2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进能量模型的主动域自适应安全性评估方法

刘畅 何潇 王立敏

刘畅, 何潇, 王立敏. 基于改进能量模型的主动域自适应安全性评估方法. 自动化学报, 2024, 50(10): 1928−1937 doi: 10.16383/j.aas.c230685
引用本文: 刘畅, 何潇, 王立敏. 基于改进能量模型的主动域自适应安全性评估方法. 自动化学报, 2024, 50(10): 1928−1937 doi: 10.16383/j.aas.c230685
Liu Chang, He Xiao, Wang Li-Min. Active domain adaptation for safety assessment: An improved energy-based model. Acta Automatica Sinica, 2024, 50(10): 1928−1937 doi: 10.16383/j.aas.c230685
Citation: Liu Chang, He Xiao, Wang Li-Min. Active domain adaptation for safety assessment: An improved energy-based model. Acta Automatica Sinica, 2024, 50(10): 1928−1937 doi: 10.16383/j.aas.c230685

基于改进能量模型的主动域自适应安全性评估方法

doi: 10.16383/j.aas.c230685
基金项目: 国家自然科学基金(62163012, 62473223), 北京市自然科学基金 (L241016)资助
详细信息
    作者简介:

    刘畅:清华大学自动化系博士研究生. 2019年获得中南大学自动化专业学士学位. 主要研究方向为数据驱动的动态系统安全性评估, 机器学习方法及其工业应用. E-mail: liuc19@mails.tsinghua.edu.cn

    何潇:清华大学自动化系长聘教授. 2010年获得清华大学博士学位. 主要研究方向为动态系统、网络化系统与信息物理系统的故障诊断和容错控制及其应用. 本文通信作者. E-mail: hexiao@tsinghua.edu.cn

    王立敏:广州大学机械与电气工程学院教授. 2009年获得大连理工大学运筹学与控制论专业博士学位. 主要研究方向为批次过程控制, 故障诊断和容错控制. E-mail: wanglimin0817@163.com

Active Domain Adaptation for Safety Assessment: An Improved Energy-based Model

Funds: Supported by National Natural Science Foundation of China (62163012, 62473223) and Beijing Natural Science Foundation (L241016)
More Information
    Author Bio:

    LIU Chang Ph.D. candidate in the Department of Automation, Tsinghua University. He received his bachelor degree in automation from Central South University in 2019. His research interest covers data-driven safety assessment for dynamic systems, machine learning methods, and their applications in industry

    HE Xiao Tenured Professor in the Department of Automation, Tsinghua University. He received his Ph.D. degree from Tsinghua University in 2010. His research interest covers fault diagnosis and fault-tolerant control of dynamic systems, networked systems, cyber-physical systems, and their applications. Corresponding author of this paper

    WANG Li-Min Professor at the School of Mechanical and Electrical Engineering, Guangzhou University. She received her Ph.D. degree in operations research and cybernetics from Dalian University of Technology in 2009. Her research interest covers batch process control, fault diagnosis, and fault-tolerant control

  • 摘要: 复杂动态系统运行过程中的在线安全性评估至关重要且富有挑战性. 构建有效的数据驱动模型需要大量有标注数据, 但这在实际中通常难以获得. 此外, 考虑到系统不同的运行工况, 安全性评估模型应该具有良好的泛化能力. 域自适应(Domain adaptation, DA)可以将模型从数据标注丰富的源域迁移到具有不同但相似数据分布的目标域. 然而, 源域中没有出现过的任务相关未知情景会降低模型的性能, 是目前尚未解决的挑战. 主动域自适应通过结合域自适应与主动学习技术, 为解决上述挑战提供了思路. 本文研究目标域存在任务相关未知情景的主动域自适应安全性评估问题, 提出一种基于改进能量模型的主动域自适应方法. 在所提方法中融合分布外检测器, 在此基础上主动选择目标域中具有代表性的无标注样本进行标注, 作为训练数据以提高域自适应模型的性能. 最后, 通过基于轴承数据的案例研究, 验证所提方法的有效性和适用性.
  • 图  1  基于改进能量模型的主动域自适应安全性评估框架

    Fig.  1  The safety assessment framework of the active domain adaptation with the improved energy-based model

