the Fourier prediction model transforms historical population data from the time domain to the frequency domain using Fourier transformation. After analyzing the periodic frequency features, an autoregressive model is used for spectral estimation before transforming back to the time domain. The experimental results indicate that the proposed algorithm is effective when compared with other algorithms on multiple benchmark datasets.
-
表 1 FDA测试函数集与DF测试函数集的问题特征与变化类型
Table 1 The problem features and types of variations in the FDA benchmark suite and the DF benchmark suite
问题名 目标数 变化类型 问题特征 FDA1 2 类型1 POS随时间改变 FDA2 2 类型3 POF凹凸变化 FDA3 2 类型2 POF中解的分布随时间变化 FDA4 3 类型1 POS随时间改变 FDA5 3 类型2 POF中解的分布随时间变化 DF1 2 类型2 POF凹凸变化 DF2 2 类型1 POS随时间改变 DF3 2 类型2 决策变量相关, POF凹凸变化 DF4 2 类型2 决策变量相关, POF范围和POS边界随时间变化 DF5 2 类型2 拐点的数量随时间改变, POF形状随时间变化 DF6 2 类型2 多模态, POF形状具有拐点区域和长尾特征 DF7 2 类型2 POS改变但质心不变, POF范围随时间变化 DF8 2 类型2 POS改变但质心不变, 决策变量相关 DF9 2 类型2 决策变量相关, POF的连续性随时间变化 DF10 3 类型2 POS改变但质心不变, 决策变量相关, POF凹凸变化 DF11 3 类型2 决策变量相关, POF的区域范围随时间变化 DF12 3 类型1 决策变量相关, POF存在随时间变化的孔洞 DF13 3 类型2 不连续性, 断开的POF段数量随时间变化 DF14 3 类型2 决策变量相关, POF退化性, 拐点的数量随时间变化 表 2 FT-DMOEA与四种对比算法在DF测试函数集上获得的MIGD指标的平均值和标准差值的统计结果
Table 2 Statistical results of mean and standard deviation values of MIGD metric obtained by FT-DMOEA and four comparative algorithms on the DF benchmark suite
测试
问题$n_{t}$, $\tau_{t}$ DNSGAII-B CR-DNSGAII KT-DMOEA HRS-DMOA FT-DMOEA DF1 5, 10 0.430 5 ± 1.18 ×$10^{-1}$ 0.084 9 ± 1.22 ×$10^{-2}$ 0.142 7 ± 2.17 ×$10^{-2}$ 0.074 0 ± 1.62 ×$10^{-2}$ 0.024 8 ± 3.94 ×$10^{-3}$ 10, 5 2.323 2 ± 7.40 ×$10^{-1}$ 0.110 2 ± 5.41 ×$10^{-2}$ 0.132 6 ± 2.27 ×$10^{-2}$ 0.085 9 ± 1.94 ×$10^{-2}$ 0.016 6 ± 2.10 ×$10^{-3}$ 10, 10 2.092 3 ± 6.29 ×$10^{-1}$ 0.103 8 ± 2.54 ×$10^{-2}$ 0.126 1 ± 1.94 ×$10^{-2}$ 0.088 4 ± 1.80 ×$10^{-2}$ 0.016 7 ± 3.11 ×$10^{-3}$ DF2 5, 10 0.266 7 ± 7.12 ×$10^{-2}$ 0.024 2 ± 4.11 ×$10^{-3}$ 0.109 3 ± 1.29 ×$10^{-2}$ 0.050 5 ± 1.68 ×$10^{-2}$ 0.047 2 ± 9.43 ×$10^{-3}$ 10, 5 1.233 8 ± 5.04 ×$10^{-1}$ 0.034 7 ± 1.87 ×$10^{-2}$ 0.119 6 ± 1.04 ×$10^{-2}$ 0.041 9 ± 1.31 ×$10^{-2}$ 0.036 8 ± 8.36 ×$10^{-3}$ 10, 10 1.345 8 ± 5.50 ×$10^{-1}$ 0.040 2 ± 1.66 ×$10^{-2}$ 0.109 5 ± 1.09 ×$10^{-2}$ 0.048 2 ± 1.37 ×$10^{-2}$ 0.037 5 ± 6.50 ×$10^{-3}$ DF3 5, 10 0.834 4 ± 1.86 ×$10^{-1}$ 0.639 3 ± 3.50 ×$10^{-1}$ 0.836 6 ± 8.29 ×$10^{-2}$ 0.518 2 ± 1.33 ×$10^{-1}$ 0.050 1 ± 1.12 ×$10^{-2}$ 10, 5 2.444 3 ± 8.07 ×$10^{-1}$ 0.380 7 ± 7.25 ×$10^{-2}$ 0.735 0 ± 1.24 ×$10^{-1}$ 0.568 0 ± 1.44 ×$10^{-1}$ 0.039 1 ± 7.27 ×$10^{-3}$ 10, 10 2.717 8 ± 7.92 ×$10^{-1}$ 0.394 3 ± 1.18 ×$10^{-1}$ 0.712 8 ± 9.16 ×$10^{-2}$ 0.591 6 ± 1.57 ×$10^{-1}$ 0.040 6 ± 7.75 ×$10^{-3}$ DF4 5, 10 1.636 0 ± 2.44 ×$10^{-1}$ 1.274 2 ± 1.41 ×$10^{-1}$ 1.623 1 ± 1.43 ×$10^{-1}$ 0.362 0 ± 7.49 ×$10^{-2}$ 0.111 0 ± 1.07 ×$10^{-2}$ 10, 5 1.860 1 ± 3.52 ×$10^{-1}$ 1.329 6 ± 1.47 ×$10^{-1}$ 1.710 9 ± 9.97 ×$10^{-2}$ 0.429 6 ± 6.97 ×$10^{-2}$ 0.108 3 ± 8.49 ×$10^{-3}$ 10, 10 1.713 3 ± 3.27 ×$10^{-1}$ 1.368 4 ± 1.81 ×$10^{-1}$ 1.708 9 ± 1.14 ×$10^{-1}$ 0.431 0 ± 7.83 ×$10^{-2}$ 0.114 4 ± 8.83 ×$10^{-3}$ DF5 5, 10 0.330 9 ± 5.93 ×$10^{-2}$ 0.069 8 ± 5.30 ×$10^{-2}$ 0.406 0 ± 4.98 ×$10^{-2}$ 0.036 1 ± 7.22 ×$10^{-3}$ 0.016 9 ± 2.47 ×$10^{-3}$ 10, 5 1.510 3 ± 5.20 ×$10^{-1}$ 0.059 4 ± 2.09 ×$10^{-2}$ 0.362 3 ± 6.79 ×$10^{-2}$ 0.036 7 ± 9.04 ×$10^{-3}$ 0.015 5 ± 2.54 ×$10^{-3}$ 10, 10 1.496 0 ± 4.17 ×$10^{-1}$ 0.065 5 ± 4.32 ×$10^{-2}$ 0.350 1 ± 6.63 ×$10^{-2}$ 0.036 6 ± 5.65 ×$10^{-3}$ 0.015 5 ± 3.10 ×$10^{-3}$ DF6 5, 10 6.276 0 ± 1.45 ×$10^{0}$ 2.780 8 ± 2.50 ×$10^{0}$ 3.269 4 ± 3.06 ×$10^{-1}$ 1.530 2 ± 6.95 ×$10^{-1}$ 0.677 7 ± 2.68 ×$10^{-1}$ 10, 5 1.825 8 ± 6.45 ×$10^{-1}$ 5.904 6 ± 4.39 ×$10^{0}$ 3.791 6 ± 4.24 ×$10^{-1}$ 1.778 4 ± 6.44 ×$10^{-1}$ 0.935 7 ± 5.40 ×$10^{-1}$ 10, 10 1.876 8 ± 1.04 ×$10^{0}$ 6.877 3 ± 3.12 ×$10^{0}$ 3.917 2 ± 3.90 ×$10^{-1}$ 1.206 6 ± 6.06 ×$10^{-1}$ 0.751 4 ± 3.15 ×$10^{-1}$ DF7 5, 10 2.857 8 ± 5.82 ×$10^{-1}$ 2.355 3 ± 7.25 ×$10^{-1}$ 2.938 0 ± 7.64 ×$10^{-1}$ 0.909 4 ± 2.12 ×$10^{-1}$ 37.663 0 ± 4.45 ×$10^{1}$ 10, 5 1.120 9 ± 1.35 ×$10^{-1}$ 9.100 2 ± 7.34 ×$10^{0}$ 4.445 3 ± 7.07 ×$10^{-1}$ 1.228 6 ± 1.74 ×$10^{-1}$ 13.374 3 ± 1.84 ×$10^{1}$ 10, 10 1.115 4 ± 1.53 ×$10^{-1}$ 5.756 8 ± 2.25 ×$10^{0}$ 2.967 1 ± 4.29 ×$10^{-1}$ 1.129 8 ± 1.53 ×$10^{-1}$ 105.840 0 ± 1.19 ×$10^{2}$ DF8 5, 10 0.302 3 ± 5.64 ×$10^{-2}$ 0.958 2 ± 1.32 ×$10^{-1}$ 1.093 7 ± 1.53 ×$10^{-2}$ 0.137 3 ± 6.89 ×$10^{-2}$ 0.075 9 ± 5.27 ×$10^{-3}$ 