2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Retinex先验引导的低光照图像快速增强方法

何磊 易遵辉 谢永芳 陈超洋 卢明

何磊, 易遵辉, 谢永芳, 陈超洋, 卢明. 基于Retinex先验引导的低光照图像快速增强方法. 自动化学报, 2024, 50(5): 1035−1046 doi: 10.16383/j.aas.c230585
引用本文: 何磊, 易遵辉, 谢永芳, 陈超洋, 卢明. 基于Retinex先验引导的低光照图像快速增强方法. 自动化学报, 2024, 50(5): 1035−1046 doi: 10.16383/j.aas.c230585
He Lei, Yi Zun-Hui, Xie Yong-Fang, Chen Chao-Yang, Lu Ming. Fast enhancement method for low light images guided by Retinex prior. Acta Automatica Sinica, 2024, 50(5): 1035−1046 doi: 10.16383/j.aas.c230585
Citation: He Lei, Yi Zun-Hui, Xie Yong-Fang, Chen Chao-Yang, Lu Ming. Fast enhancement method for low light images guided by Retinex prior. Acta Automatica Sinica, 2024, 50(5): 1035−1046 doi: 10.16383/j.aas.c230585

基于Retinex先验引导的低光照图像快速增强方法

doi: 10.16383/j.aas.c230585
基金项目: 国家重点研发计划“政府间国际创新合作”重点专项(2019YFE0118700), 国家自然科学基金(62222306, 61973110, 62203164), 湖南省教育厅科学研究项目(22A0349, 21B0499)资助
详细信息
    作者简介:

    何磊:湖南科技大学信息与电气工程学院讲师. 2017年和2023年分别获得山东大学学士学位和中南大学博士学位. 主要研究方向为视觉检测, 图像处理和深度学习. E-mail: helei_xb@hnust.edu.cn

    易遵辉:湖南科技大学信息与电气工程学院讲师. 2017年和2023年分别获得山东大学学士学位和中南大学博士学位. 主要研究方向为光学成像, 图像处理和视觉检测. 本文通信作者. E-mail: yizunhui@hnust.edu.cn

    谢永芳:中南大学自动化学院教授. 1999年获得中南工业大学博士学位. 主要研究方向为分散控制与鲁棒控 制, 过程控制, 工业大数据和知识自动化. E-mail: yfxie@csu.edu.cn

    陈超洋:湖南科技大学信息与电气工程学院教授. 2014年获得华中科技大学博士学位. 主要研究方向为群机器人系统协同控制, 复杂网络研究. E-mail: ouzk@163.com

    卢明:湖南科技大学信息与电气工程学院教授. 2014年获得中南大学博士学位. 主要研究方向为流程工业工况识别与智能优化控制, 机器视觉与智能机器人. E-mail: mlu@hnust.edu.cn

Fast Enhancement Method for Low Light Images Guided by Retinex Prior

Funds: Supported by National Key Research and Development Program of China for International Scientific and Technological Cooperation Projects (2019YFE0118700), National Natural Science Foundation of China (62222306, 61973110, 62203164), and Scientific Research Fund of Hunan Provincial Education Department (22A0349, 21B0499)
More Information
    Author Bio:

    HE Lei Lecturer at the School of Information and Electrical Engineering, Hunan University of Science and Technology. He received his bachelor degree from Shandong University in 2017 and Ph.D. degree from Central South University in 2023. His research interest covers vision-based measurement, image processing, and deep learning

    YI Zun-Hui Lecturer at the School of Information and Electrical Engineering, Hunan University of Science and Technology. He received his bachelor degree from Shandong University in 2017 and Ph.D. degree from Central South University in 2023. His research interest covers optical imaging, image processing, and vision-based measurement. Corresponding author of this paper

    XIE Yong-Fang Professor at the School of Automation, Central South University. He received his Ph.D. degree from Central South University in 1999. His research interest covers decentralized control and robust control, process control, industrial big data, and knowledge automation

    CHEN Chao-Yang Professor at the School of Information and Electrical Engineering, Hunan University of Science and Technology. He received his Ph.D. degree from Huazhong University of Science and Technology in 2014. His research interest covers cooperative control of swarm robot systems and complex network research

    LU Ming Professor at the School of Information and Electrical Engineering, Hunan University of Science and Technology. He received his Ph.D. degree from Central South University in 2014. His research interest covers working condition recognition and intelligent optimization control of process industry, machine vision and intelligent robot

