2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于料面视频图像分析的高炉异常状态智能感知与识别

朱霁霖 桂卫华 蒋朝辉 陈致蓬 方怡静

朱霁霖, 桂卫华, 蒋朝辉, 陈致蓬, 方怡静. 基于料面视频图像分析的高炉异常状态智能感知与识别. 自动化学报, 2024, 50(7): 1−18 doi: 10.16383/j.aas.c230674
引用本文: 朱霁霖, 桂卫华, 蒋朝辉, 陈致蓬, 方怡静. 基于料面视频图像分析的高炉异常状态智能感知与识别. 自动化学报, 2024, 50(7): 1−18 doi: 10.16383/j.aas.c230674
Zhu Ji-Lin, Gui Wei-Hua, Jiang Zhao-Hui, Chen Zhi-Peng, Fang Yi-Jing. Intelligent perception and recognition of blast furnace anomalies via burden surface video image analysis. Acta Automatica Sinica, 2024, 50(7): 1−18 doi: 10.16383/j.aas.c230674
Citation: Zhu Ji-Lin, Gui Wei-Hua, Jiang Zhao-Hui, Chen Zhi-Peng, Fang Yi-Jing. Intelligent perception and recognition of blast furnace anomalies via burden surface video image analysis. Acta Automatica Sinica, 2024, 50(7): 1−18 doi: 10.16383/j.aas.c230674

基于料面视频图像分析的高炉异常状态智能感知与识别

doi: 10.16383/j.aas.c230674
基金项目: 国家重大科研仪器研制项目(61927803), 国家自然科学基金基础科学中心项目(61988101), 国家自然科学基金(62273359), 湘江实验室重大项目(22XJ01005)资助
详细信息
    作者简介:

    朱霁霖:中南大学自动化学院博士研究生. 2017年获得南京理工大学学士学位, 2020年获得中南大学硕士学位. 主要研究方向为先进检测技术, 图像处理和工业过程建模与监测. E-mail: zhujilin@csu.edu.cn

    桂卫华:中国工程院院士, 中南大学自动化学院教授. 1981年获得中南矿冶学院硕士学位. 主要研究方向为复杂工业过程建模, 优化与控制应用和故障诊断与分布式鲁棒控制. E-mail: gwh@csu.edu.cn

    蒋朝辉:中南大学自动化学院教授. 2011年获中南大学博士学位. 主要研究方向为智能传感与检测技术, 图像处理与智能识别和人工智能与机器学习. 本文通信作者. E-mail: jzh0903@csu.edu.cn

    陈致蓬:中南大学自动化学院副教授. 2018年获中南大学博士学位. 主要研究方向为图像处理, 仪器检测, 冶金过程建模与控制. E-mail: ZP.Chen@csu.edu.cn

    方怡静:中南大学自动化学院博士研究生. 2016年和2019年分别获得中南大学学士学位和硕士学位. 主要研究方向为数据驱动的工业过程建模与控制, 工业过程数据分析和机器学习. E-mail: yijingfang@csu.edu.cn

Intelligent Perception and Recognition of Blast Furnace Anomalies via Burden Surface Video Image Analysis

Funds: Supported by National Major Scientific Research Equipment of China (61927803), National Natural Science Foundation of China Basic Science Center Project (61988101), National Natural Science Foundation of China (62273359), and the Major Program of Xiangjiang Laboratory (22XJ01005)
More Information
    Author Bio:

    ZHU Ji-Lin Ph.D. candidate at the School of Automation, Central South University. He received his bachelor degree from Nanjing University of Science and Technology in 2017 and master degree from Central South University in 2020. His research interest covers advanced detection technology, image processing, and industrial process modeling and monitoring

    GUI Wei-Hua Academician of Chinese Academy of Engineering, and professor at the School of Automation, Central South University. He received his master degree from Central South Institute of Mining and Metallurgy in 1981. His research interest covers complex industrial process modeling, optimization and control applications, and fault diagnosis and distributed robust control

    JIANG Zhao-Hui Professor at the School of Automation, Central South University. He received his Ph.D. degree from Central South University in 2011. His research interest covers intelligent sensing and detection technology, image processing and intelligent recognition, and artificial intelligence and machine learning. Corresponding author of this paper

    CHEN Zhi-Peng Associate professor at the School of Automation, Central South University. He received his Ph.D. degree from Central South University in 2018. His research interest covers image processing, instrument detection, and modeling and control of metallurgical process