    图  2  主动标注过程

    Fig.  2  Active labeling process

    图  3  凯斯西储大学滚动轴承故障测试平台

    Fig.  3  Rolling bearing fault test platform from Case Western Reserve University

    图  4  模型的主干网络

    Fig.  4  Backbone network of the model

    图  5  不同方法的安全性评估整体平均准确率结果对比

    Fig.  5  Comparison of overall average accuracy results for safety assessment across different methods

    表  1  不同情景及其对应的安全等级标签

    Table  1  Different scenarios and corresponding safety level label

    情景 安全等级标签
    正常 1
    IR-7 1
    B-7 1
    OR-7 1
    IR-14 2
    B-14 2
    OR-14 2
    IR-21 3
    B-21 3
    OR-21 3
    注: $x\text{-}y$表示发生在位置$x$、故障直径为$y$的故障情景. 例如, IR-7表示发生在内圈、故障直径为7 mils的故障情景.
    下载: 导出CSV

    表  2  不同方法在各种任务和不同未知情景下的安全性评估准确率$ ACC \uparrow (STD \downarrow) $比较

    Table  2  The safety assessment accuracy $ ACC \uparrow (STD \downarrow )$ comparison of different methods under various tasks and different unknown scenarios

    任务设定 未知情景 EDA EADA RAND 本文方法 (COPOD) 本文方法 (ECOD) 本文方法 (IForest) 本文方法 (KDE) 本文方法 (OCSVM) 本文方法 (LOF)
    IR 77.06 (1.73) 80.66 (3.90) 76.55 (2.54) 76.05 (1.32) 77.34 (1.02) 81.67 (1.95) 79.44 (4.04) 77.63 (4.42) 79.00 (4.50)
    1hp $ \rightarrow $ 2hp B 83.62 (0.54) 81.96 (2.75) 83.62 (0.25) 83.04 (1.54) 81.10 (2.62) 82.47 (3.58) 81.82 (3.94) 81.39 (3.97) 82.76 (0.76)
    OR 82.40 (0.54) 82.32 (0.12) 80.30 (0.87) 80.88 (1.27) 81.17 (0.37) 81.67 (1.52) 81.02 (0.87) 79.94 (2.62) 82.11 (0.82)
    IR 74.86 (2.20) 72.13 (2.28) 75.36 (1.39) 74.50 (0.12) 74.21 (0.66) 75.36 (3.46) 74.64 (2.99) 77.37 (2.85) 74.14 (3.56)
    1hp $ \rightarrow $ 3hp B 81.75 (4.38) 81.18 (3.48) 77.95 (1.11) 81.68 (1.41) 82.54 (1.35) 82.26 (0.90) 80.46 (1.86) 81.47 (3.26) 82.18 (0.90)
    OR 77.16 (1.71) 79.17 (0.82) 79.74 (2.75) 77.08 (3.99) 78.52 (3.14) 77.30 (0.69) 78.74 (1.59) 79.53 (3.17) 78.59 (1.59)
    IR 70.92 (1.32) 73.52 (1.19) 72.37 (2.05) 74.75 (1.44) 73.09 (1.02) 73.67 (1.62) 72.58 (1.30) 77.29 (2.06) 74.03 (0.57)
    2hp $ \rightarrow $ 1hp B 84.49 (0.70) 83.98 (1.08) 83.62 (1.02) 84.20 (0.57) 84.85 (0.57) 83.91 (0.25) 83.91 (0.45) 84.20 (0.43) 84.49 (0.54)
    OR 79.15 (0.90) 79.22 (1.35) 79.65 (1.77) 79.15 (0.98) 79.22 (0.87) 79.43 (1.21) 79.37 (1.64) 78.35 (1.35) 79.29 (0.76)
    IR 75.22 (1.08) 73.35 (3.42) 73.99 (0.87) 75.07 (2.09) 76.08 (0.57) 76.29 (0.75) 77.01 (0.90) 75.86 (0.78) 74.93 (0.45)
    2hp $ \rightarrow $ 3hp B 83.48 (1.73) 83.91 (1.08) 83.62 (0.22) 83.76 (0.12) 82.90 (1.32) 82.97 (3.02) 84.12 (0.69) 83.05 (1.40) 82.97 (1.20)
    OR 82.47 (1.65) 80.68 (1.79) 80.24 (2.24) 82.26 (0.66) 81.25 (0.78) 80.53 (1.74) 80.82 (1.71) 82.83 (0.82) 81.32 (1.53)
    IR 72.08 (2.13) 73.16 (0.99) 71.43 (0.94) 72.44 (0.62) 75.11 (2.81) 71.57 (0.66) 72.08 (2.34) 72.73 (0.43) 73.38 (0.99)
    3hp $ \rightarrow $ 1hp B 83.04 (0.33) 84.63 (0.78) 83.98 (1.32) 84.13 (0.45) 84.56 (0.54) 85.93 (0.37) 85.35 (1.32) 84.34 (0.45) 84.70 (1.75)
    OR 72.29 (2.38) 71.00 (1.35) 69.77 (0.87) 73.02 (2.25) 71.28 (1.84) 70.09 (2.76) 74.96 (1.84) 74.24 (1.52) 70.63 (1.44)
    IR 76.70 (1.89) 76.26 (0.76) 77.34 (1.68) 76.84 (0.94) 76.41 (1.42) 78.14 (1.52) 76.41 (1.85) 75.61 (2.14) 77.20 (1.27)
    3hp $ \rightarrow $ 2hp B 83.12 (1.52) 82.47 (1.72) 83.91 (1.54) 82.83 (0.25) 85.35 (1.19) 84.92 (1.74) 83.91 (1.52) 83.12 (1.21) 81.53 (0.82)
    OR 77.13 (4.25) 78.43 (3.50) 78.86 (0.45) 77.78 (1.09) 75.61 (2.67) 80.01 (2.53) 80.52 (1.69) 81.24 (0.66) 81.60 (0.43)
    下载: 导出CSV