  • 摘要: 低光照图像增强旨在提高在低光照环境下所采集图像的视觉质量. 然而, 现有的低光照图像增强方法难以在计算效率与增强性能之间达到很好的平衡, 为此, 提出一种基于Retinex先验引导的低光照图像快速增强方法, 将Retinex模型与Gamma校正相结合, 快速输出具有对比度高、视觉效果好和低噪声的图像. 为获取具有良好光照的图像以引导确定与输入图像尺寸大小一致的Gamma校正图, 提出基于Retinex模型的先验图像生成方法. 针对所提先验图像生成方法在极低光照区域中存在颜色失真的问题, 提出一种基于融合的Gamma校正图估计方法, 采用反正切变换恢复极低光照区域的颜色和对比度, 以提升Gamma校正图在极低光照区域的增强性能. 为抑制输出图像的噪声, 考虑到完全平滑的Gamma校正图不会平滑细节纹理的特点, 提出基于域变换递归滤波的Gamma校正图优化方法, 降低输出图像噪声的同时保持颜色和对比度. 实验结果表明, 所提方法不仅在主客观图像质量评价上优于现有大多数主流算法, 而且在计算效率上具有十分显著的优势.
    1)  11 https://sites.google.com/site/vonikakis/datasets
  • 图  1  不同方法的低光照增强结果

    Fig.  1  Low light enhancement results of different methods

    图  2  所提方法的算法流程框架

    Fig.  2  The algorithm flow framework of the proposed method

    图  3  获取先验图像的示例

    Fig.  3  Example of obtaining the prior image

    图  4  先验图像与增强图像之间优势和劣势的可视化

    Fig.  4  Visualization of advantages and disadvantages between prior image and enhanced image

    图  5  不同$ \alpha $取值下的权重函数曲线

    Fig.  5  Weight function curves with different values of $ \alpha $

    图  6  室内场景下不同方法的低光照图像增强结果

    Fig.  6  Low light image enhancement results of different methods in indoor scene

    图  7  室外场景下不同方法的低光照图像增强结果

    Fig.  7  Low light image enhancement results of different methods in outdoor scene

    图  8  黑夜环境下不同方法的低光照图像增强结果

    Fig.  8  Low light image enhancement results of different methods under dark night environment

    图  9  针对真实高噪声低光照图像下不同方法的增强结果

    Fig.  9  Enhancement results of different methods for real high-noise low light image

    图  10  所提方法不同模块的消融研究

    Fig.  10  Ablation studies of different modules of the proposed method

    表  1  不同方法在不同低光照数据集中的CEIQ值

    Table  1  CEIQ values of different methods in different low light datasets

    NPEA[34]LIME[8]MF[9]LECARM[35]STAR[36]SCI[16]所提方法
    DCIM3.3993.3583.1453.1093.1623.1853.063
    Fusion3.4053.3993.4283.4053.3873.3403.358
    NPE3.7843.4783.4993.4973.4843.5233.429
    VV3.4853.5123.3423.3213.3163.3453.258
    LIME3.4263.4903.1813.1843.0463.1932.990
    Darkface3.1983.2462.7792.7162.4382.4072.496
    平均值3.4493.4133.2293.2053.1393.1653.099
    下载: 导出CSV

    表  2  不同方法在不同低光照数据集中的LOE值

    Table  2  LOE values of different methods in different low light datasets

    NPEA[34]LIME[8]MF[9]LECARM[35]STAR[36]SCI[16]所提方法
    DCIM753.2857.5782.2770.0590.9777.6581.0
    Fusion564.9803.6614.2681.7527.4703.1523.0
    NPE731.2847.6750.1845.2549.3849.7588.1
    VV563.3799.3517.3596.5369.3619.8347.6
    LIME540.9608.8661.0687.4537.9678.1557.1
    Darkface955.8942.1883.9428.6621.8458.9260.8
    平均值684.9809.9701.4668.2532.7681.2476.2
    下载: 导出CSV

    表  3  不同方法在不同低光照数据集中的NL值

    Table  3  NL values of different methods in different low light datasets

    NPEA[34]LIME[8]MF[9]LECARM[35]STAR[36]SCI[16]所提方法
    DCIM1.1561.7070.5780.4850.4911.0990.358
    Fusion0.5610.7150.5090.5990.5970.5100.325
    NPE0.7780.9080.6900.6850.6880.6230.526
    VV0.7640.8360.5490.6370.6630.5390.459
    LIME1.0361.0740.8720.7330.7220.7440.619
    Darkface2.0192.5861.5851.1571.1471.0840.789
    平均值1.0521.3040.7970.7160.7180.7660.512
    下载: 导出CSV

