Knowledge-data-driven Cooperative Optimal Control for Wastewater Treatment Denitrification Process
-
摘要: 为有效提升城市污水处理过程的脱氮效果, 提出一种知识和数据驱动的反硝化脱氮过程协同优化控制(Knowledge-data-driven cooperative optimal control, KDDCOC). 所提方法主要有以下两个方面: 首先, 建立一种基于自适应知识核函数的协同优化控制目标模型, 动态描述出水水质(Effluent quality, EQ)以及泵送能耗(Pumping energy consumption, PE)、关键变量的协同关系; 其次, 提出一种知识引导的协同优化算法(Knowledge guide-based cooperative optimization algorithm, KGCO), 快速准确求解硝态氮(Nitrate nitrogen, SNO)优化设定值, 提高KDDCOC的响应速度. KDDCOC利用比例−积分−微分(Proportional-integral-derivative, PID)控制器对硝态氮优化设定值进行跟踪, 将提出的KDDCOC应用于城市污水处理过程基准仿真模型 1 号(Benchmark simulation model No.1, BSM1), 实验结果表明, 该方法能够提高出水水质, 降低运行能耗, 有效改善脱氮效果.
-
关键词:
- 污水处理反硝化脱氮过程 /
- 知识和数据驱动 /
- 协同优化控制 /
- 自适应知识核函数 /
- 知识引导的协同优化算法
Abstract: In order to effectively improve the performance of wastewater treatment denitrification process, a knowledge-data-driven cooperative optimal control (KDDCOC) is proposed. The main work of this paper includes the following two points: First, a cooperative optimal control objective model, based on adaptive knowledge kernel function, is designed to dynamically describe the cooperative relationship among effluent quality (EQ), pumping energy consumption (PE), and key variables; Second, a knowledge guide-based cooperative optimization algorithm (KGCO) is proposed to quickly and accurately obtain the optimal set-points of nitrate nitrogen (SNO). Then, the response speed of KDDCOC is improved. A proportional-integral-derivative (PID) controller is used to track the optimal set-points of nitrate nitrogen. The proposed KDDCOC is applied to the benchmark simulation model No.1 (BSM1) of wastewater treatment process. The experimental results indicate that KDDCOC can improve the effluent quality and the efficiency of denitrification, reduce the energy consumption. -
表 1 干燥天气下不同优化控制方法的详细性能
Table 1 Detailed performance of different optimal control methods in dry weather
表 2 暴雨天气下不同优化控制方法的详细性能
Table 2 Detailed performance of different optimal control methods in storm weather
-
[1] 韩红桂, 张璐, 卢薇, 乔俊飞. 城市污水处理过程动态多目标智能优化控制研究. 自动化学报, 2021, 47(3): 620−629Han Hong-Gui, Zhang Lu, Lu Wei, Qiao Jun-Fei. Research on dynamic multiobjective intelligent optimal control for municipal wastewater treatment process. Acta Automatica Sinica, 2021, 47(3): 620−629 [2] 杜睿, 彭永臻. 城市污水生物脱氮技术变革: 厌氧氨氧化的研究与实践新进展. 中国科学: 技术科学, 2022, 52(3): 389−402 doi: 10.1360/SST-2020-0407Du Rui, Peng Yong-Zhen. Technical revolution of biological nitrogen removal from municipal wastewater: Recent advances in anammox research and application. Scientia Sinica Technologica, 2022, 52(3): 389−402 doi: 10.1360/SST-2020-0407 [3] 韩红桂, 张琳琳, 伍小龙, 乔俊飞. 数据和知识驱动的城市污水处理过程多目标优化控制. 自动化学报, 2021, 47(11): 2538−2546Han Hong-Gui, Zhang Lin-Lin, Wu Xiao-Long, Qiao Jun-Fei. Data-knowledge driven multiobjective optimal control for municipal wastewater treatment process. Acta Automatica Sinica, 2021, 47(11): 2538−2546 [4] 杨翠丽, 武战红, 韩红桂, 乔俊飞. 城市污水处理过程优化设定方法研究进展. 自动化学报, 2020, 46(10): 2092−2108Yang Cui-Li, Wu Zhan-Hong, Han Hong-Gui, Qiao Jun-Fei. Perspectives on optimal setting methods for municipal wastewater treatment processes. Acta Automatica Sinica, 2020, 46(10): 2092−2108 [5] 阳春华, 孙备, 李勇刚, 黄科科, 桂卫华. 复杂生产流程协同优化与智能控制. 自动化学报, 2023, 49(3): 528−539Yang Chun-Hua, Sun Bei, Li Yong-Gang, Huang Ke-Ke, Gui Wei-Hua. Cooperative optimization and intelligent control of complex production processes. Acta Automatica Sinica, 2023, 49(3): 528−539 [6] 韩红桂, 秦晨辉, 孙浩源, 乔俊飞. 