[1]
|
Cornes R. Aggregative environmental games. Environmental and Resource Economics, 2016, 63(2): 339−365 doi: 10.1007/s10640-015-9900-6
|
[2]
|
Barrera J, Garcia A. Dynamic incentives for congestion control. IEEE Transactions on Automatic Control, 2015, 60(2): 299−310 doi: 10.1109/TAC.2014.2348197
|
[3]
|
耿远卓, 袁利, 黄煌, 汤亮. 基于终端诱导强化学习的航天器轨道追逃博弈. 自动化学报, 2023, 49(5): 974−984Geng Yuan-Zhuo, Yuan Li, Huang Huang, Tang Liang. Terminal-guidance based reinforcement-learning for orbital pursuit-evasion game of the spacecraft. Acta Automatica Sinica, 2023, 49(5): 974−984
|
[4]
|
Ye M J, Han Q L, Ding L, Xu S Y. Distributed Nash equilibrium seeking in games with partial decision information: A survey. Proceedings of the IEEE, 2023, 111(2): 140−157 doi: 10.1109/JPROC.2023.3234687
|
[5]
|
王龙, 黄锋. 多智能体博弈、学习与控制. 自动化学报, 2023, 49(3): 580−613Wang Long, Huang Feng. An interdisciplinary survey of multi-agent games, learning, and control. Acta Automatica Sinica, 2023, 49(3): 580−613
|
[6]
|
陈灵敏, 冯宇, 李永强. 基于距离信息的追逃策略: 信念状态连续随机博弈. 自动化学报, 2024, 50(4): 828−840Chen Ling-Min, Feng Yu, Li Yong-Qiang. Distance information based pursuit-evasion strategy: Continuous stochastic game with belief state. Acta Automatica Sinica, 2024, 50(4): 828−840
|
[7]
|
Koshal J, Nedić A, Shanbhag U V. Distributed algorithms for aggregative games on graphs. Operations Research, 2016, 64(3): 680−704 doi: 10.1287/opre.2016.1501
|
[8]
|
Grammatico S. Dynamic control of agents playing aggregative games with coupling constraints. IEEE Transactions on Automatic Control, 2017, 62(9): 4537−4548 doi: 10.1109/TAC.2017.2672902
|
[9]
|
Huang S J, Lei J L, Hong Y G. A linearly convergent distributed Nash equilibrium seeking algorithm for aggregative games. IEEE Transactions on Automatic Control, 2023, 68(3): 1753−1759 doi: 10.1109/TAC.2022.3154356
|
[10]
|
Ye M J, Hu G Q, Xie L H, Xu S Y. Differentially private distributed Nash equilibrium seeking for aggregative games. IEEE Transactions on Automatic Control, 2022, 67(5): 2451−2458 doi: 10.1109/TAC.2021.3075183
|
[11]
|
Shi C X, Yang G H. Distributed Nash equilibrium computation in aggregative games: An event-triggered algorithm. Information Sciences, 2019, 489: 289−302 doi: 10.1016/j.ins.2019.03.047
|
[12]
|
Parise F, Gentile B, Lygeros J. A distributed algorithm for almost-Nash equilibria of average aggregative games with coupling constraints. IEEE Transactions on Control of Network Systems, 2020, 7(2): 770−782 doi: 10.1109/TCNS.2019.2944300
|
[13]
|
Sun C, Hu G Q. Nash equilibrium seeking with prescribed performance. Control Theory and Technology, 2023, 21(3): 437−447 doi: 10.1007/s11768-023-00169-4
|
[14]
|
Belgioioso G, Nedic A, Grammatico S. Distributed generalized Nash equilibrium seeking in aggregative games on time-varying networks. IEEE Transactions on Automatic Control, 2021, 66(5): 2061−2075 doi: 10.1109/TAC.2020.3005922
|
[15]
|
Pan W, Xu X L, Lu Y, Zhang W D. Distributed Nash equilibrium learning for average aggregative games: Harnessing smoothness to accelerate the algorithm. IEEE Systems Journal, 2023, 17(3): 4855−4865 doi: 10.1109/JSYST.2023.3264791
|
[16]
|
Zhang P, Yuan Y, Liu H P, Gao Z. Nash equilibrium seeking for graphic games with dynamic event-triggered mechanism. IEEE Transactions on Cybernetics, 2022, 52(11): 12604−12611 doi: 10.1109/TCYB.2021.3071746
|
[17]
|
Fang X, Wen G H, Zhou J L, Lv J H, Chen G R. Distributed Nash equilibrium seeking for aggregative games with directed communication graphs. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(8): 3339−3352 doi: 10.1109/TCSI.2022.3168770
|
[18]
|
Shi X L, Wen G H, Yu X H. Finite-time convergent algorithms for time-varying distributed optimization. IEEE Control Systems Letters, 2023, 7: 3223−3228 doi: 10.1109/LCSYS.2023.3312297