    表  4  不同方法处理不同图像尺寸的运行时间 (s)

    Table  4  Running time for different image sizes processed by different methods (s)

    NPEA[34]LIME[8]MF[9]LECARM[35]STAR[36]所提方法
    480×3203.710.1200.2640.1014.860.096
    640×4807.190.2730.3350.21410.120.161
    960×72016.250.5270.5160.39221.410.325
    1280×720 18.010.6770.6030.46324.630.417
    1920×108048.331.3481.3210.98964.320.935
    下载: 导出CSV
  • [1] 徐少平, 张贵珍, 林珍玉, 刘婷云, 李崇禧. 一种多图像局部结构化融合的低照度图像增强算法. 自动化学报, 2022, 48(12): 2981−2995

    Xu Shao-Ping, Zhang Gui-Zhen, Lin Zhen-Yu, Liu Ting-Yun, Li Chong-Xi. A multi-image local structured fusion-based low-light image enhancement algorithm. Acta Automatica Sinica, 2022, 48(12): 2981−2995
    [2] 鞠明, 李成, 高山, 穆举国, 毕笃彦. 基于向心自动波交叉皮质模型的非均匀光照图像增强. 自动化学报, 2011, 37(7): 800−810

    Ju Ming, Li Cheng, Gao Shan, Mu Ju-Guo, Bi Du-Yan. Non uniform-lighting image enhancement based on centripetal autowave intersecting cortical model. Acta Automatica Sinica, 2011, 37(7): 800−810
    [3] Kim T, Paik J. Adaptive contrast enhancement using gain-controllable clipped histogram equalization. IEEE Transactions on Consumer Electronics, 2008, 54(4): 1803−1810 doi: 10.1109/TCE.2008.4711238
    [4] Arici T, Dikbas S, Altunbasak Y. A histogram modifcation framework and its application for image contrast enhancement. IEEE Transactions on Image Processing, 2009, 18(9): 1921−1935 doi: 10.1109/TIP.2009.2021548
    [5] Farid H. Blind inverse gamma correction. IEEE Transactions on Image Processing, 2001, 10(10): 1428−1433 doi: 10.1109/83.951529
    [6] Huang S C, Cheng F C, Chiu Y S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Transactions on Image Processing, 2013, 22(3): 1032−1041
    [7] Land E H, McCann J J. Lightness and Retinex theory. Journal of the Optical Society of America, 1971, 61(1): 1−11 doi: 10.1364/JOSA.61.000001
    [8] Guo X J, Li Y, Ling H B. LIME: Low-light image enhancement via illumination map estimation. IEEE Transactions on Image Processing, 2017, 26(2): 982−993 doi: 10.1109/TIP.2016.2639450
    [9] Fu X Y, Zeng D L, Huang Y, Liao Y H, Ding X H, Paisley J. A fusion-based enhancing method for weakly illuminated images. Signal Processing, 2016, 129: 82−96 doi: 10.1016/j.sigpro.2016.05.031
    [10] Li M D, Liu J Y, Yang W H, Sun X Y, Guo Z M. Structure-revealing low-light image enhancement via robust Retinex model. IEEE Transactions on Image Processing, 2018, 27(6): 2828−2841 doi: 10.1109/TIP.2018.2810539
    [11] Li J J, Feng X M, Hua Z. Low-light image enhancement via progressive-recursive network. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11): 4227−4240 doi: 10.1109/TCSVT.2021.3049940
    [12] Lv F F, Li Y, Lu F. Attention guided low-light image enhancement with a large scale low-light simulation dataset. International Journal of Computer Vision, 2021, 129: 2175−2193 doi: 10.1007/s11263-021-01466-8
    [13] Lu K, Zhang L H. TBEFN: A two-branch exposure-fusion network for low-light image enhancement. IEEE Transactions on Multimedia, 2021, 23: 4093−4105
    [14] Guo C L, Li C Y, Guo J C, Loy C C, Hou J H, Kwong S, et al. Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020. 1777−1786
    [15] Zhao Z J, Xiong B S, Wang L, Ou Q F, Yu L, Kuang F. RetinexDIP: A unified deep framework for low-light image enhancement. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1076−1088 doi: 10.1109/TCSVT.2021.3073371
    [16] Ma L, Ma T Y, Liu R S, Fan X, Luo Z X. Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 5627−5636
    [17] Xu H T, Zhai G T, Wu X L, Yang X K. Generalized equalization model for image enhancement. IEEE Transactions on Multimedia, 2014, 16(1): 68−82 doi: 10.1109/TMM.2013.2283453
    [18] Pisano E D, Zong S Q, Hemminger B M, DeLuca M, Johnston R E. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital Imaging, 1998, 11: Article No. 193 doi: 10.1007/BF03178082
    [19] Rahman S, Rahman M M, Abdullah-Al-Wadud M, Al-Quaderi G D, Shoyaib M. An adaptive gamma correction for image enhancement. EURASIP Journal on Image and Video Processing, 2016, 2016(1): Article No. 35