    FANG Yi-Jing Ph.D. candidate at the School of Automation, Central South University. She received her bachelor degree and master degree from Central South University in 2016 and 2019, respectively. Her research interest covers data-based modeling and control of industrial process, data analysis of industrial process, and machine learning

  • 摘要: 智能感知、精准识别高炉(Blast furnace, BF)异常状态对指导高炉调控优化、保证高炉稳定运行具有重要意义, 但高炉内部的黑箱状态致使传统检测方法难以直接感知并准确识别多种高炉异常状态. 新型工业内窥镜可获取大量料面视频图像, 为直接观测炉内运行状态提供了全新的手段. 基于此, 提出一种基于料面视频图像分析的高炉异常状态智能感知与识别方法. 首先, 提出基于多尺度纹理模糊C均值(Multi-scale texture fuzzy C-means, MST-FCM)聚类的高温煤气流区域提取方法, 准确获取煤气流图像, 并提取煤气流图像纹理、形态和稳定性等浅层特征; 其次, 针对高炉煤气流异常状态感知缺乏相应手段的问题, 提出基于特征编码的高维特征降维方法, 结合自适应K-means++算法, 实现煤气流异常状态的粗粒度感知; 在此基础上, 通过改进雅可比−傅立叶矩(Jacobi-Fourier moments, JFM) 提取煤气流图像深层特征变化趋势, 进而提出细粒度煤气流异常状态感知方法; 最后, 基于煤气流异常状态感知结果, 结合塌料和悬料视频图像, 提出多级残差通道注意力模块(Multi-level residual channel attention module, MRCAM), 建立高炉异常状态识别模型ResVGGNet, 同时实现高炉煤气流异常、塌料和悬料的精准在线识别. 实验结果表明, 所提方法能准确识别不同的高炉异常状态且识别速度快, 可为高炉平稳运行提供重要保障.
  • 图  1  新型工业内窥镜安装示意图((a) 新型工业内窥镜实际安装位置; (b) 新型工业内窥镜成像区域示意图)

    Fig.  1  The schematic diagram of installation of the novel industrial endoscope ((a) Actual installation position of the novel industrial endoscope; (b) Schematic diagram of imaging area of the novel industrial endoscope)

    图  2  不同高炉运行状态下的高炉料面图像

    Fig.  2  BF burden surface images under different BF operation statuses

    图  3  不同炉况下不同方法获取高温煤气流图像对比结果((a)稳定; (b) 稳定; (c) 煤气流状态异常; (d) 悬料; (e) 悬料; (f) 高料位)

    Fig.  3  Comparison results of high temperature gas flow images acquired by different methods under different BF conditions ((a) Stable; (b) Stable; (c) Abnormal gas flow status; (d) Hanging; (e) Hanging; (f) High stockline)

    图  4  基于料面视频图像分析的高炉异常状态智能感知与识别框图

    Fig.  4  Block diagram of intelligent BF anomalies perception and recognition via burden surface video image analysis

    图  5  雅可比–傅立叶矩积分区域

    Fig.  5  The integral region of Jacobian-Fourier moment

    图  6  ResVGGNet模型结构

    Fig.  6  The structure of ResVGGNet model

    图  7  残差结构

    Fig.  7  The residual structure

    图  8  RCAM结构

    Fig.  8  The structure of RCAM

    图  9  不同状态下高温煤气流图像多元特征降维结果((a) 正常状态; (b) 异常状态)

    Fig.  9  The multi-feature results of high-temperature gas flow images from normal and abnormal BF statuses after dimensionality reduction ((a) Normal status; (b) Abnormal status)

    图  10  不同状态下高温煤气流图像多元特征聚类结果((a) 正常状态; (b) 异常状态)

    Fig.  10  The multi-feature results of high-temperature gas flow images from normal and abnormal BF statuses after clustering ((a) Normal status; (b) Abnormal status)

    图  11  基于HGJM趋势变化的煤气流异常状态感知结果

    Fig.  11  The anomaly perception results based on HGJM trend change

    图  12  不同分类网络模型训练与测试结果((a) 训练精度; (b) 训练损失; (c) 测试精度; (d) 测试损失)

    Fig.  12  Training and test results of different classification network models ((a) Training accuracy; (b) Training loss; (c) Test accuracy; (d) Test loss)

    表  1  高炉料面图像数据集

    Table  1  Dataset of BF burden surface images

    高炉状态 塌料 煤气流异常 悬料 正常
    训练集 640 1920 960 1920
    测试集 160 480 240 480
    下载: 导出CSV