10, 5 0.278 3 ± 5.55 ×$10^{-2}$ 1.082 2 ± 1.38 ×$10^{-1}$ 1.073 6 ± 2.32 ×$10^{-2}$ 0.123 2 ± 3.16 ×$10^{-2}$ 0.070 0 ± 1.39$\times10^{-2}$ 10, 10 0.274 9 ± 5.93 ×$10^{-2}$ 1.035 3 ± 1.20 ×$10^{-1}$ 1.090 4 ± 1.78 ×$10^{-2}$ 0.110 8 ± 3.15 ×$10^{-2}$ 0.072 7 ± 4.83 ×$10^{-3}$ DF9 5, 10 1.164 3 ± 2.73 ×$10^{-1}$ 0.269 9 ± 1.11 ×$10^{-1}$ 0.677 8 ± 7.75 ×$10^{-2}$ 0.218 9 ± 3.09 ×$10^{-2}$ 0.584 4 ± 6.38 ×$10^{-2}$ 10, 5 1.146 7 ± 2.80 ×$10^{-1}$ 0.279 7 ± 1.12 ×$10^{-1}$ 0.642 7 ± 1.09 ×$10^{-1}$ 0.199 3 ± 3.56 ×$10^{-2}$ 0.795 7 ± 2.47 ×$10^{-1}$ 10, 10 1.089 1 ± 2.99 ×$10^{-1}$ 0.295 3 ± 1.40 ×$10^{-1}$ 0.656 7 ± 8.32 ×$10^{-2}$ 0.196 5 ± 2.64 ×$10^{-2}$ 0.497 2 ± 1.71 ×$10^{-2}$ DF10 5, 10 0.870 8 ± 1.70 ×$10^{-1}$ 0.434 5 ± 8.85 ×$10^{-2}$ 0.308 6 ± 1.91 ×$10^{-2}$ 0.266 1 ± 7.70 ×$10^{-2}$ 0.246 2 ± 2.48 ×$10^{-2}$ 10, 5 1.281 6 ± 3.47 ×$10^{-1}$ 0.393 3 ± 7.34 ×$10^{-2}$ 0.283 6 ± 2.15 ×$10^{-2}$ 0.328 3 ± 2.28 ×$10^{-2}$ 0.239 0 ± 1.84 ×$10^{-2}$ 10, 10 1.234 8 ± 3.28 ×$10^{-1}$ 0.350 4 ± 6.57 ×$10^{-2}$ 0.294 6 ± 1.33 ×$10^{-2}$ 0.323 0 ± 2.76 ×$10^{-2}$ 0.302 8 ± 2.62 ×$10^{-2}$ DF11 5, 10 0.771 7 ± 1.56 ×$10^{-1}$ 0.386 8 ± 5.11 ×$10^{-3}$ 0.163 6 ± 5.54 ×$10^{-3}$ 0.149 2 ± 3.68 ×$10^{-3}$ 0.111 7 ± 1.89 ×$10^{-3}$ 10, 5 0.873 0 ± 1.55 ×$10^{-1}$ 0.484 7 ± 8.07 ×$10^{-3}$ 0.163 4 ± 8.18 ×$10^{-3}$ 0.367 7 ± 2.78 ×$10^{-3}$ 0.111 4 ± 2.36 ×$10^{-3}$ 10, 10 0.903 9 ± 9.84 ×$10^{-2}$ 0.477 6 ± 1.52 ×$10^{-2}$ 0.164 3 ± 8.74 ×$10^{-3}$ 0.366 6 ± 2.20 ×$10^{-3}$ 0.111 3 ± 1.36 ×$10^{-3}$ DF12 5, 10 0.820 8 ± 6.17 ×$10^{-2}$ 0.307 6 ± 1.14 ×$10^{-2}$ 0.609 3 ± 5.28 ×$10^{-2}$ 0.510 8 ± 1.78 ×$10^{-1}$ 4.967 4 ± 4.42 ×$10^{0}$ 10, 5 0.865 6 ± 7.23 ×$10^{-2}$ 0.305 1 ± 3.42 ×$10^{-3}$ 0.632 1 ± 5.39 ×$10^{-2}$ 0.464 3 ± 1.81 ×$10^{-1}$ 2.445 5 ± 2.05 ×$10^{0}$ 10, 10 0.903 6 ± 7.61 ×$10^{-2}$ 0.307 4 ± 3.26 ×$10^{-3}$ 0.635 8 ± 7.12 ×$10^{-2}$ 0.623 6 ± 1.69 ×$10^{-1}$ 4.977 7 ± 4.31 ×$10^{0}$ DF13 5, 10 0.505 7 ± 1.04 ×$10^{-1}$ 0.255 4 ± 1.82 ×$10^{-2}$ 0.406 7 ± 4.16 ×$10^{-2}$ 0.240 9 ± 7.86 ×$10^{-3}$ 0.270 9 ± 7.57 ×$10^{-3}$ 10, 5 1.674 7 ± 4.90 ×$10^{-1}$ 0.305 2 ± 1.93 ×$10^{-2}$ 0.378 9 ± 3.80 ×$10^{-2}$ 0.255 6 ± 1.20 ×$10^{-2}$ 0.280 0 ± 5.47 ×$10^{-3}$ 10, 10 1.645 0 ± 6.22 ×$10^{-1}$ 0.303 1 ± 9.74 ×$10^{-3}$ 0.374 1 ± 3.30 ×$10^{-2}$ 0.252 7 ± 1.26 ×$10^{-2}$ 0.280 4 ± 3.85 ×$10^{-3}$ DF14 5, 10 0.412 6 ± 1.07 ×$10^{-1}$ 0.124 6 ± 2.11 ×$10^{-2}$ 0.131 0 ± 1.44 ×$10^{-2}$ 0.097 2 ± 4.35 ×$10^{-3}$ 0.116 9 ± 1.25 ×$10^{-2}$ 10, 5 3.002 8 ± 8.52 ×$10^{-1}$ 0.157 0 ± 2.06 ×$10^{-2}$ 0.125 3 ± 1.16 ×$10^{-2}$ 0.121 6 ± 3.71 ×$10^{-3}$ 0.079 9 ± 2.87 ×$10^{-3}$ 10, 10 3.082 5 ± 1.14 ×$10^{0}$ 0.161 4 ± 2.42 ×$10^{-2}$ 0.121 0 ± 1.32 ×$10^{-2}$ 0.123 1 ± 3.97 ×$10^{-3}$ 0.081 2 ± 3.78 ×$10^{-3}$ 表 3 FT-DMOEA与四种对比算法在DF测试函数集上获得的MHV指标的平均值和标准差值的统计结果
Table 3 Statistical results of mean and standard deviation values of MHV metric obtained by FT-DMOEA and four comparative algorithms on the DF benchmark suite
测试问题 $n_{t}$, $\tau_{t}$ DNSGAII-B CR-DNSGAII KT-DMOEA HRS-DMOA FT-DMOEA DF1 5, 10 0.183 8 ± 5.31 ×$10^{-2}$ 0.450 0 ± 1.54 ×$10^{-2}$ 0.381 1 ± 1.63 ×$10^{-2}$ 0.458 7 ± 3.15 ×$10^{-2}$ 0.507 2 ± 5.70 ×$10^{-3}$ 10, 5 0.008 9 ± 3.60 ×$10^{-2}$ 0.424 1 ± 6.92 ×$10^{-2}$ 0.390 9 ± 1.69 ×$10^{-2}$ 0.463 3 ± 3.03 ×$10^{-2}$ 0.521 4 ± 3.11 ×$10^{-3}$ 10, 10 0.010 8 ± 3.39 ×$10^{-2}$ 0.423 6 ± 3.82 ×$10^{-2}$ 0.394 0 ± 1.57 ×$10^{-2}$ 0.469 7 ± 4.19 ×$10^{-2}$ 0.521 4 ± 4.19 ×$10^{-3}$ DF2 5, 10 0.231 7 ± 7.41 ×$10^{-2}$ 0.687 2 ± 8.42 ×$10^{-3}$ 0.586 2 ± 1.04 ×$10^{-2}$ 0.699 0 ± 2.31 ×$10^{-2}$ 0.631 3 ± 1.43 ×$10^{-2}$ 10, 5 0.051 6 ± 1.14 ×$10^{-1}$ 0.674 3 ± 2.50 ×$10^{-2}$ 0.589 5 ± 9.76 ×$10^{-3}$ 0.659 5 ± 2.02 ×$10^{-2}$ 0.657 2 ± 5.78 ×$10^{-3}$ 10, 10 0.046 5 ± 8.94 ×$10^{-2}$ 0.666 1 ± 1.66 ×$10^{-2}$ 0.597 6 ± 1.28 ×$10^{-2}$ 0.681 8 ± 1.76 ×$10^{-2}$ 0.660 5 ± 6.43 ×$10^{-3}$ DF3 5, 10 0.030 5 ± 4.37 ×$10^{-2}$ 0.087 8 ± 7.50 ×$10^{-2}$ 0.149 5 ± 1.06 ×$10^{-2}$ 0.119 6 ± 8.54 ×$10^{-2}$ 0.444 5 ± 1.12 ×$10^{-2}$ 10, 5 0.008 7 ± 3.91 ×$10^{-2}$ 0.162 8 ± 5.45 ×$10^{-2}$ 0.165 5 ± 1.40 ×$10^{-2}$ 0.106 9 ± 6.22 ×$10^{-2}$ 0.456 2 ± 8.62 ×$10^{-3}$ 10, 10 0.005 0 ± 2.33 ×$10^{-3}$ 0.160 9 ± 7.74 ×$10^{-2}$ 0.163 4 ± 7.47 ×$10^{-3}$ 0.130 4 ± 5.94 ×$10^{-2}$ 0.455 4 ± 9.13 ×$10^{-3}$ DF4 5, 10 0.162 5 ± 3.79 ×$10^{-2}$ 0.601 3 ± 5.63 ×$10^{-2}$ 0.496 0 ± 3.08 ×$10^{-2}$ 0.521 8 ± 3.35 ×$10^{-2}$ 0.697 1 ± 4.72 ×$10^{-3}$ 10, 5 0.148 9 ± 6.04 ×$10^{-2}$ 0.518 5 ± 5.31 ×$10^{-2}$ 0.484 0 ± 3.13 ×$10^{-2}$ 0.519 3 ± 2.72 ×$10^{-2}$ 0.698 1 ± 3.55 ×$10^{-3}$ 10, 10 0.181 3 ± 5.76 ×$10^{-2}$ 0.570 9 ± 5.39 ×$10^{-2}$ 0.470 5 ± 3.54 ×$10^{-2}$ 0.521 6 ± 2.87 ×$10^{-2}$ 0.697 4 ± 3.46 ×$10^{-3}$ DF5 5, 10 0.253 8 ± 4.22 ×$10^{-2}$ 0.497 1 ± 5.73 ×$10^{-2}$ 0.233 5 ± 2.46 ×$10^{-2}$ 0.529 3 ± 1.22 ×$10^{-2}$ 0.559 7 ± 3.16 ×$10^{-3}$ 10, 5 0.028 2 ± 6.65 ×$10^{-2}$ 0.499 9 ± 3.00 ×$10^{-2}$ 0.271 9 ± 2.37 ×$10^{-2}$ 0.530 6 ± 1.69 ×$10^{-2}$ 0.562 9 ± 3.25 ×$10^{-3}$ 10, 10 0.016 6 ± 4.68 ×$10^{-2}$ 0.493 2 ± 5.37 ×$10^{-2}$ 0.277 7 ± 2.35 ×$10^{-2}$ 0.528 4 ± 1.08 ×$10^{-2}$ 0.562 5 ± 3.68 ×$10^{-3}$ DF6 5, 10 0.001 2 ± 3.19 ×$10^{-3}$ 0.247 1 ± 4.22 ×$10^{-2}$ 0.027 1 ± 1.19 ×$10^{-2}$ 0.026 8 ± 1.13 ×$10^{-2}$ 0.393 7 ± 7.44 ×$10^{-2}$ 10, 5 0.063 5 ± 9.28 ×$10^{-2}$ 0.174 5 ± 4.44 ×$10^{-2}$ 0.029 9 ± 1.34 ×$10^{-2}$ 0.026 0 ± 9.25 ×$10^{-3}$ 0.381 0 ± 8.23 ×$10^{-2}$ 10, 10 0.078 5 ± 6.97 ×$10^{-2}$ 0.241 2 ± 2.41 ×$10^{-2}$ 0.028 9 ± 1.22 ×$10^{-2}$ 0.027 5 ± 1.22 ×$10^{-2}$ 0.414 9 ± 8.27 ×$10^{-2}$ DF7 5, 10 0.128 5 ± 3.17 ×$10^{-2}$ 0.012 4 ± 1.25 ×$10^{-2}$ 0.233 4 ± 2.03 ×$10^{-2}$ 0.126 9 ± 1.62 ×$10^{-2}$ 0.420 2 ± 1.60 ×$10^{-1}$ 10, 5 0.140 0 ± 3.17 ×$10^{-2}$ 0.031 5 ± 2.15 ×$10^{-2}$ 0.269 2 ± 3.50 ×$10^{-2}$ 0.134 7 ± 3.30 ×$10^{-2}$ 0.422 4 ± 2.31 ×$10^{-2}$ 10, 10 0.139 8 ± 2.99 ×$10^{-2}$ 0.037 9 ± 1.78 ×$10^{-2}$ 0.247 1 ± 2.12 ×$10^{-2}$ 0.138 2 ± 2.96 ×$10^{-2}$ 0.534 8 ± 1.14 ×$10^{-1}$ DF8 5, 10 0.690 9 ± 3.88 ×$10^{-2}$ 0.934 0 ± 1.51 ×$10^{-2}$ 0.911 5 ± 6.78 ×$10^{-3}$ 0.953 2 ± 1.28 ×$10^{-2}$ 0.592 1 ± 2.18 ×$10^{-3}$ 10, 5 0.648 4 ± 5.18 ×$10^{-2}$ 0.943 9 ± 1.84 ×$10^{-2}$ 0.913 3 ± 5.97 ×$10^{-3}$ 0.944 2 ± 1.69 ×$10^{-2}$ 0.604 6 ± 2.60 ×$10^{-3}$ 10, 10 0.644 5 ± 3.04 ×$10^{-2}$ 0.940 2 ± 1.69 ×$10^{-2}$ 0.912 3 ± 7.45 ×$10^{-3}$ 0.925 5 ± 1.82 ×$10^{-2}$ 0.604 7 ± 3.06 ×$10^{-3}$ DF9 5, 10 0.055 5 ± 3.79 ×$10^{-2}$ 0.323 2 ± 9.77 ×$10^{-2}$ 0.169 8 ± 1.88 ×$10^{-2}$ 0.316 1 ± 3.47 ×$10^{-2}$ 0.163 9 ± 1.81 ×$10^{-2}$ 10, 5 0.049 5 ± 3.63 ×$10^{-2}$ 0.302 0 ± 9.94 ×$10^{-2}$ 0.195 8 ± 2.34 ×$10^{-2}$ 0.339 1 ± 4.16 ×$10^{-2}$ 0.195 4 ± 4.46 ×$10^{-2}$ 10, 10 0.063 4 ± 4.50 ×$10^{-2}$ 0.275 3 ± 1.20 ×$10^{-1}$ 0.184 2 ± 1.53 ×$10^{-2}$ 0.344 3 ± 3.07 ×$10^{-2}$ 0.250 1 ± 3.04 ×$10^{-2}$ DF10 5, 10 0.037 1 ± 1.37 ×$10^{-1}$ 0.911 5 ± 3.26 ×$10^{-2}$ 0.614 2 ± 2.17 ×$10^{-2}$ 0.879 1 ± 1.36 ×$10^{-1}$ 0.600 0 ± 8.01 ×$10^{-3}$ 10, 5 0.053 0 ± 1.75 ×$10^{-1}$ 0.906 6 ± 1.73 ×$10^{-2}$ 0.660 5 ± 1.57 ×$10^{-2}$ 0.915 0 ± 1.83 ×$10^{-2}$ 0.653 3 ± 8.56 ×$10^{-3}$ 10, 10 0.040 7 ± 1.40 ×$10^{-1}$ 0.916 1 ± 1.81 ×$10^{-2}$ 0.658 1 ± 1.26 ×$10^{-2}$ 0.924 7 ± 1.76 ×$10^{-2}$ 0.637 3 ± 2.43 ×$10^{-2}$ DF11 5, 10 0.109 3 ± 2.03 ×$10^{-1}$ 0.487 5 ± 8.77 ×$10^{-3}$ 0.219 3 ± 2.94 ×$10^{-3}$ 0.767 0 ± 1.62 ×$10^{-2}$ 0.260 1 ± 4.43 ×$10^{-4}$ 10, 5 0.056 1 ± 1.91 ×$10^{-1}$ 0.635 0 ± 1.03 ×$10^{-2}$ 0.222 4 ± 3.19 ×$10^{-3}$ 0.777 5 ± 9.94 ×$10^{-3}$ 0.263 9 ± 1.52 ×$10^{-3}$ 10, 10 0.054 8 ± 1.90 ×$10^{-1}$ 0.630 7 ± 2.01 ×$10^{-2}$ 0.223 1 ± 2.20 ×$10^{-3}$ 0.772 8 ± 1.65 ×$10^{-2}$ 0.265 5 ± 1.18 ×$10^{-3}$ DF12 5, 10 0.980 0 ± 1.55 ×$10^{-2}$ 0.896 0 ± 8.09 ×$10^{-3}$ 0.778 4 ± 1.38 ×$10^{-2}$ 0.837 5 ± 3.47 ×$10^{-2}$ 0.377 3 ± 8.04 ×$10^{-2}$ 10, 5 0.948 6 ± 3.99 ×$10^{-2}$ 0.908 9 ± 3.54 ×$10^{-3}$ 0.798 8 ± 6.90 ×$10^{-3}$ 0.837 1 ± 5.48 ×$10^{-2}$ 0.334 8 ± 7.32 ×$10^{-2}$ 10, 10 0.964 9 ± 2.56 ×$10^{-2}$ 0.907 5 ± 6.50 ×$10^{-3}$ 0.795 7 ± 8.83 ×$10^{-3}$ 0.814 1 ± 6.23 ×$10^{-2}$ 0.425 1 ± 1.30 ×$10^{-1}$ DF13 5, 10 0.464 3 ± 1.16 ×$10^{-1}$ 0.513 5 ± 2.02 ×$10^{-2}$ 0.404 4 ± 2.37 ×$10^{-2}$ 0.454 9 ± 1.63 ×$10^{-2}$ 0.576 2 ± 1.33 ×$10^{-2}$ 10, 5 0.093 3 ± 1.08 ×$10^{-1}$ 0.302 0 ± 2.54 ×$10^{-2}$ 0.422 3 ± 2.17 ×$10^{-2}$ 0.450 6 ± 1.17 ×$10^{-2}$ 0.571 7 ± 6.93 ×$10^{-3}$ 10, 10 0.104 5 ± 1.08 ×$10^{-1}$ 0.295 3 ± 1.99 ×$10^{-2}$ 0.423 2 ± 2.11 ×$10^{-2}$ 0.454 4 ± 6.67 ×$10^{-3}$ 0.576 6 ± 3.31 ×$10^{-3}$ DF14 5, 10 0.028 1 ± 1.39 ×$10^{-2}$ 0.422 6 ± 3.28 ×$10^{-2}$ 0.406 3 ± 1.91 ×$10^{-2}$ 0.488 4 ± 1.03 ×$10^{-2}$ 0.475 5 ± 1.94 ×$10^{-2}$ 10, 5 0.002 7 ± 1.22 ×$10^{-2}$ 0.411 6 ± 1.59 ×$10^{-2}$ 0.427 6 ± 1.65 ×$10^{-2}$ 0.480 1 ± 9.70 ×$10^{-3}$ 0.569 1 ± 4.24 ×$10^{-3}$ 10, 10 0.001 8 ± 8.25 ×$10^{-3}$ 0.409 6 ± 1.58 ×$10^{-2}$ 0.432 6 ± 1.38 ×$10^{-2}$ 0.479 1 ± 1.01 ×$10^{-2}$ 0.567 6 ± 9.03 ×$10^{-3}$ 表 4 FT-DMOEA与三种预测算法在DF测试函数集上获得的MIGD指标的平均值和标准差值的统计结果