    [20] Yang K F, Li H, Kuang H L, Li C Y, Li Y J. An adaptive method for image dynamic range adjustment. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(3): 640−652
    [21] Jeong I, Lee C. An optimization-based approach to gamma correction parameter estimation for low-light image enhancement. Multimedia Tools and Applications, 2021, 80: 18027−18042 doi: 10.1007/s11042-021-10614-8
    [22] Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround Retinex. IEEE Transactions on Image Processing, 1997, 6(3): 451−462
    [23] Jobson D J, Rahman Z, Woodell G A. A multi-scale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 1997, 6(7): 965−976 doi: 10.1109/83.597272
    [24] Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2007, 16(8): 2080−2095 doi: 10.1109/TIP.2007.901238
    [25] Fu X Y, Zeng D L, Huang Y, Zhang X P, Ding X H. A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 2782−2790
    [26] Ren W Q, Liu S F, Ma L, Xu Q Q, Xu X Y, Cao X C, et al. Low-light image enhancement via a deep hybrid network. IEEE Transactions on Image Processing, 2019, 28(9): 4364−4375 doi: 10.1109/TIP.2019.2910412
    [27] Lore K G, Akintayo A, Sarkar S. LLNet: A deep autoencoder approach to natural low-light image enhancement. Pattern Recognition, 2017, 61: 650−662 doi: 10.1016/j.patcog.2016.06.008
    [28] Lv F F, Lu F, Wu J H, Lim C. MBLLEN: Low-light image/video enhancement using CNNs. In: Proceedings of the 29th British Machine Vision Conference. Newcastle, UK: BMVA, 2018. 1−13
    [29] Li C Y, Guo J C, Porikli F, Pang Y W. LightenNet: A convolutional neural network for weakly illuminated image enhancement. Pattern Recognition Letters, 2018, 104: 15−22 doi: 10.1016/j.patrec.2018.01.010
    [30] Jiang Y F, Gong X Y, Liu D, Cheng Y, Fang C, Shen X H, et al. EnlightenGAN: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing, 2021, 30: 2340−2349 doi: 10.1109/TIP.2021.3051462
    [31] Fan G D, Fan B, Gan M, Chen G Y, Chen C L P. Multiscale low-light image enhancement network with illumination constraint. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11): 7403−7417 doi: 10.1109/TCSVT.2022.3186880
    [32] Lempitsky V, Vedaldi A, Ulyanov D. Deep image prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 9446−9454
    [33] Gastal E S L, Oliveira M M. Domain transform for edge-aware image and video processing. In: Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference. Vancouver, Canada: ACM, 2011. 1–12
    [34] Wang S H, Zheng J, Hu H M, Li B. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Transactions on Image Processing, 2013, 22(9): 3538−3548 doi: 10.1109/TIP.2013.2261309
    [35] Ren Y R, Ying Z Q, Li T H, Li G. LECARM: Low-light image enhancement using the camera response model. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(4): 968−981 doi: 10.1109/TCSVT.2018.2828141
    [36] Xu J, Hou Y K, Ren D W, Liu L, Zhu F, Yu M Y, et al. STAR: A structure and texture aware Retinex model. IEEE Transactions on Image Processing, 2020, 29: 5022−5037 doi: 10.1109/TIP.2020.2974060
    [37] Yang W H, Yuan Y, Ren W Q, Liu J Y, Scheirer W J, Wang Z Y, et al. Advancing image understanding in poor visibility environments: A collective benchmark study. arXiv preprint arXiv: 1904.04474, 2019.
    [38] Yan J, Li J, Fu X. No-reference quality assessment of contrast-distorted images using contrast enhancement. arXiv preprint arXiv: 1904.08879, 2019.
    [39] Dong L, Zhou J T, Tang Y Y. Noise level estimation for natural images based on scale-invariant kurtosis and piecewise stationarity. IEEE Transactions on Image Processing, 2017, 26(2): 1017−1030 doi: 10.1109/TIP.2016.2639447
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  309
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 录用日期:  2024-01-08
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-05-29

目录

    /

    返回文章
    返回