2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向战机大迎角机动过程的智能学习控制

于目航 王霞 杨林 许斌

于目航, 王霞, 杨林, 许斌. 面向战机大迎角机动过程的智能学习控制. 自动化学报, 2024, 50(4): 719−730 doi: 10.16383/j.aas.c230642
引用本文: 于目航, 王霞, 杨林, 许斌. 面向战机大迎角机动过程的智能学习控制. 自动化学报, 2024, 50(4): 719−730 doi: 10.16383/j.aas.c230642
Yu Mu-Hang, Wang Xia, Yang Lin, Xu Bin. Intelligent learning control for fighter maneuvers at high angle of attack. Acta Automatica Sinica, 2024, 50(4): 719−730 doi: 10.16383/j.aas.c230642
Citation: Yu Mu-Hang, Wang Xia, Yang Lin, Xu Bin. Intelligent learning control for fighter maneuvers at high angle of attack. Acta Automatica Sinica, 2024, 50(4): 719−730 doi: 10.16383/j.aas.c230642

面向战机大迎角机动过程的智能学习控制

doi: 10.16383/j.aas.c230642
基金项目: 国家自然科学基金 (61933010), 陕西省自然科学基础研究计划(2023JC-XJ-08)资助
详细信息
    作者简介:

    于目航:西北工业大学博士研究生. 2022年获得西北工业大学学士学位. 主要研究方向为飞行器智能控制. E-mail: yumh_npu@163.com

    王霞:山东大学博士后. 分别于2017年, 2020年和2023年获得西北工业大学学士, 硕士和博士学位. 主要研究方向为智能控制, 自适应控制及其在飞行器中的应用. E-mail: wangxia_nwpu@163.com

    杨林:成都飞机设计研究所研究员. 主要研究方向为飞行控制系统设计. E-mail: 17311317089@163.com

    许斌:西北工业大学教授. 2006年获得西北工业大学学士学位. 2012年获得清华大学博士学位. 主要研究方向为智能控制, 自适应控制及其应用. 本文通信作者. E-mail: smileface.binxu@gmail.com

Intelligent Learning Control for Fighter Maneuvers at High Angle of Attack

Funds: Supported by National Natural Science Foundation of China (61933010) and Natural Science Basic Research Plan in Shaanxi (2023JC-XJ-08)
More Information
    Author Bio:

    YU Mu-Hang Ph.D. candidate at Northwestern Polytechnical University. He received his bachelor degree from Northwestern Polytechnical University in 2022. His main research interest is intelligent control of flight dynamics

    WANG Xia Postdoctor at Shandong University. She received her bachelor, master and Ph.D. degrees from Northwestern Polytechnical University in 2017, 2020 and 2023, respectively. Her research interest covers intelligent control and adaptive control with applications to flight dynamics

    YANG Lin Researcher at Chengdu Aircraft Design & Research Institute. His main research interest is aircraft flight control system design

    XU Bin Professor at Northwestern Polytechnical University. He received his bachelor degree from Northwestern Polytechnical University in 2006, and received his Ph.D. degree from Tsinghua University in 2012. His research interest covers intelligent control and adaptive control with applications. Corresponding author of this paper

  • 摘要: 针对战机大迎角动力学呈现的强非线性、气动不确定和通道耦合特性, 提出了一种基于智能学习的自适应机动跟踪控制方法. 通过将通道耦合视为集总扰动的一部分, 把模型分解为迎角子系统、侧滑角子系统和滚转角速率子系统. 采用神经网络估计不确定, 设计跟踪误差反馈与集总干扰估计前馈相结合的控制器获取期望操纵力矩, 并基于串接链分配方法求解气动舵偏角和推力矢量偏角. 对于神经网络权重更新, 构建预测误差表征集总干扰的估计性能, 结合跟踪误差设计复合学习更新律. 基于李雅普诺夫方法证明了闭环系统的一致最终有界稳定性. 针对眼镜蛇机动和赫伯斯特机动指令进行了仿真验证和抗干扰参数拉偏测试, 结果表明所提方法具有较高的机动指令跟踪精度和鲁棒性能.
  • 图  1  迎角子系统控制框图