    表  3  不同方法在不同未知情景下的安全性平均评估准确率$ \overline{ACC} \uparrow$比较

    Table  3  The safety average assessment accuracy $ \overline{ACC} \uparrow$ comparison of different methods under different unknown scenarios

    未知情景EDAEADARAND本文方法(COPOD)本文方法(ECOD)本文方法(IForest)本文方法(KDE)本文方法(OCSVM)本文方法(LOF)
    IR74.4774.8574.5174.9475.3776.1275.3675.2575.45
    B83.2583.0282.7883.2783.5583.7483.2682.9383.11
    OR78.4378.4778.1078.3677.8478.6779.2479.3678.93
    下载: 导出CSV
  • [1] Liu C, He X, Zhou D H, Huang B. Safety assessment for dynamic systems: A survey. Cybernetics and Intelligence, DOI: 10.26599/CAI.2024.9390001
    [2] Wang M, Zhou D H, Chen M Y. Hybrid variable monitoring: An unsupervised process monitoring framework with binary and continuous variables. Automatica, 2023, 147: Article No. 110670 doi: 10.1016/j.automatica.2022.110670
    [3] Zhang H J, Zhang C, Dong J, Peng K X. A new key performance indicator oriented industrial process monitoring and operating performance assessment method based on improved Hessian locally linear embedding. International Journal of Systems Science, 2022, 53(16): 3538−3555 doi: 10.1080/00207721.2022.2093420
    [4] Song P Y, Zhao C H, Huang B. SFNet: A slow feature extraction network for parallel linear and nonlinear dynamic process monitoring. Neurocomputing, 2022, 488: 359−380 doi: 10.1016/j.neucom.2022.03.012
    [5] 刘强, 卓洁, 郎自强, 秦泗钊. 数据驱动的工业过程运行监控与自优化研究展望. 自动化学报, 2018, 44(11): 1944−1956

