2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干扰条件下无人艇编队有限时间同步控制

王端松 李东禹 梁晓玲

王端松, 李东禹, 梁晓玲. 干扰条件下无人艇编队有限时间同步控制. 自动化学报, 2024, 50(5): 1047−1058 doi: 10.16383/j.aas.c230550
引用本文: 王端松, 李东禹, 梁晓玲. 干扰条件下无人艇编队有限时间同步控制. 自动化学报, 2024, 50(5): 1047−1058 doi: 10.16383/j.aas.c230550
Wang Duan-Song, Li Dong-Yu, Liang Xiao-Ling. Finite time synchronized formation control of unmanned surface vehicles with external disturbances. Acta Automatica Sinica, 2024, 50(5): 1047−1058 doi: 10.16383/j.aas.c230550
Citation: Wang Duan-Song, Li Dong-Yu, Liang Xiao-Ling. Finite time synchronized formation control of unmanned surface vehicles with external disturbances. Acta Automatica Sinica, 2024, 50(5): 1047−1058 doi: 10.16383/j.aas.c230550

干扰条件下无人艇编队有限时间同步控制

doi: 10.16383/j.aas.c230550
基金项目: 国家自然科学基金(62103028, 52301417), 皖西学院科研启动基金(WGKQ2022050), 浙江省自然科学基金(LGG22F030018)资助
详细信息
    作者简介:

    王端松:皖西学院高级工程师. 2020年获得哈尔滨工程大学博士学位. 主要研究方向为智能船舶编队控制, 农业智能装备控制技术. E-mail: dswangsd@126.com

    李东禹:北京航空航天大学副教授. 2019年获得哈尔滨工业大学博士学位. 主要研究方向为航天器集群协同, 空间态势感知和星座组网安全. 本文通信作者. E-mail: dongyuli@buaa.edu.cn

    梁晓玲:大连海事大学讲师. 2015年获得哈尔滨工业大学博士学位. 主要研究方向为船舶制导与智能控制技术. E-mail: lxldmu2016@163.com

Finite Time Synchronized Formation Control of Unmanned Surface Vehicles With External Disturbances

Funds: Supported by National Natural Science Foundation of China (62103028, 52301417), Startup Fund for Distinguished Scholars of West Anhui University (WGKQ2022050), and Natural Science Foundation of Zhejiang Province (LGG22F030018)
More Information
    Author Bio:

    WANG Duan-Song Senior engineer at West Anhui University. He received his Ph.D. degree from Harbin Engineering University in 2020. His research interest covers intelligent ship formation control and agricultural intelligent equipment control technology

    LI Dong-Yu Associate professor at Beihang University. He received his Ph.D. degree from Harbin Institute of Technology in 2019. His research interest covers spacecraft cluster collaboration, space situational awareness, and constellation networking security. Corresponding author of this paper

    LIANG Xiao-Ling Lecturer at Dalian Maritime University. She received her Ph.D. degree from Harbin Institute of Technology in 2015. Her research interest covers guidance and intelligent control technology for marine vehicles

  • 摘要: 针对有限时间控制中各状态分量收敛时间不同问题, 提出一种无人艇编队有限时间同步控制框架, 在此框架下设计的有限时间同步编队控制方法可巧妙地达到无人艇所有自由度编队误差在同一时刻收敛到平衡点. 首先, 针对现有干扰观测器与时间同步稳定框架不兼容问题, 设计有限时间同步干扰观测器; 然后, 利用比例保持特性设计有限时间同步编队控制器, 并验证了所提控制方法的稳定性; 最后, 通过3艘无人艇编队进行仿真实验, 实验结果验证了所提控制方法的有效性和优越性. 所提控制方法对有限时间同步控制需求的航海、航空航天和工业领域具有现实意义.
  • 图  1  北-东坐标系的无人艇编队运动曲线

    Fig.  1  Unmanned surface vehicles' moving curve in the north-east frame

    图  2  无人艇间的通信关系

    Fig.  2  The communication relationship of unmanned surface vehicles

    图  3  北−东坐标系下编队运动曲线

    Fig.  3  Formation moving curve in the north-east frame

    图  4  各无人艇运动速度曲线

    Fig.  4  Velocity curve of unmanned surface vehicles

    图  5  各无人艇位置和艏向角变化曲线

    Fig.  5  Position and heading variation curve of each unmanned surface vehicles

    图  6  各无人艇的编队误差曲线

    Fig.  6  Formation error curve of unmanned surface vehicles

    图  7  无人艇编队位姿误差在同一时刻收敛曲线

    Fig.  7  Formation position and attitude-error convergence curve of all degrees of freedom formation errors at the same time

    图  8  跟随者 1 在 3 个自由度方向的外界环境干扰和模型不确定性实际值与估计值

    Fig.  8  Actual and estimated-values of external disturbances and model uncertainties for follower 1 in three degrees of freedom

    图  9  改变初始值编队位姿误差收敛曲线

    Fig.  9  Formation position and attitude-error convergence curve in the situation of the initial values changed