    Fig.  1  Angle of attack control diagram

    图  2  眼镜蛇机动迎角跟踪((a) 指令跟踪; (b) 跟踪误差)

    Fig.  2  Angle of attack tracking under Cobra maneuver ((a) Command tracking; (b) Tracking error)

    图  3  眼镜蛇机动$f_\alpha$的估计值((a) 基于NN-CL的$\hat f_\alpha$;(b) 基于NN的$\hat f_\alpha$; (c) 估计误差)

    Fig.  3  Estimation of $f_\alpha$ under Cobra maneuver ((a) $\hat f_\alpha$ under NN-CL; (b) $\hat f_\alpha$ under NN; (c) Estimation error)

    图  4  眼镜蛇机动的操纵偏转量((a) 升降舵; (b) 俯仰推矢偏角)

    Fig.  4  Control surface deflection under Cobra maneuver ((a) Elevator; (b) Pitch thrust vector deflection angle)

    图  5  赫伯斯特机动迎角跟踪((a) 指令跟踪; (b) 跟踪误差)

    Fig.  5  Angle of attack tracking under Herbst maneuver ((a) Command tracking; (b) Tracking error)

    图  6  赫伯斯特机动滚转角速率跟踪((a) 指令跟踪; (b) 跟踪误差)

    Fig.  6  Roll angle rate tracking under Herbst maneuver ((a) Command tracking; (b) Tracking error)

    图  7  赫伯斯特机动飞行状态((a) 侧滑角;(b) 速度; (c) 航迹方位角)

    Fig.  7  Flight states under Herbst maneuver ((a) Sideslip angle; (b) Speed; (c) Flight path azimuth angle)

    图  8  赫伯斯特机动飞行轨迹

    Fig.  8  Flight path under Herbst maneuver

    图  9  赫伯斯特机动气动操纵舵面偏转((a) 升降舵; (b) 副翼; (c) 方向舵)

    Fig.  9  Aerodynamic control surfaces deflection under Herbst maneuver ((a) Elevator; (b) Aileron; (c) Rudder)

    图  10  赫伯斯特机动推力矢量偏转((a)滚转推矢偏角; (b)偏航推矢偏角; (c)俯仰推矢偏角)

    Fig.  10  Thrust vector nozzles deflection under Herbst maneuver ((a) Roll thrust vector deflection angle; (b) Yaw thrust vector deflection angle; (c) Pitch thrust vector deflection angle)

    图  11  赫伯斯特机动$f_\alpha$的估计值((a) 基于NN-CL的$\hat f_\alpha$; (b) 基于NN的$\hat f_\alpha$; (c) 估计误差)

    Fig.  11  Estimation of $f_\alpha$ under Herbst maneuver ((a) $\hat f_\alpha$ under NN-CL; (b) $\hat f_\alpha$ under NN; (c) Estimation error)

    图  14  赫伯斯特机动$f_p$的估计值((a) 基于NN-CL的$\hat f_p$; (b) 基于NN的$\hat f_p$; (c) 估计误差)

    Fig.  14  Estimation of $f_p$ under Herbst maneuver ((a) $\hat f_p$ under NN-CL; (b) $\hat f_p$ under NN; (c) Estimation error)

    图  15  神经网络权重估计值 ((a) $\|\hat{{\boldsymbol{\omega}}}_{f_\alpha}\|$; (b) $\|\hat{{\boldsymbol{\omega}}}_{f_q}\|$; (c) $\|\hat{{\boldsymbol{\omega}}}_{f_r}\|$; (d) $\|\hat{{\boldsymbol{\omega}}}_{f_p}\|$)

    Fig.  15  Estimation of NN weights ((a) $\|\hat{{\boldsymbol{\omega}}}_{f_\alpha}\|$; (b) $\|\hat{{\boldsymbol{\omega}}}_{f_q}\|$; (c) $\|\hat{{\boldsymbol{\omega}}}_{f_r}\|$; (d) $\|\hat{{\boldsymbol{\omega}}}_{f_p}\|$)