    Liu Qiang, Zhuo Jie, Lang Zi-Qiang, Qin S. Joe. Perspectives on data-driven operation monitoring and self-optimization of industrial processes. Acta Automatica Sinica, 2018, 44(11): 1944−1956
    [6] Zhang Z, He X. Active fault diagnosis for linear systems: Within a signal processing framework. IEEE Transactions on Instrumentation and Measurement, 2022, 71: Article No. 3505009
    [7] Amini N, Zhu Q Q. Fault detection and diagnosis with a novel source-aware autoencoder and deep residual neural network. Neurocomputing, 2022, 488: 618−633 doi: 10.1016/j.neucom.2021.11.067
    [8] Xu J M, Ke H B, Chen Z W, Fan X Y, Peng T, Yang C H. Oversmoothing relief graph convolutional network-based fault diagnosis method with application to the rectifier of high-speed trains. IEEE Transactions on Industrial Informatics, 2022, 19(1): 771−779
    [9] Shakiba F M, Shojaee M, Azizi S M, Zhou M C. Real-time sensing and fault diagnosis for transmission lines. International Journal of Network Dynamics and Intelligence, 2022, 1(1): 36−47
    [10] 彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述. 自动化学报, 2017, 43(3): 349−365

    Peng Kai-Xiang, Ma Liang, Zhang Kai. Review of quality-related fault detection and diagnosis techniques for complex industrial processes. Acta Automatica Sinica, 2017, 43(3): 349−365
    [11] Gao C, He X, Dong H L, Liu H J, Lyu G R. A survey on fault-tolerant consensus control of multi-agent systems: Trends, methodologies and prospects. International Journal of Systems Science, 2022, 53(13): 2800−2813 doi: 10.1080/00207721.2022.2056772
    [12] Jia F L, Cao F F, He X. Adaptive fault-tolerant tracking control for uncertain nonlinear systems with unknown control directions and limited resolution. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(3): 1813−1825
    [13] Cai M, He X, Zhou D H. An active fault tolerance framework for uncertain nonlinear high-order fully-actuated systems. Automatic, 2023, 152: Article No. 110969 doi: 10.1016/j.automatica.2023.110969
    [14] Liu X Q, Chen M Y, Sheng L, Zhou D H. Adaptive fault-tolerant control for nonlinear high-order fully-actuated systems. Neurocomputing, 2022, 495: 75−85 doi: 10.1016/j.neucom.2022.04.129
    [15] 柴毅, 毛万标, 任浩, 屈剑锋, 尹宏鹏, 杨志敏, 等. 航天发射系统运行安全性评估研究进展与挑战. 自动化学报, 2019, 45(10): 1829−1845

    Chai Yi, Mao Wan-Biao, Ren Hao, Qu Jian-Feng, Yin Hong-Peng, Yang Zhi-Min, et al. Research on operational safety assessment for spacecraft launch system: Progress and challenges. Acta Automatica Sinica, 2019, 45(10): 1829−1845
    [16] Serbanescu D, Ulmeanu A P. Selected Topics in Probabilistic Safety Assessment: Methodology and Practice in Nuclear Power Plants. Switzerland: Springer Nature, 2020. 1−9
    [17] Aldemir T. A survey of dynamic methodologies for probabilistic safety assessment of nuclear power plants. Annals of Nuclear Energy, 2013, 52: 113−124 doi: 10.1016/j.anucene.2012.08.001
    [18] 赵福均, 周志杰, 胡昌华, 常雷雷, 王力. 基于证据推理的动态系统安全性在线评估方法. 自动化学报, 2017, 43(11): 1950−1961