    表  2  不同分类网络在高炉料面图像数据集下的识别结果

    Table  2  Recognition results of different classification networks under BF burden surface image dataset

    网络名称异常状态检测率↑误报率↓速度(帧/s)↑
    塌料煤气流异常悬料正常状态
    ResNet18100.00%98.54%99.58%0.42%42.94
    VGG11100.00%98.33%99.58%2.29%35.29
    ViT16100.00%99.38%$\underline{98.75\%}$1.67%23.32
    SwinT-t100.00%$\underline{93.96\%}$99.58%$\underline{3.96\%}$$\underline{8.98}$
    ResVGGNet100.00%99.30%99.58%0.21%60.26
    ↑ 表示指标越大越好, ↓ 表示指标越小越好, 粗体表示指标最优, 下划线表示指标最差.
    下载: 导出CSV

    表  3  不同高炉异常状态识别方法对比

    Table  3  Comparison among different BF anomaly recognition methods

    类型方法名称悬料状态正常状态
    检测率↑误报率↓
    多元统计分析CA$\underline{71.20\%}$4.60%
    MWPCA96.45%3.76%
    SFICVA89.50%3.00%
    L-DBKSSA100.00%1.24%
    A-DiASSA92.80%1.40%
    深度学习DSKL-SVM100.00%$\underline{17.00\%}$
    SD-DAE93.77%10.40%
    料面图像法所提方法99.58%0.21%
    ↑ 表示指标越大越好, ↓ 表示指标越小越好, 粗体表示指标最优, 斜体表示指标第二优, 下划线表示指标最差.
    下载: 导出CSV
  • [1] Liu J S, Jiang Z H, Gui W H, Chen Z W. A novel particle size detection system based on RGB-laser fusion segmentation with feature dual-recalibration for blast furnace materials. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10690−10699 doi: 10.1109/TIE.2022.3219054
    [2] Zhu J L, Gui W H, Chen Z P, Jiang Z H. A novel non-contact and real-time blast furnace stockline detection method based on burden surface video streams. IEEE Transactions on Instrumentation and Measurement, 2023, 72: Article No. 4502213
    [3] 周平, 刘记平, 梁梦圆, 张瑞垚. 基于KPLS 鲁棒重构误差的高炉燃料比监测与异常识别. 自动化学报, 2021, 47(7): 1661−1671

    Zhou Ping, Liu Ji-Ping, Liang Meng-Yuan, Zhang Rui-Yao. KPLS robust reconstruction error-based monitoring and anomaly identification of fuel ratio in blast furnace ironmaking. Acta Automatica Sinica, 2021, 47(7): 1661−1671
    [4] Jiang K, Jiang Z H, Xie Y F, Pan D, Gui W H. Abnormality monitoring in the blast furnace ironmaking process based on stacked dynamic target-driven denoising autoencoders. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1854−1863 doi: 10.1109/TII.2021.3084911
    [5] Takatani K, Iwanaga Y. Fundamental study on thermal degradation of coke during rapid heating. Tetsu-to-Hagane, 1986, 72(2): 189−194 doi: 10.2355/tetsutohagane1955.72.2_189
    [6] 李骏峰. 高炉炉体热流强度与炉况顺行的研究 [硕士学位论文], 昆明理工大学, 中国, 2014.

    Li Jun-Feng. Study on Heat Flux Intensity of Blast Furnace Body and Smooth Operation of Blast Furnace Condition [Master thesis], Kunming University of Science and Technology, China, 2014.
    [7] Zhou P, Li H L, Shi P Y, Zhou C Q. Simulation of the transfer process in the blast furnace shaft with layered burden. Applied Thermal Engineering, 2016, 95: 296−302 doi: 10.1016/j.applthermaleng.2015.11.004
    [8] 陈建华, 徐红阳. “高炉专家系统”应用现状和发展趋势. 现代冶金, 2012, 40(3): 6−10