    图  10  基于符号函数的有限时间非线性滑模控制编队位姿误差收敛曲线[25]

    Fig.  10  Formation position and attitude-error convergence curve of finite time nonlinear sliding mode control error based on sign function[25]

    图  11  线性滑模控制的编队位姿误差收敛曲线

    Fig.  11  Formation position and attitude-error convergence curve of linear sliding mode control

    图  12  超螺旋干扰观测器观测值与实际值[21]

    Fig.  12  Observe and actual value of the super-twisting disturbance observer proposed[21]

  • [1] 张卫东, 刘笑成, 韩鹏. 水上无人系统研究进展及其面临的挑战. 自动化学报, 2020, 46(5): 847−857

    Zhang Wei-Dong, Liu Xiao-Cheng, Han Peng. Progress and challenges of overwater unmanned systems. Acta Automatica Sinica, 2020, 46(5): 847−857
    [2] 谢少荣, 刘坚坚, 张丹. 复杂海况无人艇集群控制技术研究现状与发展. 水下无人系统学报, 2020, 28(6): 584−596 doi: 10.11993/j.issn.2096-3920.2020.06.001

    Xie Shao-Rong, Liu Jian-Jian, Zhang Dan. Current development of control technology for unmanned surface vessel clusters under complex sea conditions. Journal of Unmanned Undersea Systems, 2020, 28(6): 584−596 doi: 10.11993/j.issn.2096-3920.2020.06.001
    [3] Wu G, Xu T, Sun Y, Zhang J. Review of multiple unmanned surface vessels collaborative search and hunting based on swarm intelligence. International Journal of Advanced Robotic Systems, 2022, 19(2): 1729−1735
    [4] Liu H, Zhang H, Meng D, Su H. Scanning-Chain formation control for multiple unmanned surface vessels to pass through water channels. IEEE Transactions on Cybernetics, 2022, 52(3): 1850−1861 doi: 10.1109/TCYB.2020.2997833
    [5] Liu Z, Hou H, Wang Y. Formation-containment control of multiple underactuated surface vessels with sampling communication via hierarchical sliding mode approach. ISA Transactions, 2022, 124: 458−467 doi: 10.1016/j.isatra.2019.12.003
    [6] Liang X, Qu X, Hou Y, Li Y, Zhang R. Distributed coordinated tracking control of multiple unmanned surface vehicles under complex marine environments. Ocean Engineering, 2020, 205: Article No. 107328 doi: 10.1016/j.oceaneng.2020.107328
    [7] 李贺, 王宁, 薛皓原. 水面无人艇领航——跟随固定时间编队控制. 中国舰船研究, 2020, 15(2): 111−118

    Li He, Wang Ning, Xue Hao-Yuan. Leader-follower fixed-time formation control of unmanned surface vehicles. Chinese Journal of Ship Research, 2020, 15(2): 111−118
    [8] Guo G, Gao Z, Dong K. Prescribed-time formation control of surface vessels with asymmetric constraints on LOS range and bearing angles. Nonlinear Dynamics, 2021, 104: 3701−3712 doi: 10.1007/s11071-021-06462-8
    [9] Han Z, Wang Y, Sun Q. Straight-path following and formation control of USVs using distributed deep reinforcement learning and adaptive neural network. IEEE/CAA Journal of Automatica Sinica, 2023, 10(2): 572−574 doi: 10.1109/JAS.2023.123255
    [10] Li D, Ge S, Lee T. Simultaneous arrival to origin convergence: sliding-mode control through the norm-normalized sign function. IEEE Transactions on Automatic Control, 2021, 67(4): 1966−1972
    [11] Sanyal A, Bohn J. Finite-time stabilisation of simple mechanical systems using continuous feedback. International Journal of Control, 2015, 88(4): 783−791 doi: 10.1080/00207179.2014.974675
    [12] Mung N, Golestani M. Energy-efficient disturbance observer-based attitude tracking control with fixed-time convergence for spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3659−3668 doi: 10.1109/TAES.2022.3229290
    [13] Jiang Y, Hu W. Fixed-time-synchronized consensus tracking of multi-agent systems. In: Proceedings of the 5th International Conference on Intelligent Autonomous Systems. Dalian, China: IEEE, 2022. 345−350
    [14] Du J, Hu X, Krstić M, Sun Y. Robust dynamic positioning of ships with disturbances under input saturation. Automatica, 2016, 73: 207−214 doi: 10.1016/j.automatica.2016.06.020
    [15] Do K. Practical control of underactuated ships. Ocean Engineering, 2010, 37(13): 1111−1119 doi: 10.1016/j.oceaneng.2010.04.007
    [16] Dai S, He S, Ma Y, Yuan C. Distributed cooperative learning control of uncertain multiagent systems with prescribed performance and preserved connectivity. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(7): 3217−3229 doi: 10.1109/TNNLS.2020.3010690
    [17] Moreno J A, Osorio M. Strict Lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 2012, 57(4): 1035−1040 doi: 10.1109/TAC.2012.2186179
    [18] Chen Q, Xu L, Zhou Y, Li S. Finite time observer-based super-twisting sliding mode control for vehicle platoons with guaranteed strong string stability. IET Intelligent Transport Systems, 2022, 16(12): 1726−1737 doi: 10.1049/itr2.12178
    [19] 王宁, 王仁慧, 鲁挺. 推进器饱和约束的水面无人艇固定时间精准跟踪控制. 控制理论与应用, 2023, 40(1): 55−64