    图  16  鲁棒测试((a) 迎角; (b) 侧滑角; (c) 滚转角速率)

    Fig.  16  Robustness verification ((a) Angle of attack; (b) Sideslip angle; (c) Roll angle rate)

    图  12  赫伯斯特机动$f_q$的估计值((a) 基于NN-CL的$\hat f_q$; (b) 基于NN的$\hat f_q$; (c) 估计误差)

    Fig.  12  Estimation of $f_q$ under Herbst maneuver ((a) $\hat f_q$ under NN-CL; (b) $\hat f_q$ under NN; (c) Estimation error)

    图  13  赫伯斯特机动$f_r$的估计值((a) 基于NN-CL的$\hat f_r$; (b) 基于NN的$\hat f_r$; (c) 估计误差)

    Fig.  13  Estimation of $f_r$ under Herbst maneuver ((a) $\hat f_r$ under NN-CL; (b) $\hat f_r$ under NN; (c) Estimation error)

  • [1] 张子军, 赵彤, 孙烨, 李宏信. 飞机大迎角飞行问题研究综述. 航空工程进展, 2022, 13(3): 74−85

    Zhang Zi-Jun, Zhao Tong, Sun Ye, Li Hong-Xin. Review of the study on high-angle-of-attack flight problems of aircraft. Advances in Aeronautial Science and Engineering, 2022, 13(3): 74−85
    [2] 王海峰, 展京霞, 陈科, 陈翔, 陈梓钧. 战斗机大迎角气动特性研究技术的发展与应用. 空气动力学学报, 2022, 40(1): 1−25

    Wang Hai-Feng, Zhan Jing-Xia, Chen Ke, Chen Xiang, Chen Zi-Jun. Development and application of aerodynamic research technologies for fighters at high angle of attack. Acta Aerodynamic Sinica, 2022, 40(1): 1−25
    [3] Richardson T, Lowenberg M, DiBernardo M, Charles G. Design of a gain-scheduled flight control system using bifurcation analysis. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 444−453 doi: 10.2514/1.13902
    [4] 毛艳岭, 富月. 非线性系统自适应最优切换控制方法. 自动化学报, 2023, 49(10): 2122−2135

    Mao Yan-Ling, Fu Yue. Adaptive optimal switching control of nonlinear systems. Acta Automatica Sinica, 2023, 49(10): 2122−2135
    [5] Wang Q, Stengel R F. Robust nonlinear flight control of a high-performance aircraft. IEEE Transactions on Control Systems Technology, 2005, 13(1): 15−26 doi: 10.1109/TCST.2004.833651
    [6] Wang D, Chen X. H-Based selective inversion of nonminimum-phase systems for feedback controls. IEEE/CAA Journal of Automatica Sinica, 2020, 7(3): 702−710 doi: 10.1109/JAS.2020.1003138
    [7] 蔡云鹏, 张鹏, 韩英华. 基于跟踪微分器的增量动态逆容错控制方法及应用. 飞行力学, 2023, 41(5): 44−51 doi: 10.13645/j.cnki.f.d.20230810.008