Table 4 Statistical results of mean and standard deviation values of MIGD metric obtained by FT-DMOEA and three prediction algorithms on the DF benchmark suite
测试问题 $\tau_{t}$, $n_{t}$ PPS-MOEA/D SVR-MOEA/D KF-MOEA/D FT-DMOEA DF1 10, 10 0.100 2 ± 6.67 ×$10^{-2}$ 0.092 0 ± 7.72 ×$10^{-2}$ 0.159 4 ± 8.61 ×$10^{-2}$ 0.016 7 ± 3.11 ×$10^{-3}$ 10, 5 0.157 3 ± 1.43 ×$10^{-1}$ 0.099 6 ± 9.21 ×$10^{-2}$ 0.185 9 ± 1.35 ×$10^{-1}$ 0.024 8 ± 3.94 ×$10^{-3}$ 5, 10 0.182 0 ± 1.38 ×$10^{-1}$ 0.141 2 ± 9.07 ×$10^{-2}$ 0.201 9 ± 9.91 ×$10^{-2}$ 0.031 2 ± 4.02 ×$10^{-3}$ DF2 10, 10 0.075 8 ± 7.61 ×$10^{-2}$ 0.084 6 ± 6.28 ×$10^{-2}$ 0.105 2 ± 5.76 ×$10^{-2}$ 0.037 5 ± 6.50 ×$10^{-3}$ 10, 5 0.119 4 ± 9.53 ×$10^{-2}$ 0.083 7 ± 6.97 ×$10^{-2}$ 0.122 5 ± 9.97 ×$10^{-2}$ 0.047 2 ± 9.43 ×$10^{-3}$ 5, 10 0.122 2 ± 5.90 ×$10^{-2}$ 0.133 5 ± 7.36 ×$10^{-2}$ 0.146 7 ± 7.13 ×$10^{-2}$ 0.087 8 ± 9.36 ×$10^{-3}$ DF3 10, 10 0.423 3 ± 2.61 ×$10^{-1}$ 0.393 4 ± 2.19 ×$10^{-1}$ 0.366 3 ± 1.64 ×$10^{-1}$ 0.040 6 ± 7.75 ×$10^{-3}$ 10, 5 0.419 4 ± 2.37 ×$10^{-1}$ 251 917.360 1 ± 1.78 ×$10^{6}$ 0.383 2 ± 2.24 ×$10^{-1}$ 0.050 1 ± 1.12 ×$10^{-2}$ 5, 10 0.476 6 ± 2.83 ×$10^{-1}$ 0.415 3 ± 1.66 ×$10^{-1}$ 0.361 5 ± 1.50 ×$10^{-1}$ 0.065 2 ± 1.28 ×$10^{-2}$ DF4 10, 10 0.956 7 ± 5.86 ×$10^{-1}$ 1.087 1 ± 6.54 ×$10^{-1}$ 1.299 5 ± 8.17 ×$10^{-1}$ 0.114 4 ± 8.83 ×$10^{-3}$ 10, 5 1.012 5 ± 5.70 ×$10^{-1}$ 1.113 3 ± 7.08 ×$10^{-1}$ 1.201 9 ± 6.09 ×$10^{-1}$ 0.111 0 ± 1.07 ×$10^{-2}$ 5, 10 0.996 2 ± 5.71 ×$10^{-1}$ 1.048 8 ± 6.32 ×$10^{-1}$ 1.289 2 ± 7.78 ×$10^{-1}$ 0.127 7 ± 1.15 ×$10^{-2}$ DF5 10, 10 1.305 9 ± 2.04 ×$10^{0}$ 1 615.366 0 ± 5.92 ×$10^{3}$ 1.303 2 ± 2.04 ×$10^{0}$ 0.015 5 ± 3.10 ×$10^{-3}$ 10, 5 1.358 9 ± 2.01 ×$10^{0}$ 1 427.275 3 ± 9.29 ×$10^{3}$ 1.350 9 ± 2.23 ×$10^{0}$ 0.016 9 ± 2.47 ×$10^{-3}$ 5, 10 1.364 1 ± 2.25 ×$10^{0}$ 52.096 5 ± 3.61 ×$10^{2}$ 1.363 0 ± 1.96 ×$10^{0}$ 0.023 1 ± 2.68 ×$10^{-3}$ DF6 10, 10 4.057 9 ± 4.60 ×$10^{0}$ 2.938 5 ± 4.38 ×$10^{0}$ 3.148 8 ± 3.41 ×$10^{0}$ 0.751 4 ± 3.15 ×$10^{-1}$ 10, 5 2.907 7 ± 3.33 ×$10^{0}$ 2.788 8 ± 4.77 ×$10^{0}$ 2.989 9 ± 3.28 ×$10^{0}$ 0.677 7 ± 2.68 ×$10^{-1}$ 5, 10 5.411 3 ± 6.42 ×$10^{0}$ 4.153 2 ± 4.82 ×$10^{0}$ 3.765 0 ± 4.81 ×$10^{0}$ 0.988 9 ± 1.46 ×$10^{-1}$ DF7 10, 10 4.174 4 ± 5.18 ×$10^{0}$ 2.752 9 ± 3.77 ×$10^{0}$ 4.005 4 ± 4.94 ×$10^{0}$ 105.840 0 ± 1.19 ×$10^{2}$ 10, 5 3.601 3 ± 5.32 ×$10^{0}$ 2.627 7 ± 4.30 ×$10^{0}$ 3.349 1 ± 4.19 ×$10^{0}$ 37.663 0 ± 4.45 ×$10^{1}$ 5, 10 5.488 4 ± 6.69 ×$10^{0}$ 3.376 0 ± 4.15 ×$10^{0}$ 3.978 8 ± 4.79 ×$10^{0}$ 47.097 5 ± 6.81 ×$10^{1}$ DF8 10, 10 1.094 3 ± 5.98 ×$10^{-1}$ 0.977 4 ± 5.21 ×$10^{-1}$ 1.148 6 ± 5.44 ×$10^{-1}$ 0.072 7 ± 4.83 ×$10^{-3}$ 10, 5 1.070 4 ± 4.75 ×$10^{-1}$ 0.981 0 ± 5.19 ×$10^{-1}$ 1.109 5 ± 5.46 ×$10^{-1}$ 0.075 9 ± 5.27 ×$10^{-3}$ 5, 10 1.018 7 ± 5.63 ×$10^{-1}$ 0.907 0 ± 4.97 ×$10^{-1}$ 1.017 4 ± 4.98 ×$10^{-1}$ 0.086 4 ± 8.08 ×$10^{-3}$ DF9 10, 10 1.754 6 ± 1.75 ×$10^{0}$ 551.812 2 ± 3.83 ×$10^{3}$ 1.684 6 ± 1.62 ×$10^{0}$ 0.497 2 ± 1.71 ×$10^{-2}$ 10, 5 1.468 3 ± 1.41 ×$10^{0}$ 128.944 1 ± 8.88 ×$10^{2}$ 1.430 5 ± 1.38 ×$10^{0}$ 0.584 4 ± 6.38 ×$10^{-2}$ 5, 10 1.770 8 ± 1.85 ×$10^{0}$ 2.656 3 ± 1.94 ×$10^{0}$ 1.681 1 ± 1.49 ×$10^{0}$ 0.842 6 ± 1.42 ×$10^{-1}$ DF10 10, 10 0.189 1 ± 8.50 ×$10^{-2}$ 64.903 7 ± 2.84 ×$10^{2}$ 0.214 4 ± 1.51 ×$10^{-1}$ 0.302 8 ± 2.62 ×$10^{-2}$ 10, 5 0.251 5 ± 1.37 ×$10^{-1}$ 11.104 9 ± 6.54 ×$10^{1}$ 0.236 6 ± 9.22 ×$10^{-2}$ 0.246 2 ± 2.48 ×$10^{-2}$ 5, 10 0.243 9 ± 1.42 ×$10^{-1}$ 10.869 8 ± 5.26 ×$10^{1}$ 0.241 9 ± 8.71 ×$10^{-2}$ 0.251 4 ± 3.57 ×$10^{-2}$ DF11 10, 10 0.194 8 ± 7.28 ×$10^{-2}$ 237.626 9 ± 4.57 ×$10^{2}$ 0.185 1 ± 3.45 ×$10^{-2}$ 0.111 3 ± 1.36 ×$10^{-3}$ 10, 5 0.274 3 ± 1.07 ×$10^{-1}$ 372.452 2 ± 8.32 ×$10^{2}$ 0.262 4 ± 7.94 ×$10^{-2}$ 0.111 7 ± 1.89 ×$10^{-3}$ 5, 10 0.214 2 ± 9.17 ×$10^{-2}$ 287.159 9 ± 6.83 ×$10^{2}$ 0.197 5 ± 4.46 ×$10^{-2}$ 0.132 1 ± 2.66 ×$10^{-3}$ DF12 10, 10 1.177 1 ± 1.13 ×$10^{-1}$ 252.611 5 ± 6.25 ×$10^{2}$ 0.989 0 ± 2.71 ×$10^{-1}$ 4.977 7 ± 4.31 ×$10^{0}$ 10, 5 1.189 1 ± 3.31 ×$10^{-2}$ 288.469 9 ± 6.96 ×$10^{2}$ 0.912 1 ± 3.19 ×$10^{-1}$ 4.967 4 ± 4.42 ×$10^{0}$ 5, 10 1.184 7 ± 5.55 ×$10^{-2}$ 336.943 1 ± 7.04 ×$10^{2}$ 0.959 1 ± 3.05 ×$10^{-1}$ 1.117 5 ± 7.59 ×$10^{-1}$ DF13 10, 10 1.395 8 ± 1.70 ×$10^{0}$ 1.378 5 ± 1.77 ×$10^{0}$ 1.441 3 ± 1.80 ×$10^{0}$ 0.280 4 ± 3.85 ×$10^{-3}$ 10, 5 1.412 4 ± 1.83 ×$10^{0}$ 1.466 1 ± 1.20 ×$10^{0}$ 1.478 2 ± 1.96 ×$10^{0}$ 0.270 9 ± 7.57 ×$10^{-3}$ 5, 10 1.423 5 ± 1.84 ×$10^{0}$ 1.536 1 ± 1.94 ×$10^{0}$ 1.555 2 ± 2.02 ×$10^{0}$ 0.299 5 ± 5.82 ×$10^{-3}$ DF14 10, 10 0.865 7 ± 1.31 ×$10^{0}$ 4.188 3 ± 5.27 ×$10^{0}$ 0.906 5 ± 1.37 ×$10^{0}$ 0.081 2 ± 3.78 ×$10^{-3}$ 10, 5 0.873 5 ± 1.30 ×$10^{0}$ 4.440 2 ± 5.48 ×$10^{0}$ 0.919 4 ± 1.32 ×$10^{0}$ 0.116 9 ± 1.25 ×$10^{-2}$ 5, 10 0.886 4 ± 1.35 ×$10^{0}$ 3.694 4 ± 4.41 ×$10^{0}$ 0.978 4 ± 1.46 ×$10^{0}$ 0.091 2 ± 3.26 ×$10^{-3}$ 表 5 FT-DMOEA与其他先进对比算法在双目标函数DF1 ~ DF5上获得的MIGD指标的平均值和标准差值的统计结果