|
[19]
|
时侠圣, 杨涛, 林志赟, 王雪松. 基于连续时间的二阶多智能体分布式资源分配算法. 自动化学报, 2021, 47(8): 2050−2060Shi Xia-Sheng, Yang Tao, Lin Zhi-Yun, Wang Xue-Song. Distributed resource allocation algorithm for second-order multi-agent systems in continuous-time. Acta Automatica Sinica, 2021, 47(8): 2050−2060
|
[20]
|
An L W, Yang G H. Distributed optimal coordination for heterogeneous linear multiagent systems. IEEE Transactions on Automatic Control, 2022, 67(12): 6850−6857 doi: 10.1109/TAC.2021.3133269
|
[21]
|
Shi J, Ye M J. Distributed optimal formation control for unmanned surface vessels by a regularized game-based approach. IEEE/CAA Journal of Automatica Sinica, 2024, 11(1): 276−278 doi: 10.1109/JAS.2023.123930
|
[22]
|
王鼎. 一类离散动态系统基于事件的迭代神经控制. 工程科学学报, 2022, 44(3): 411−419Wang Ding. Event-based iterative neural control for a type of discrete dynamic plant. Chinese Journal of Engineering, 2022, 44(3): 411−419
|
[23]
|
王鼎. 基于学习的鲁棒自适应评判控制研究进展. 自动化学报, 2019, 45(6): 1031−1043Wang Ding. Research progress on learning-based robust adaptive critic control. Acta Automatica Sinica, 2019, 45(6): 1031−1043
|
[24]
|
Ye M J, Hu G Q. Adaptive approaches for fully distributed Nash equilibrium seeking in networked games. Automatica, 2021, 129: Article No. 109661 doi: 10.1016/j.automatica.2021.109661
|
[25]
|
Ye M J. Distributed Nash equilibrium seeking for games in systems with bounded control inputs. IEEE Transactions on Automatic Control, 2021, 66(8): 3833−3839 doi: 10.1109/TAC.2020.3027795
|
[26]
|
Zhang K J, Fang X, Wang D D, Lv Y Z, Yu X H. Distributed Nash equilibrium seeking under event-triggered mechanism. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(11): 3441−3445
|
[27]
|
Liu P, Xiao F, Wei B, Yu M. Nash equilibrium seeking for individual linear dynamics subject to limited communication resource. Systems and Control Letters, 2022, 161: Article No. 105162
|
[28]
|
张苗苗, 叶茂娇, 郑元世. 预设时间下的分布式优化和纳什均衡点求解. 控制理论与应用, 2022, 39(8): 1397−1406 doi: 10.7641/CTA.2022.10604Zhang Miao-Miao, Ye Mao-Jiao, Zheng Yuan-Shi. Prescribed-time distributed optimization and Nash equilibrium seeking. Control Theory and Applications, 2022, 39(8): 1397−1406 doi: 10.7641/CTA.2022.10604
|
[29]
|
Zou Y, Huang B M, Meng Z Y, Ren W. Continuous-time distributed Nash equilibrium seeking algorithms for non-cooperative constrained games. Automatica, 2021, 127: Article No. 109535 doi: 10.1016/j.automatica.2021.109535
|
[30]
|
Zhu Y N, Yu W W, Ren W, Wen G H, Gu J P. Generalized Nash equilibrium seeking via continuous-time coordination dynamics over digraph. IEEE Transactions on Control of Network Systems, 2021, 8(2): 1023−1033 doi: 10.1109/TCNS.2021.3056034
|
[31]
|
Deng Z H, Liu Y Y, Chen T. Generalized Nash equilibrium seeking algorithm design for distributed constrained noncooperative games with second-order players. Automatica, 2022, 141: Article No. 110317 doi: 10.1016/j.automatica.2022.110317
|
[32]
|
Shi X S, Su Y X, Huang D R, Sun C Y. Distributed aggregative game for multi-agent systems with heterogeneous integrator dynamics. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(4): 2169−2173
|
[33]
|
Liang S, Yi P, Hong Y G, Peng K X. Exponentially convergent distributed Nash equilibrium seeking for constrained aggregative games. Autonomous Intelligent Systems, 2022, 2(1): Article No. 6 doi: 10.1007/s43684-022-00024-4
|
[34]
|
Zhu Y N, Yu W W, Wen G H, Chen G R. Distributed Nash equilibrium seeking in an aggregative game on a directed graph. IEEE Transactions on Automatic Control, 2021, 66(6): 2746−2753 doi: 10.1109/TAC.2020.3008113
|
[35]
|
Cheng M F, Wang D, Wang X D, Wu Z G, Wang W. Distributed aggregative optimization via finite-time dynamic average consensus. IEEE Transactions on Network Science and Engineering, 2023, 10(6): 3223−3231