    Wang Ning, Wang Ren-Hui, Lu Ting. Fixed-time precision tracking control of an unmanned surface vehicle constrained by thruster saturations. Control Theory & Applications, 2023, 40(1): 55−64
    [20] Xia G, Zhang Y, Zhang W, Zhang K, Yang H. Robust adaptive super-twisting sliding mode formation controller for homing of multi-underactuated AUV recovery system with uncertainties. ISA Transactions, 2022, 130: 136−151 doi: 10.1016/j.isatra.2022.04.010
    [21] Li D, Tee K, Xie L, Yu H. Time-synchronized control for disturbed systems. IEEE Transactions on Cybernetics, 2022, 52(9): 8703−8715 doi: 10.1109/TCYB.2021.3054589
    [22] Ouyang Y, Liu J, Sun C. Time-synchronized control for an uncertain marine vessel system with external disturbance. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(8): 2929−2933
    [23] Liu Z, Wang Y, Wang T. Incremental predictive control-based output consensus of networked unmanned surface vehicle formation systems. Information Sciences, 2018, 457−458: 166−181 doi: 10.1016/j.ins.2018.03.011
    [24] Li H, Li X. Distributed consensus of heterogeneous linear time-varying systems on UAVs–USVs coordination. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(7): 1264−1268
    [25] Li T, Zhao R, Chen C, Fang L, Liu C. Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Transactions on Cybernetics, 2018, 48(11): 3243− 3253 doi: 10.1109/TCYB.2018.2794968
    [26] Li M, Guo C, Yu H. Line-of-sight-based global finite-time stable path following control of unmanned surface vehicles with actuator saturation. ISA Transactions, 2022, 125: 306−317 doi: 10.1016/j.isatra.2021.07.009
    [27] Er M, Li Z. Formation control of unmanned surface vehicles using fixed-time non-singular terminal sliding mode strategy. Journal of Marine Science and Engineering, 2022, 10(9): Article No. 1308 doi: 10.3390/jmse10091308
    [28] Shen H, Yin Y, Qian X. Fixed-time formation control for unmanned surface vehicles with parametric uncertainties and complex disturbance. Journal of Marine Science and Engineering, 2022, 10(9): 1246−1257 doi: 10.3390/jmse10091246
    [29] Wu W, Tong S. Fixed-time formation fault tolerant control for unmanned surface vehicle systems with intermittent actuator faults. Ocean Engineering, 2023, 281: Aticle No. 114813 doi: 10.1016/j.oceaneng.2023.114813
    [30] 王洪斌, 高静, 苏博, 王跃灵. 基于事件触发的AUVs固定时间编队控制. 自动化学报, 2022, 48(9): 2277−2287

    Wang Hong-Bin, Gao Jing, Su Bo, Wang Yue-Ling. Fixed-time formation of AUVs based on event-triggered control. Acta Automatica Sinica, 2022, 48(9): 2277−2287
    [31] 高振宇, 郭戈. 基于扰动观测器的AUVs固定时间编队控制. 自动化学报, 2019, 45(6): 1094−1102

    Gao Zhen-Yu, Guo Ge. Fixed-time formation control of AUVs based on a disturbance observer. Acta Automatica Sinica, 2019, 45(6): 1094−1102
    [32] Li D, Yu H, Tee K P, Wu Y, Ge S S, Lee T H. On time-synchronized stability and control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(4): 2450−2463
    [33] 尹曌, 贺威, 邹尧, 穆新星, 孙长银. 基于“雁阵效应”的扑翼飞行机器人高效集群编队研究. 自动化学报, 2021, 47(6): 1355−1367

    Yin Zhao, He Wei, Zou Yao, Mu Xin-Xing, Sun Chang-Yin. Efficient formation of flapping-wing aerial vehicles based on wild geese queue effect. Acta Automatica Sinica, 2021, 47(6): 1355−1367
    [34] Xiao B, Dong Q, Ye D, Liu L, Huo X. A general tracking control framework for uncertain systems with exponential convergence performance. IEEE/ASME Transactions on Mechatronics, 2017, 23(1): 111−120
  • 加载中
图(12)
计量
  • 文章访问数:  543
  • HTML全文浏览量:  182
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 录用日期:  2024-02-07
  • 网络出版日期:  2024-03-24
  • 刊出日期:  2024-05-29

目录

    /

    返回文章
    返回