    Chen Jian-Hua, Xu Hong-Yang. Application status and development trend of “blast furnace expert system”. Modern Metallurgy, 2012, 40(3): 6−10
    [9] Dong Y N, Qin S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 2018, 67: 1−11 doi: 10.1016/j.jprocont.2017.05.002
    [10] Zhou P, Zhang R Y, Xie J, Liu J P, Wang H, Chai T Y. Data-driven monitoring and diagnosing of abnormal furnace conditions in blast furnace ironmaking: An integrated PCA-ICA method. IEEE Transactions on Industrial Electronics, 2021, 68(1): 622−631 doi: 10.1109/TIE.2020.2967708
    [11] Chen Q, Kruger U, Leung A Y T. Cointegration testing method for monitoring nonstationary processes. Industrial and Engineering Chemistry Research, 2009, 48(7): 3533−3543
    [12] Lou S W, Wu P, Yang C J, Xu Y H. Structured fault information-aided canonical variate analysis model for dynamic process monitoring. Journal of Process Control, 2023, 124: 54−69 doi: 10.1016/j.jprocont.2023.01.011
    [13] 赵明. 基于神经网络的高炉炉况诊断与预报研究 [硕士学位论文], 东北大学, 中国, 2010.

    Zhao Ming. Study on Diagnose and Forecast of Blast Furnace Condition Based on Neural Network [Master thesis], Northeastern University, China, 2010.
    [14] Gao C H, Jian L, Luo S H. Modeling of the thermal state change of blast furnace hearth with support vector machines. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1134−1145
    [15] Luo S H, Dai Z A, Chen T X, Chen H Y, Jian L. A weighted SVM ensemble predictor based on AdaBoost for blast furnace ironmaking process. Applied Intelligence, 2020, 50: 1997−2008 doi: 10.1007/s10489-020-01662-y
    [16] Li J P, Hua C C, Yang Y N, Guan X P. Bayesian block structure sparse based T-S fuzzy modeling for dynamic prediction of hot metal silicon content in the blast furnace. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4933−4942 doi: 10.1109/TIE.2017.2772141
    [17] 赵辉, 赵德涛, 岳有军, 王红君. 基于深度置信网络的高炉炉况故障分类方法的研究. 铸造技术, 2018, 39(5): 1028−1032

    Zhao Hui, Zhao De-Tao, Yue You-Jun, Wang Hong-Jun. Research on fault classification of blast furnace condition based on deep belief network. Foundry Technology, 2018, 39(5): 1028−1032
    [18] Lou S W, Yang C J, Wu P, Kong L Y, Xu Y H. Fault diagnosis of blast furnace iron-making process with a novel deep stationary kernel learning support vector machine approach. IEEE Transactions on Instrumentation and Measurement, 2022, 71: Article No. 3521913
    [19] Han Y H, Li Q, Wang C, Zhao Q. A novel knowledge enhanced graph neural networks for fault diagnosis with application to blast furnace process safety. Process Safety and Environmental Protection, 2022, 166: 143−157 doi: 10.1016/j.psep.2022.08.014
    [20] Lou S W, Yang C J, Wu P. A local dynamic broad kernel stationary subspace analysis for monitoring blast furnace ironmaking process. IEEE Transactions on Industrial Informatics, 2023, 19(4): 5945−5955
    [21] Lou S W, Yang C J, Zhu X Z, Zhang H W, Wu P. Adaptive dynamic inferential analytic stationary subspace analysis: A novel method for fault detection in blast furnace ironmaking process. Information Sciences, 2023, 642: Article No. 119176 doi: 10.1016/j.ins.2023.119176
    [22] Shi L, Wen Y B, Zhao G S, Yu T. Recognition of blast furnace gas flow center distribution based on infrared image processing. Journal of Iron and Steel Research International, 2016, 23(3): 203−209 doi: 10.1016/S1006-706X(16)30035-8
    [23] Pan D, Jiang Z H, Chen Z P, Jiang K, Gui W H. Compensation method for molten iron temperature measurement based on heterogeneous features of infrared thermal images. IEEE Transactions on Industrial Informatics, 2020, 16: (11) 7056−7066 doi: 10.1109/TII.2020.2972332
    [24] He L, Jiang Z H, Xie Y F, Chen Z P, Gui W H. Velocity measurement of blast furnace molten iron based on mixed morphological features of boundary pixel sets. IEEE Transactions on Instrumentation and Measurement, 2021, 70: Article No. 5018312
    [25] He L, Jiang Z H, Xie Y F, Gui W H, Chen Z P. Mass flow measurement of molten iron from blast furnace, based on trusted region stacking using single high-speed camera. IEEE Transactions on Instrumentation and Measurement, 2021, 70: Article No. 5013011
    [26] Li Q, Wang Z J, Wang S, Li M M, Lei H, Zou Z S. A deep learning-based diagnosis model driven by tuyere images big data for iron-making blast furnaces. Steel Research International, 2022, 93(8): Article No. 2100826 doi: 10.1002/srin.202100826
    [27] Yi Z H, Jiang Z H, Huang J C, Chen X F, Gui W H. Optimization method of the installation direction of industrial endoscopes for increasing the imaged burden surface area in blast furnaces. IEEE Transactions on Industrial Informatics, 2022, 18(11): 7729−7740 doi: 10.1109/TII.2022.3151747
    [28] Xu T X, Chen Z P, Jiang Z H, Huang J C, Gui W H. A real-time 3D measurement system for the blast furnace burden surface using high-temperature industrial endoscope. Sensors, 2020, 20(3): Article No. 869 doi: 10.3390/s20030869
    [29] 赵志坚, 佘雪峰, 赵奕喆, 刘燕军, 王艾军, 李丽红, 等. 高炉料面结构对煤气流分布影响的模拟. 材料与冶金学报, 2023, 22(1): 38−44