Table 5 Statistical results of mean and standard deviation values of MIGD metric obtained by FT-DMOEA and other advanced algorithms on biobjective functions DF1 ~ DF5
测试问题 $\tau_{t}$, $n_{t}$ IGP-DMOEA ISVM-DMOEA STT-DMOEA FT-DMOEA DF1 10, 5 0.008 8 ± 6.51 ×$10^{-3}$ 0.013 6 ± 1.19 ×$10^{-2}$ 0.010 8 ± 9.08 ×$10^{-3}$ 0.004 3 ± 1.09 ×$10^{-4}$ 5, 10 0.016 7 ± 8.78 ×$10^{-3}$ 0.068 7 ± 1.21 ×$10^{-2}$ 0.014 6 ± 1.81 ×$10^{-3}$ 0.004 2 ± 8.40 ×$10^{-5}$ DF2 10, 5 0.011 5 ± 1.05 ×$10^{-2}$ 0.013 6 ± 1.57 ×$10^{-3}$ 0.033 6 ± 1.39 ×$10^{-2}$ 0.005 2 ± 1.48 ×$10^{-4}$ 5, 10 0.031 8 ± 1.89 ×$10^{-3}$ 0.098 5 ± 1.16 ×$10^{-2}$ 0.045 5 ± 1.62 ×$10^{-2}$ 0.005 3 ± 1.55 ×$10^{-4}$ DF3 10, 5 0.021 1 ± 4.24 ×$10^{-3}$ 0.228 8 ± 1.80 ×$10^{-2}$ 0.057 7 ± 1.83 ×$10^{-2}$ 0.007 6 ± 3.46 ×$10^{-4}$ 5, 10 0.040 4 ± 6.65 ×$10^{-3}$ 0.227 6 ± 4.14 ×$10^{-2}$ 0.096 4 ± 8.01 ×$10^{-2}$ 0.006 9 ± 1.61 ×$10^{-4}$ DF4 10, 5 0.106 7 ± 4.68 ×$10^{-4}$ 0.116 2 ± 2.22 ×$10^{-3}$ 0.103 0 ± 1.16 ×$10^{-3}$ 0.082 2 ± 1.50 ×$10^{-3}$ 5, 10 0.112 3 ± 5.22 ×$10^{-3}$ 0.341 8 ± 3.86 ×$10^{-2}$ 0.105 4 ± 5.62 ×$10^{-3}$ 0.083 2 ± 2.66 ×$10^{-3}$ DF5 10, 5 0.004 4 ± 2.65 ×$10^{-4}$ 0.005 8 ± 5.69 ×$10^{-4}$ 0.004 1 ± 1.11 ×$10^{-4}$ 0.004 5 ± 4.98 ×$10^{-5}$ 5, 10 0.007 9 ± 1.89 ×$10^{-3}$ 0.085 7 ± 4.17 ×$10^{-2}$ 0.006 4 ± 1.56 ×$10^{-3}$ 0.004 5 ± 9.01 ×$10^{-5}$ 表 6 FT-DMOEA与其他先进对比算法在三目标函数DF11 ~ DF14上获得的MIGD指标的平均值和标准差值的统计结果
Table 6 Statistical results of mean and standard deviation values of MIGD metric obtained by FT-DMOEA and other advanced algorithms on triobjective functions DF11 ~ DF14
测试问题 $n_{t}$, $\tau_{t}$ MMTL-DMOEA IT-DMOEA MSTL-DMOEA FT-DMOEA DF11 10, 5 0.152 3 ± 6.36 ×$10^{-3}$ 0.143 5 ± 5.72 ×$10^{-3}$ 0.155 1 ± 1.05 ×$10^{-2}$ 0.142 8 ± 2.17 ×$10^{-3}$ 10, 10 0.115 1 ± 3.60 ×$10^{-3}$ 0.115 2 ± 3.60 ×$10^{-3}$ 0.116 8 ± 3.42 ×$10^{-3}$ 0.112 1 ± 1.57 ×$10^{-3}$ DF12 10, 5 0.318 7 ± 4.21 ×$10^{-2}$ 0.209 0 ± 1.06 ×$10^{-2}$ 0.198 5 ± 1.97 ×$10^{-2}$ 1.182 2 ± 1.44 ×$10^{0}$ 10, 10 0.255 6 ± 2.37 ×$10^{-2}$ 0.158 9 ± 1.29 ×$10^{-2}$ 0.138 4 ± 8.06 ×$10^{-3}$ 0.320 4 ± 1.21 ×$10^{-1}$ DF13 10, 5 0.269 7 ± 1.39 ×$10^{-2}$ 0.249 1 ± 5.09 ×$10^{-3}$ 0.268 0 ± 1.32 ×$10^{-2}$ 0.298 0 ± 2.29 ×$10^{-2}$ 10, 10 0.264 4 ± 1.34 ×$10^{-2}$ 0.253 2 ± 7.29 ×$10^{-3}$ 0.260 4 ± 1.51 ×$10^{-2}$ 0.252 9 ± 1.24 ×$10^{-2}$ DF14 10, 5 0.104 2 ± 3.53 ×$10^{-3}$ 0.090 7 ± 2.42 ×$10^{-3}$ 0.111 7 ± 1.02 ×$10^{-2}$ 0.088 4 ± 4.62 ×$10^{-3}$ 10, 10 0.081 7 ± 2.81 ×$10^{-3}$ 0.078 5 ± 1.40 ×$10^{-3}$ 0.084 6 ± 5.06 ×$10^{-3}$ 0.077 1 ± 2.50 ×$10^{-3}$ 表 7 FT-DMOEA与KTS-DMOEA在DF问题上获得的MIGD指标的平均值和标准差值的统计结果
Table 7 Statistical results of mean and standard deviation values of MIGD metric obtained by FT-DMOEA and KTS-DMOEA on the DF problems
测试问题 $\tau_{t} $, $n_{t} $ KTS-DMOEA FT-DMOEA DF3 10, 5 0.262 4 ± 2.87 ×$10^{-2}$ 0.070 8 ± 1.56 ×$10^{-2}$ 10, 10 0.250 4 ± 3.39 ×$10^{-2}$ 0.044 0 ± 1.42 ×$10^{-2}$ 10, 20 0.269 2 ± 2.88 ×$10^{-2}$ 0.040 3 ± 1.22 ×$10^{-2}$ DF4 10, 5 0.111 0 ± 3.55 ×$10^{-3}$ 0.100 3 ± 1.54 ×$10^{-2}$ 10, 10 0.101 5 ± 2.55 ×$10^{-3}$ 0.110 7 ± 1.01 ×$10^{-2}$ 10, 20 0.090 4 ± 2.81 ×$10^{-3}$ 0.113 3 ± 1.49 ×$10^{-2}$ DF5 10, 5 0.0453 ± 2.86 ×$10^{-3}$0.020 0 ± 4.51 ×$10^{-3}$ 10, 10 0.025 3 ± 1.20 ×$10^{-3}$ 0.015 1 ± 4.01 ×$10^{-3}$ 10, 20 0.017 0 ± 4.34 ×$10^{-4}$ 0.014 0 ± 4.04 ×$10^{-3}$ DF10 10, 5 0.105 5 ± 6.54 ×$10^{-3}$ 0.284 6 ± 1.08 ×$10^{-2}$ 10, 10 0.110 0 ± 6.72 ×$10^{-3}$ 0.282 9 ± 3.48 ×$10^{-2}$ 10, 20 0.091 1 ± 4.17 ×$10^{-3}$ 0.284 2 ± 2.72 ×$10^{-2}$ DF11 10, 5 0.216 6 ± 8.03 ×$10^{-4}$ 0.113 7 ± 1.72 ×$10^{-3}$ 10, 10 0.214 6 ± 5.19 ×$10^{-4}$ 0.112 8 ± 1.54 ×$10^{-3}$ 10, 20 0.214 3 ± 2.82 ×$10^{-4}$ 0.113 5 ± 2.99 ×$10^{-3}$ 表 8 DMOA、SGEA和FTMOA在FDA测试函数集上获得的MIGD的各项统计结果
Table 8 Statistical results of MIGD obtained by DMOA, SGEA, and FTMOA on the FDA benchmark suite