城市污水处理过程自适应滑模控制. 自动化学报, 2023, 49(5): 1010−1018Han Hong-Gui, Qin Chen-Hui, Sun Hao-Yuan, Qiao Jun-Fei. Adaptive sliding mode control for municipal wastewater treatment process. Acta Automatica Sinica, 2023, 49(5): 1010−1018 [7] Borja S, Albert G, Xavier F, Ulf J, Juan A B. A plant-wide model describing GHG emissions and nutrient recovery options for water resource recovery facilities. Water Research, 2022, 215: Article No. 118223 doi: 10.1016/j.watres.2022.118223 [8] Reifsnyder S, Garrido-Baserba M, Cecconi F, Wong L, Ackman P, Melitas N, et al. Relationship between manual air valve positioning, water quality and energy usage in activated sludge processes. Water Research, 2020, 173: Article No. 115537 doi: 10.1016/j.watres.2020.115537 [9] Plosz B G. Optimization of the activated sludge anoxic reactor configuration as a means to control nutrient removal kinetically. Water Research, 2007, 41(8): 1763−1773 doi: 10.1016/j.watres.2007.01.007 [10] Borzooei S, Campo G, Cerutti A, Meucci L, Panepinto D, Riggio V, et al. Optimization of the wastewater treatment plant: From energy saving to environmental impact mitigation. Science of the Total Environment, 2019, 691: 1182−1189 doi: 10.1016/j.scitotenv.2019.07.241 [11] Abba S I, Pham Q B, Usman A G, Linh N T T, Aliyu D S, Nguyen Q, et al. Emerging evolutionary algorithm integrated with kernel principal component analysis for modeling the performance of a water treatment plant. Journal of Water Process Engineering, 2020, 33: Article No. 101081 doi: 10.1016/j.jwpe.2019.101081 [12] Feng J, Song W Z, Zhang H G, Wang W. Data-driven robust iterative learning consensus tracking control for MIMO multiagent systems under fixed and iteration-switching topologies. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 1331−1344 doi: 10.1109/TSMC.2020.3017289 [13] Santoso F, Finn A. A data-driven cyber-physical system using deep-learning convolutional neural networks: Study on false-data injection attacks in an unmanned ground vehicle under fault-tolerant conditions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(1): 346−356 doi: 10.1109/TSMC.2022.3170071 [14] Zhang H, Yang C, Shi X Q, Liu H B. Effluent quality prediction in papermaking wastewater treatment processes using dynamic Bayesian networks. Journal of Cleaner Production, 2021, 282: Article No. 125396 doi: 10.1016/j.jclepro.2020.125396 [15] Zeng Y H, Zhang Z J, Kusiak A, Tang F, Wei X P. Optimizing wastewater pumping system with data-driven models and a greedy electromagnetism-like algorithm. Stochastic Environmental Research and Risk Assessment, 2016, 30: 1263−1275 doi: 10.1007/s00477-015-1115-4 [16] Han H G, Chen C, Sun H Y, Qiao J F. Multiobjective integrated optimal control for nonlinear systems. IEEE Transactions on Cybernetics, 2023, 53(12): 7712−7722 doi: 10.1109/TCYB.2022.3204030 [17] 王凌, 王晶晶. 考虑运输时间的分布式绿色柔性作业车间调度协同群智能优化. 中国科学: 技术科学, 2023, 53(2): 243−257 doi: 10.1360/SST-2021-0355Wang Ling, Wang Jing-Jing. A cooperative memetic algorithm for the distributed green flexible job shop with transportation time. Scientia Sinica Technologica, 2023, 53(2): 243−257 doi: 10.1360/SST-2021-0355 [18] Santín I, Pedret C, Vilanova R, Meneses M. Advanced decision control system for effluent violations removal in wastewater treatment plants. Control Engineering Practice, 2016, 49: 60−75 doi: 10.1016/j.conengprac.2016.01.005 [19] Han H G, Zhang L, Qiao J F. Dynamic