    Zhao Zhi-Jian, She Xue-Feng, Zhao Yi-Zhe, Liu Yan-Jun, Wang Ai-Jun, Li Li-Long, et al. Numerical simulation study on the influence of burden profile on gas distribution in blast furnace. Journal of Materials and Metallurgy, 2023, 22(1): 38−44
    [30] 郭恒光, 朱默, 赵亮. 基于多尺度方向分解的纹理特征提取方法研究. 计算技术与自动化, 2021, 40(4): 102−107

    Guo Heng-Guang, Zhu Mo, Zhao Liang. Texture feature extraction method based on multiscale orientation decomposition. Computing Technology and Automation, 2021, 40(4): 102−107
    [31] Guo W H, Xu G X, Liu B D, Wang Y J. Hyperspectral image classification using CNN-enhanced multi-level Haar wavelet features fusion network. IEEE Geoscience and Remote Sensing Letters, 2022, 19: Article No. 6008805
    [32] Shi Z H, Wu D R, Guo C F, Zhao C M, Cui Y Q, Wang F Y. FCM-RDpA: TSK fuzzy regression model construction using fuzzy C-means clustering, regularization, DropRule, and Powerball AdaBelief. Information Sciences, 2021, 574: 490−504 doi: 10.1016/j.ins.2021.05.084
    [33] Kirillov A, Mintun E, Ravi N, Mao H Z, Rolland C, Gustafson L, et al. Segment anything. arXiv preprint arXiv: 2304.02643, 2023.
    [34] 朱叶, 申铉京, 陈海鹏. 基于彩色LBP的隐蔽性复制−粘贴篡改盲鉴别算法. 自动化学报, 2017, 43(3): 390−397

    Zhu Ye, Shen Xuan-Jing, Chen Hai-Peng. Covert copy-move forgery detection based on color LBP. Acta Automatica Sinica, 2017, 43(3): 390−397
    [35] Hosny K M, Darwish M M, Aboelenen T. Novel fractional-order generic Jacobi-Fourier moments for image analysis. Signal Processing, 2020, 172: Article No. 107545
    [36] 廖陆峰, 李思坤, 王向朝. 基于预训练VGG11模型的光刻坏点检测方法. 光学学报, 2023, 43(3): 140−149

    Liao Lu-Feng, Li Si-Kun, Wang Xiang-Chao. Bad spot detection method of lithography based on pre-trained VGG11 model. Journal of Optics, 2023, 43(3): 140−149
    [37] Kakarwal S, Paithane P. Automatic pancreas segmentation using ResNet-18 deep learning approach. System Research and Information Technologies, DOI: https://doi.org/10.20535/SRIT.2308-8893.2022.2.08
    [38] Zhang T, Qi G J, Xiao B, Wang J D. Interleaved group convolutions. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 4383-4392
    [39] Mao X F, Qi G G, Chen Y F, Li X D, Duan R J, Ye S K, et al. Towards robust vision Transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 12032-12041
    [40] Liu Z, Lin Y T, Cao Y, Hu H, Wei Y X, Zhang Z, et al. Swin Transformer: Hierarchical vision Transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 9992−10002.
    [41] Wang X, Kruger U, Irwin G W. Process monitoring approach using fast moving window PCA. Industrial and Engineering Chemistry Research, 2005, 44(15): 5691−5702 doi: 10.1021/ie048873f
  • 加载中
计量
  • 文章访问数:  84
  • HTML全文浏览量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 录用日期:  2024-02-29
  • 网络出版日期:  2024-06-03

目录

    /

    返回文章
    返回