$1 \leq T \leq 30$ $31 \leq T \leq 100$ 测试问题 算法 平均值 中位数 上四分位数 下四分位数 t检验 平均值 中位数 上四分位数 下四分位数 t检验 FDA1 DMOA 0.024 6 0.023 8 0.016 6 0.031 8 + 0.023 4 0.024 8 0.014 3 0.031 8 + SGEA 0.015 4 0.016 9 0.010 7 0.018 8 $-$ 0.014 7 0.016 8 0.010 4 0.018 3 $-$ FTMOA 0.017 2 0.017 2 0.010 7 0.021 1 0.015 3 0.016 9 0.009 7 0.020 0 FDA2 DMOA 0.017 4 0.012 4 0.009 6 0.021 5 + 0.014 0 0.012 1 0.008 9 0.013 5 + SGEA 0.016 4 0.011 7 0.008 5 0.019 2 + 0.013 7 0.011 3 0.008 8 0.013 2 + FTMOA 0.016 2 0.013 5 0.010 8 0.017 1 0.011 5 0.009 3 0.007 7 0.011 2 FDA3 DMOA 0.050 5 0.032 9 0.022 3 0.044 0 $-$ 0.078 4 0.039 2 0.024 1 0.126 7 $-$ SGEA 0.045 9 0.0218 0.016 7 0.030 3 $-$ 0.059 8 0.022 6 0.018 3 0.041 9 $-$ FTMOA 0.067 2 0.020 5 0.017 5 0.046 2 0.093 2 0.024 5 0.016 7 0.109 4 FDA4 DMOA 0.157 5 0.147 1 0.095 7 0.194 6 + 0.138 5 0.130 9 0.083 8 0.179 4 + SGEA 0.117 6 0.117 3 0.077 1 0.153 1 + 0.117 3 0.121 8 0.072 6 0.155 2 + FTMOA 0.109 7 0.102 2 0.079 3 0.135 6 0.105 8 0.108 6 0.072 3 0.130 4 FDA5 DMOA 0.203 8 0.214 8 0.167 9 0.243 3 + 0.205 5 0.204 4 0.143 5 0.260 2 + SGEA 0.191 7 0.197 3 0.152 4 0.220 0 + 0.177 0 0.176 2 0.146 0 0.208 0 + FTMOA 0.149 9 0.146 4 0.133 0 0.162 5 0.150 8 0.150 8 0.131 4 0.165 7 表 9 使用不同参数的FT-DMOEA在DF问题上获得的平均MIGD值
Table 9 Mean MIGD values obtained by FT-DMOEA with different parameters on DF problems
$\eta_c,\; p_c$ DF1 DF2 DF3 DF10 DF11 10, 0.7 0.052 8 0.113 6 0.172 0 0.250 1 0.167 3 10, 0.8 0.041 3 0.087 1 0.081 2 0.254 2 0.140 0 10, 0.9 0.035 9 0.084 8 0.082 5 0.244 2 0.134 6 20, 0.7 0.048 3 0.101 6 0.136 8 0.270 2 0.142 5 20, 0.8 0.044 1 0.080 3 0.120 6 0.230 9 0.142 2 20, 0.9 0.038 0 0.089 7 0.089 0 0.235 7 0.140 8 $\eta_m,\;p_m$ DF1 DF2 DF3 DF10 DF11 10, 0.1 0.034 6 0.064 2 0.099 6 0.236 4 0.129 8 10, 0.05 0.052 6 0.096 6 0.122 4 0.272 9 0.143 0 20, 0.1 0.044 1 0.090 3 0.090 6 0.230 9 0.122 2 20, 0.05 0.064 6 0.127 9 0.113 7 0.246 6 0.163 9 -
[1] Li J, Sun T, Lin Q Z, Jiang M, Tan K C. Reducing negative transfer learning via clustering for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2022, 26(5): 1102−1116 doi: 10.1109/TEVC.2022.3144180 [2] Jiang M, Wang Z Z, Guo S H, Gao X, Tan K C. Individual-based transfer learning for dynamic multiobjective optimization. IEEE Transactions on Cybernetics, 2021, 51(10): 4968−4981 doi: 10.1109/TCYB.2020.3017049 [3] Deb K, Udaya B R N, Karthik S. Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling. In: Proceedings of the 4th International Conference on Evolutionary Multi-criterion Optimization. Berlin, Germany: Springer-Verlag, 2007. 803−817 [4] Jiang S L, Liu Q, Bogle I D L, Zheng Z. A self-learning based dynamic multi-objective evolutionary algorithm for resilient scheduling problems in steelmaking plants. IEEE Transactions on Automation Science and Engineering, 2023, 20(2): 832−845 doi: 10.1109/TASE.2022.3168385 [5] Ren Z Q, Rathinam S, Likhachev M, Choset H. Multi-objective safe-interval path planning with dynamic obstacles. IEEE Robotics and Automation Letters, 2022, 7(3): 8154−8161 doi: 10.1109/LRA.2022.3187270 [6] Zhang L Y, Bienkowski A, Macesker M, Pattipati K R, Sidoti D, Hansen J A. Many-objective maritime path planning for dynamic and uncertain environments. In: Proceedings of the IEEE Aerospace Conference. Big Sky, USA: IEEE, 2021. 1−10 [7] 李文桦, 明梦君, 张涛, 王锐, 黄生俊, 王凌. 考虑全局和局部帕累托前沿的多模态多目标优化算法. 自动化学报, 2023, 49(1): 148−160Li Wen-Hua, Ming Meng-Jun, Zhang Tao, Wang Rui, Huang Sheng-Jun, Wang Ling. Multimodal multi-objective evolutionary algorithm considering global and local pareto fronts. Acta Automatica Sinica, 2023, 49(1): 148−160 [8] 余伟伟, 谢承旺, 闭应洲, 夏学文, 李雄, 任柯燕, 等. 一种基于自适应模糊支配的高维多目标粒子群算法. 自动化学报, 2018, 44(12): 2278−2289Yu Wei-Wei, Xie Cheng-Wang, Bi Ying-Zhou, Xia Xue-Wen, Li Xiong, Ren Ke-Yan, et al. Many-objective particle swarm optimization based on adaptive fuzzy dominance. Acta Automatica Sinica, 2018, 44(12): 2278−2289 [9] 孙超利, 李贞, 金耀初. 模型辅助的计算费时进化高维多目标优化. 自动化学报, 2022, 48(4): 1119−1128Sun Chao-Li, Li Zhen, Jin Yao-Chu. Surrogate-assisted expensive evolutionary many-objective optimization. Acta Automatica Sinica, 2022, 48(4): 1119−1128 [10] 陈美蓉, 郭一楠, 巩敦卫, 杨振. 一类新型动态多目标鲁棒进化优化方法. 自动化学报, 2017, 43(11): 2014−2032Chen Mei-Rong, Guo Yi-Nan, Gong Dun-Wei, Yang Zhen. A novel dynamic multi-objective robust evolutionary optimization method. Acta Automatica Sinica, 2017, 43(11): 2014−2032 [11] Jiang S Y, Yang S X. A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2017, 21(1): 65−82 doi: 10.1109/TEVC.2016.2574621 [12] 丁进良, 杨翠娥, 陈立鹏, 柴天佑. 基于参考点预测的动态多目标优化算法. 