optimal control for wastewater treatment process under multiple operating conditions. IEEE Transactions on Automation Science and Engineering, 2023, 20(3): 1907−1919 doi: 10.1109/TASE.2022.3189048 [20] Han H G, Liu Z, Lu W, Hou Y, Qiao J F. Dynamic MOPSO-based optimal control for wastewater treatment process. IEEE Transactions on Cybernetics, 2021, 51(5): 2518−2528 doi: 10.1109/TCYB.2019.2925534 [21] Qiao J F, Zhang W. Dynamic multi-objective optimization control for wastewater treatment process. Neural Computing and Applications, 2018, 29: 1261−1271 doi: 10.1007/s00521-016-2642-8 [22] 张伟, 黄卫民. 基于种群分区的多策略自适应多目标粒子群算法. 自动化学报, 2022, 48(10): 2585−2599Zhang Wei, Huang Wei-Min. Multi-strategy adaptive multi-objective particle swarm optimization algorithm based on swarm partition. Acta Automatica Sinica, 2022, 48(10): 2585−2599 [23] Watari D, Taniguchi I, Goverde H, Manganiello P, Shirazi E, Catthoor F, et al. Multi-time scale energy management framework for smart PV systems mixing fast and slow dynamics. Applied Energy, 2021, 289: Article No. 116671 doi: 10.1016/j.apenergy.2021.116671 [24] Han H G, Fu S J, Sun H Y, Qiao J F. Data-driven model-predictive control for nonlinear systems with stochastic sampling interval. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(5): 3019−3030 doi: 10.1109/TSMC.2022.3220550 [25] Jiang Y, Li X Y, Qin C W, Xing X Y, Chen Z Y. Improved particle swarm optimization based selective harmonic elimination and neutral point balance control for three-level inverter in low-voltage ride-through operation. IEEE Transactions on Industrial Informatics, 2022, 18(1): 642−652 doi: 10.1109/TII.2021.3062625 [26] Han H G, Zhang L, Liu H X, Yang C L, Qiao J F. Intelligent optimal control system with flexible objective functions and its applications in wastewater treatment process. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(6): 3464−3476 [27] Song M, Sun W, Shahidehpour M, Yan M Y, Cao C C. Multi-time scale coordinated control and scheduling of inverter-based TCLs with variable wind generation. IEEE Transactions on Sustainable Energy, 2021, 12(1): 46−57 doi: 10.1109/TSTE.2020.2971271 [28] Han H G, Zhang L, Zhang L L, He Z, Qiao J F. Cooperative optimal controller and its application to activated sludge process. IEEE Transactions on Cybernetics, 2021, 51(8): 3938−3951 doi: 10.1109/TCYB.2019.2925143 [29] Zhou P, Wang X, Chai T Y. Multiobjective operation optimization of wastewater treatment process based on reinforcement self-learning and knowledge guidance. IEEE Transactions on Cybernetics, 2023, 53(11): 6896−6909 doi: 10.1109/TCYB.2022.3164476 [30] 桂卫华, 曾朝晖, 陈晓方, 谢永芳, 孙玉波. 知识驱动的流程工业智能制造. 中国科学: 信息科学, 2020, 50(9): 1345−1360 doi: 10.1360/SSI-2020-0211Gui Wei-Hua, Zeng Zhao-Hui, Chen Xiao-Fang, Xie Yong-Fang, Sun Yu-Bo. Knowledge-driven process industry smart manufacturing. Scientia Sinica Informationis, 2020, 50(9): 1345−1360 doi: 10.1360/SSI-2020-0211 [31] Ji M D, Wang J, Samir K K, Wang S Q, Zhang J, Liang S, et al. Water-energy-greenhouse gas nexus of a novel high-rate activated sludge-two-stage vertical up-flow constructed wetland system for low-carbon wastewater treatment. Water Research, 2023, 229: Article No. 119491 doi: 10.1016/j.watres.2022.119491 [32] Han H G, Liu Z, Liu H X, Qiao J F. Knowledge-data-driven model predictive control for a class of nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(7): 4492−4504 doi: 10.1109/TSMC.2019.2937002