|
[36]
|
Wang X F, Teel A R, Sun X M, Liu K Z, Shao G R. A distributed robust two-time-scale switched algorithm for constrained aggregative games. IEEE Transactions on Automatic Control, 2023, 68(11): 6525−6540 doi: 10.1109/TAC.2023.3240981
|
[37]
|
梁银山, 梁舒, 洪奕光. 非光滑聚合博弈纳什均衡的分布式连续时间算法. 控制理论与应用, 2018, 35(5): 593−600 doi: 10.7641/CTA.2017.70617Liang Yin-Shan, Liang Shu, Hong Yi-Guang. Distributed continuous-time algorithm for Nash equilibrium seeking of nonsmooth aggregative games. Control Theory & Applications, 2018, 35(5): 593−600 doi: 10.7641/CTA.2017.70617
|
[38]
|
Deng Z H, Nian X H. Distributed algorithm design for aggregative games of disturbed multiagent systems over weight-balanced digraphs. International Journal of Robust and Nonlinear Control, 2018, 28(17): 5344−5357 doi: 10.1002/rnc.4316
|
[39]
|
Lin W T, Chen G, Li C J, Huang T W. Distributed generalized Nash equilibrium seeking: A singular perturbation-based approach. Neurocomputing, 2022, 482: 278−286 doi: 10.1016/j.neucom.2021.11.073
|
[40]
|
Deng Z H, Nian X H. Distributed generalized Nash equilibrium seeking algorithm design for aggregative games over weight-balanced digraphs. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 695−706 doi: 10.1109/TNNLS.2018.2850763
|
[41]
|
Liang S, Yi P, Hong Y G. Distributed Nash equilibrium seeking for aggregative games with coupled constraints. Automatica, 2017, 85: 179−185 doi: 10.1016/j.automatica.2017.07.064
|
[42]
|
Deng Z H. Distributed generalized Nash equilibrium seeking algorithm for nonsmooth aggregative games. Automatica, 2021, 132: Article No. 109794 doi: 10.1016/j.automatica.2021.109794
|
[43]
|
Zhang Y W, Liang S, Wang X H, Ji H B. Distributed Nash equilibrium seeking for aggregative games with nonlinear dynamics under external disturbances. IEEE Transactions on Cybernetics, 2020, 50(12): 4876−4885 doi: 10.1109/TCYB.2019.2929394
|
[44]
|
Wang X F, Sun X M, Teel A R, Liu K Z. Distributed robust Nash equilibrium seeking for aggregative games under persistent attacks: A hybrid systems approach. Automatica, 2020, 122: Article No. 109255 doi: 10.1016/j.automatica.2020.109255
|
[45]
|
Deng Z H. Distributed Nash equilibrium seeking for aggregative games with second-order nonlinear players. Automatica, 2022, 135: Article No. 109980 doi: 10.1016/j.automatica.2021.109980
|
[46]
|
Deng Z H, Liang S. Distributed algorithms for aggregative games of multiple heterogeneous Euler-Lagrange systems. Automatica, 2019, 99: 246−252 doi: 10.1016/j.automatica.2018.10.041
|
[47]
|
Deng Z H. Distributed algorithm design for aggregative games of Euler-Lagrange systems and its application to smart grids. IEEE Transactions on Cybernetics, 2022, 52(8): 8315−8325 doi: 10.1109/TCYB.2021.3049462
|
[48]
|
Liu X Y, Zhang Y W, Wang X H, Ji H B. Distributed Nash equilibrium seeking design in network of uncertain linear multi-agent systems. In: Proceedings of the 16th IEEE International Conference on Control & Automation. Sapporo, Japan: IEEE, 2020. 147−152
|
[49]
|
Li L, Yu Y, Li X X, Xie L H. Exponential convergence of distributed optimization for heterogeneous linear multi-agent systems over unbalanced digraphs. Automatica, 2022, 141: Article No. 110259 doi: 10.1016/j.automatica.2022.110259
|
[50]
|
Liu Y, Yang G H. Distributed robust adaptive optimization for nonlinear multiagent systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 1046−1053 doi: 10.1109/TSMC.2019.2894948
|
[51]
|
Li S L, Nian X H, Deng Z H, Chen Z, Meng Q. Distributed resource allocation of second-order nonlinear multiagent systems. International Journal of Robust and Nonlinear Control, 2021, 31(11): 5330−5342 doi: 10.1002/rnc.5543
|