自动化学报, 2017, 43(2): 313−320Ding Jin-Liang, Yang Cui-E, Chen Li-Peng, Chai Tian-You. Dynamic multi-objective optimization algorithm based on reference point prediction. Acta Automatica Sinica, 2017, 43(2): 313−320 [13] 范勤勤, 李盟, 黄文焘, 姜庆超. 时空视角下的动态多目标进化算法研究综述. 控制与决策, 2024, 39(1):1−16Fan Qin-Qin, Li Meng, Huang Wen-Tao, Jiang Qing-Chao. A research survey of dynamic multi-objective evolutionary algorithms from spatiotemporal perspective. Control and Decision, 2024, 39(1):1−16 [14] 郭一楠, 汤万宝, 陈国玉, 巩敦卫. 动态多目标进化优化研究进展. 信息与控制, 2021, 50(2): 162−173Guo Yi-Nan, Tang Wan-Bao, Chen Guo-Yu, Gong Dun-Wei. Research progress on dynamic multi-objective evolutionary optimization. Information and Control, 2021, 50(2): 162−173 [15] Hatzakis I, Wallace D. Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York, USA: Association for Computing Machinery, 2006. 1201−1208 [16] Koo W T, Goh C K, Tan K C. A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment. Memetic Computing, 2010, 2: 87−110 doi: 10.1007/s12293-009-0026-7 [17] Zhou A M, Jin Y C, Zhang Q F. A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Transactions on Cybernetics, 2014, 44(1): 40−53 doi: 10.1109/TCYB.2013.2245892 [18] Zou J, Li Q Y, Yang S X, Bai H, Zheng J H. A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization. Applied Soft Computing, 2017, 61: 806−818 doi: 10.1016/j.asoc.2017.08.004 [19] Wang F, Li Y X, Liao F S, Yan H Y. An ensemble learning based prediction strategy for dynamic multi-objective optimization. Applied Soft Computing, 2020, 96: Article No. 106592 [20] Rambabu R, Vadakkepat P, Tan K C, Jiang M. A mixture-of--experts prediction framework for evolutionary dynamic multiobjective optimization. IEEE Transactions on Cybernetics, 2020, 50(12): 5099−5112 doi: 10.1109/TCYB.2019.2909806 [21] Xu P, Wu X M, Guo M, Wang S, Li Q Y, Huang W P, et al. A hybrid predictive strategy carried through simultaneously from decision space and objective space for evolutionary dynamic multiobjective optimization. Wireless Communications and Mobile Computing, 2019, 2019(1): 1−17 [22] Guo Y N, Huang M Y, Chen G Y, Gong D W, Liang J, Yu Z K. A dynamic constrained multiobjective evolutionary algorithm based on decision variable classification. Swarm and Evolutionary Computation, 2023, 83: Article No. 101420 doi: 10.1016/j.swevo.2023.101420 [23] Cao L L, Xu L H, Goodman E D, Bao C T, Zhu S W. Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 305−319 doi: 10.1109/TEVC.2019.2925722 [24] Zou F, Yen G G, Tang L X, Wang C F. A reinforcement learning approach for dynamic multi-objective optimization. Information Sciences, 2021, 546: 815−834 doi: 10.1016/j.ins.2020.08.101 [25] Liu X F, Xu X X, Zhan Z H, Fang Y C, Zhang J. Interaction-based prediction for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, DOI: 10.1109/TEVC.2023.3234113 [26] Lu K S, Ortega A. Fast graph fourier transforms based on graph symmetry and bipartition. IEEE Transactions on Signal Processing, 2019, 67(18): 4855−4869 doi: 10.1109/TSP.2019.2932882 [27] Chaudhary S, Taran S, Bajaj V, Sengur A. Convolutional neural network based approach towards motor imagery tasks eeg signals classification. IEEE Sensors Journal, 2019, 19(12): 4494−4500 doi: 10.1109/JSEN.2019.2899645 [28] Wen C K, Shih W T, Jin T. Deep learning for massive mimo csi feedback. IEEE Wireless Communications Letters, 2018, 7(5): 748−751 doi: 10.1109/LWC.2018.2818160 [29] Bolinder E F. The relationship of physical applications of fourier transforms in various fields of wave theory and circuitry. IRE Transactions on Microwave Theory and Techniques, 1957, 5(2): 153−158 doi: 10.1109/TMTT.1957.1125115 [30] Al-Ani M, Belmont M, Christmas J, Tarczynski A, Ahmad B I. On random sampling and fourier transform estimation in sea waves prediction. In: Proceedings of the 6th International Conference on Event-Based Control, Communication, and Signal Processing. Krakow, Poland: 2020. 1−4 [31] Raets C, Aisati C E, Rifi A L, Barbé K, Ridder M D. Predicting the response to chemoradiotherapy in rectal cancer patients using bayesian evolutionary random forest and three-dimensional discrete fourier transform. In: Proceedings of the 2023 IEEE International Symposium on Medical Measurements and Applications. Jeju, Korea: 2023. 1−5 [32] Nakatani T, Yoshioka T, Kinoshita K, Miyoshi M, Juang B H. Blind speech dereverberation with multi-channel linear prediction based on short time fourier transform representation. In: Proceedings of 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA: 2008. 