    Zhao Fu-Jun, Zhou Zhi-Jie, Hu Chang-Hua, Chang Lei-Lei, Wang Li. Online safety assessment method based on evidential reasoning for dynamic systems. Acta Automatica Sinica, 2017, 43(11): 1950−1961
    [19] Liu Z Y, Deng Y, Zhang Y, Ding Z J, He X. Safety assessment of dynamic systems: An evidential group interaction-based fusion design. IEEE Transactions on Instrumentation and Measurement, 2021, 70: Article No. 3523014
    [20] Liu C, Zhang Y, He X. Expert-augmented data-driven safety level assessment scheme with incremental learning. In: Proceedings of the 12th CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS). Chengdu, China: IEEE, 2021. 1−6
    [21] Wilson G, Cook D J. A survey of unsupervised deep domain adaptation. ACM Transactions on Intelligent Systems and Technology, 2020, 11(5): Article No. 51
    [22] Zhao Z B, Zhang Q Y, Yu X L, Sun C, Wang S B, Yan R Q, et al. Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study. IEEE Transactions on Instrumentation and Measurement, 2021, 70: Article No. 3525828
    [23] An Y Y, Zhang K, Chai Y, Liu Q, Huang X H. Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions. Expert Systems With Applications, 2023, 212: Article No. 118802 doi: 10.1016/j.eswa.2022.118802
    [24] Chen Z Y, Liao Y X, Li J P, Huang R Y, Xu L, Jin G, et al. A multi-source weighted deep transfer network for open-set fault diagnosis of rotary machinery. IEEE Transactions on Cybernetics, 2022, 53(3): 1982−1993
    [25] Yang B, Xu S C, Lei Y G, Lee C G, Stewart E, Roberts C. Multi-source transfer learning network to complement knowledge for intelligent diagnosis of machines with unseen faults. Mechanical Systems and Signal Processing, 2022, 162: Article No. 108095 doi: 10.1016/j.ymssp.2021.108095
    [26] Zhu J, Huang C G, Shen C Q, Shen Y J. Cross-domain open-set machinery fault diagnosis based on adversarial network with multiple auxiliary classifiers. IEEE Transactions on Industrial Informatics, 2022, 18(11): 8077−8086 doi: 10.1109/TII.2021.3138558
    [27] Zhang W, Li X, Ma H, Luo Z, Li X. Open-set domain adaptation in machinery fault diagnostics using instance-level weighted adversarial learning. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7445−7455 doi: 10.1109/TII.2021.3054651
    [28] Zhao C, Shen W. Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions. Reliability Engineering & System Safety, 2022, 226: Article No. 108672
    [29] Liu C, Zhang Y, Ding Z J, He X. Active incremental learning for health state assessment of dynamic systems with unknown scenarios. IEEE Transactions on Industrial Informatics, 2022, 19(2): 1863−1873
    [30] Fu B, Cao Z J, Wang J M, Long M S. Transferable query selection for active domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 7268−7277
    [31] Prabhu V, Chandrasekaran A, Saenko K, Hoffman J. Active domain adaptation via clustering uncertainty-weighted embeddings. In: Proceedings of the 18th IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 8485−8494
    [32] Xie B H, Yuan L H, Li S, Liu C H, Cheng X J, Wang G R. Active learning for domain adaptation: An energy-based approach. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI, 2022. 8708−8716
    [33] LeCun Y, Chopra S, Hadsell R, Ranzato M, Huang F J. A tutorial on energy-based learning [Online], available: https://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf, September 8, 2024
    [34] Liu W T, Wang X Y, Owens J D, Li Y X. Energy-based out-of-distribution detection. arXiv preprint arXiv: 2010.03759, 2021.
    [35] Li Z, Zhao Y, Botta N, Ionescu C, Hu X Y. COPOD: Copula-based outlier detection. In: Proceedings of the IEEE International Conference on Data Mining. Sorrento, Italy: IEEE, 2020. 1118−1123
    [36] Li Z, Zhao Y, Hu X Y, Botta N, Ionescu C, Chen G. Ecod: Unsupervised outlier detection using empirical cumulative distribution functions. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(12): 12181−12193
    [37] Liu F T, Ting K M, Zhou Z H. Isolation forest. In: Proceedings of the 8th IEEE International Conference on Data Mining. Pisa, Italy: IEEE, 2008. 413−422
    [38] Desforges M J, Jacob P J, Cooper J E. Applications of probability density estimation to the detection of abnormal conditions in engineering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1998, 212(8): 687−703 doi: 10.1243/0954406981521448
    [39] Scholkopf B, Williamson R C, Smola A, Shawe-Taylor J, Platt J. Support vector method for novelty detection. In: Proceedings of the 12th International Conference on Neural Information Processing Systems. Denver, USA: MIT Press, 1999. 582−588
    [40] Breunig M M, Kriegel H P, Ng R T, Sander J. LOF: Identifying density-based local outliers. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. Dallas, USA: ACM, 2000. 93−104
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  112
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 录用日期:  2024-03-21
  • 网络出版日期:  2024-09-12
  • 刊出日期:  2024-10-21

目录

    /

    返回文章
    返回