    Cai Yun-Peng, Zhang Peng, Han Ying-Hua. Incremental dynamic inversion fault-tolerant control method based on tracking differentiator and application. Flight Dynamics, 2023, 41(5): 44−51 doi: 10.13645/j.cnki.f.d.20230810.008
    [8] Yang Z B, Cheng B, Lv C X, Wang Y Q, Lu P. Fuzzy neural network dynamic inverse control strategy for quadrotor UAV based on atmospheric turbulence. Applied Sciences, 2022, 12(23): Article No. 12232 doi: 10.3390/app122312232
    [9] Zhao B, Shi G, Liu D R. Event-triggered local control for nonlinear interconnected systems through particle swarm optimization-based adaptive dynamic programming. IEEE Transactions on Systems, Man, and Cybernetics-Systems, 2023, 53(12): 7342−7353 doi: 10.1109/TSMC.2023.3298065
    [10] Seyedtabaii S, Delavari M. The choice of sliding surface for robust roll control: Better suppression of high angle of attack/sideslip perturbations. International Journal of Micro Air Vehicles, 2018, 10(4): 330−339 doi: 10.1177/1756829318771059
    [11] Shou Y X, Xu B, Liang X H, Yang D P. Aerodynamic/reaction-jet compound control of hypersonic reentry vehicle using sliding mode control and neural learning. Aerospace Science and Technology, 2021, 111: Article No. 106564
    [12] Liu J, Sun M, Chen Z, Sun Q. Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer. Nonlinear Dynamics, 2020, 99: 2785−2799 doi: 10.1007/s11071-020-05481-1
    [13] Wu D, Chen M, Gong H. Robust control of post-stall pitching maneuver based on finite-time observer. ISA Transactions, 2017, 70: 53−63 doi: 10.1016/j.isatra.2017.06.015
    [14] Xu B, Wang D, Zhang Y, Shi Z K. DOB-based neural control of flexible hypersonic flight vehicle considering wind effects. IEEE Transactions Industrial Electronics, 2017, 64(11): 8676−8685 doi: 10.1109/TIE.2017.2703678
    [15] Yu J P, Shi P, Zhao L. Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica, 2018, 92: 173−180 doi: 10.1016/j.automatica.2018.03.033
    [16] Xu B, Shou Y X, Shi Z K, Yan T. Predefined-time hierarchical coordinated neural control for hypersonic reentry vehicle. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 8456−8466
    [17] Zhang J X, Li K W, Li Y M. Output-feedback based simplified optimized backstepping control for strict-feedback systems with input and state constraints. IEEE/CAA Journal of Automatica Sinica, 2021, 8(6): 1119−1132 doi: 10.1109/JAS.2021.1004018
    [18] 王霞, 许斌, 洪锐. 非最小相位高超声速飞行器自适应参数估计控制. 中国科学: 技术科学, 2021, 51(9): 1066−1074 doi: 10.1360/SST-2020-0211

    Wang Xia, Xu Bin, Hong Rui. Adaptive parameter estimation control of nonminimum phase hypersonic flight vehicle. Scientia Sinica Technologica, 2021, 51(9): 1066−1074 doi: 10.1360/SST-2020-0211
    [19] Sonneveldt L, Chu Q P, Mulder J A. Nonlinear flight control design using constrained adaptive backstepping. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 322−336 doi: 10.2514/1.25834
    [20] 朱铁夫, 李明, 邓建华. 基于Backstepping控制理论的非线性飞控系统和超机动研究. 航空学报, 2005, 26(4): 430−433 doi: 10.3321/j.issn:1000-6893.2005.04.010

    Zhu Tie-Fu, Li Ming, Deng Jian-Hua. Nonlinear flight control system based on Backstepping theory and supermaneuver. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 430−433 doi: 10.3321/j.issn:1000-6893.2005.04.010
    [21] Xu B, Shou Y X, Wang X, Shi P. Finite-time composite learning control of strict-feedback nonlinear system using historical stack. IEEE Transactions on Cybernetics, 2023, 53(9): 5777−5787 doi: 10.1109/TCYB.2022.3182981
    [22] Zhao B, Zhang Y W, Liu D R. Adaptive dynamic programming-based cooperative motion/force control for modular reconfigurable manipulators: A joint task assignment approach. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10944−10954 doi: 10.1109/TNNLS.2022.3171828
    [23] Guo Y Y, Xu B. Finite-time deterministic learning command filtered control for hypersonic flight vehicle. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 4214−4225 doi: 10.1109/TAES.2022.3160687
  • 加载中
图(16)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  163
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-18
  • 网络出版日期:  2024-03-12
  • 刊出日期:  2024-04-26

目录

    /

    返回文章
    返回