85−88 [33] Farina M, Deb K, Amato P. Dynamic multiobjective optimization problems: Test cases, approximations, and applications. IEEE Transactions on Evolutionary Computation, 2004, 8(5): 425−442 doi: 10.1109/TEVC.2004.831456 [34] 杨庆, 任超. 大坝变形的去噪傅里叶模型预测. 测绘科学, 2019, 44(2): 158−163Yang Qing, Ren Chao. Prediction of dam deformation based on de-noising Fourier model. Science of Surveying and Mapping, 2019, 44(2): 158−163 [35] 王志刚. 自回归模型的定阶方法选择及弱信号探测 [硕士学位论文], 武汉理工大学, 中国, 2020.Wang Zhi-Gang. Selection of Order Determination Method and Weak Signal Detection of Autoregressive Model [Master thesis], Wuhan University of Technology, China, 2020. [36] Chen J, Shao H, Liu C. An improved deadbeat control strategy based on repetitive prediction against grid frequency fluctuation for active power filter. IEEE Access, 2021, 9: 24646−24657 doi: 10.1109/ACCESS.2021.3057386 [37] Li Y, Chen W C, Yang L. Multistage linear gauss pseudospectral method for piecewise continuous nonlinear optimal control problems. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2298−2310 doi: 10.1109/TAES.2021.3054074 [38] Qiang G, You W. Ship trajectory prediction based on ST-LSTM. In: Proceedings of 14th International Conference on Signal Processing Systems. Jiangsu, China: 2022. 730−735 [39] Yan Y Z, Tian Z J, Hou S W, Cai Z Q. Prediction of gear bending fatigue life based on grey gm (1, 1) prediction. In: Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management. Kuala Lumpur, Malaysia: 2022. 492−496 [40] Zhang Q, Li H. Moea/d: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712−731 doi: 10.1109/TEVC.2007.892759 [41] Jiang S Y, Yang S X, Yao X, Tan K C, Kaiser M, Krasnogor N. Benchmark problems for cec2018 competition on dynamic multiobjective optimisation. In: Proceedings of CEC Competition. 2018. 1−18 [42] Van Veldhuizen D A, Lamont G B. On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla, USA: 2000. 204−211 [43] Schutze O, Esquivel X, Lara A, Coello C A C. Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2012, 16(4): 504−522 doi: 10.1109/TEVC.2011.2161872 [44] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182−197 doi: 10.1109/4235.996017 [45] Sahmoud S, Topcuoglu H R. Exploiting characterization of dynamism for enhancing dynamic multi-objective evolutionary algorithms. Applied Soft Computing, 2019, 85: Article No. 105783 [46] Li H, Wang Z D, Lan C B, Wu P S, Zeng N Y. A novel dynamic multiobjective optimization algorithm with hierarchical response system. IEEE Transactions on Computational Social Systems, DOI: 10.1109/TCSS.2023.3293331 [47] Jiang M, Wang Z Z, Hong H K, Yen G G. Knee point-based imbalanced transfer learning for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 117−129 doi: 10.1109/TEVC.2020.3004027 [48] Muruganantham A, Tan K C, Vadakkepat P. Evolutionary dynamic multiobjective optimization via kalman filter prediction. IEEE Transactions on Cybernetics, 2016, 46(12): 2862−2873 doi: 10.1109/TCYB.2015.2490738 [49] Zhang H, Ding J L, Jiang M, Tan K C, Chai T Y. Inverse gaussian process modeling for evolutionary dynamic multiobjective optimization. IEEE Transactions on Cybernetics, 2022, 52(10): 11240−11253 doi: 10.1109/TCYB.2021.3070434 [50] Xu D, Jiang M, Hu W, Li S Z, Pan R H, Yen G G. An online prediction approach based on incremental support vector machine for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2022, 26(4): 690−703 doi: 10.1109/TEVC.2021.3115036 [51] Wang X P, Zhao Y M, Tang L X, Yao X. Moea/d with spatial-temporal topological tensor prediction for evolutionary dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, DOI: 10.1109/TEVC.2024.3367747 [52] Ye Y L, Lin Q Z, Ma L J, Wong K C, Gong M G, Coello C C A. Multiple source transfer learning for dynamic multiobjective optimization. Information Sciences, 2022, 607: 739−757 doi: 10.1016/j.ins.2022.05.114 [53] Jiang M, Wang Z Z, Qiu L M, Guo S H, Gao X, Tan K C. A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning. IEEE Transactions on Cybernetics, 2021, 51(7): 3417−3428 doi: 10.1109/TCYB.2020.2989465 [54] Guo Y N, Chen G Y, Jiang M, Gong D W, Liang J. A knowledge guided transfer strategy for evolutionary dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2023, 27(6): 1750−1764 doi: 10.1109/TEVC.2022.3222844 [55] Wilcoxon F, Bulletin S B, Dec N. Individual comparisons by ranking methods. Springer New York, DOI: 10.1007/978-1-4612-4380-916