[1]
|
孙旭, 李晓光, 李嘉锋, 卓力. 基于深度学习的图像超分辨率复原研究进展. 自动化学报, 2017, 43(5): 697−709Sun Xu, Li Xiao-Guang, Li Jia-Feng, Zhuo Li. Review on deep learning based image super-resolution restoration algorithms. Acta Automatica Sinica, 2017, 43(5): 697−709
|
[2]
|
刘小波, 刘鹏, 蔡之华, 乔禹霖, 王凌, 汪敏. 基于深度学习的光学遥感图像目标检测研究进展. 自动化学报, 2021, 47(9): 2078−2089Liu Xiao-Bo, Liu Peng, Cai Zhi-Hua, Qiao Yu-Lin, Wang Ling, Wang Min. Research progress of optical remote sensing image object detection based on deep learning. Acta Automatica Sinica, 2021, 47(9): 2078−2089
|
[3]
|
张号逵, 李映, 姜晔楠. 深度学习在高光谱图像分类领域的研究现状与展望. 自动化学报, 2018, 44(6): 961−977Zhang Hao-Kui, Li Ying, Jiang Ye-Nan. Deep learning for hyperspectral imagery classification: The state of the art and prospects. Acta Automatica Sinica, 2018, 44(6): 961−977
|
[4]
|
刘文举, 聂帅, 梁山, 张学良. 基于深度学习语音分离技术的研究现状与进展. 自动化学报, 2016, 42(6): 819−833Liu Wen-Ju, Nie Shuai, Liang Shan, Zhang Xue-Liang. Deep learning based speech separation technology and its developments. Acta Automatica Sinica, 2016, 42(6): 819−833
|
[5]
|
袁文浩, 孙文珠, 夏斌, 欧世峰. 利用深度卷积神经网络提高未知噪声下的语音增强性能. 自动化学报, 2018, 44(4): 751−759Yuan Wen-Hao, Sun Wen-Zhu, Xia Bin, Ou Shi-Feng. Improving speech enhancement in unseen noise using deep convolutional neural network. Acta Automatica Sinica, 2018, 44(4): 751−759
|
[6]
|
鹿智, 秦世引, 李连伟, 张鼎豪. 智能人机交互中第一视角手势表达的一次性学习分类识别. 自动化学报, 2021, 47(6): 1284−1301Lu Zhi, Qin Shi-Yin, Li Lian-Wei, Zhang Ding-Hao. One-shot learning classification and recognition of gesture expression from the egocentric viewpoint in intelligent human-computer interaction. Acta Automatica Sinica, 2021, 47(6): 1284−1301
|
[7]
|
段艳杰, 吕宜生, 张杰, 赵学亮, 王飞跃. 深度学习在控制领域的研究现状与展望. 自动化学报, 2016, 42(5): 643−654Duan Yan-Jie, Lv Yi-Sheng, Zhang Jie, Zhao Xue-Liang, Wang Fei-Yue. Deep learning for control: The state of the art and prospects. Acta Automatica Sinica, 2016, 42(5): 643−654
|
[8]
|
Jin Z H, Si W Y, Liu A D, Zhang W A, Yu L, Yang C G. Learning a flexible neural energy function with a unique minimum for globally stable and accurate demonstration learning. IEEE Transactions on Robotics, 2023, 39(6): 4520−4538
|
[9]
|
任浩, 屈剑锋, 柴毅, 唐秋, 叶欣. 深度学习在故障诊断领域中的研究现状与挑战. 控制与决策, 2017, 32(8): 1345−1358Ren Hao, Qu Jian-Feng, Chai Yi, Tang Qiu, Ye Xin. Deep learning for fault diagnosis: The state of the art and challenge. Control and Decision, 2017, 32(8): 1345−1358
|
[10]
|
Huang D J, Zhang W A, Guo F H, Liu W J, Shi X M. Wavelet packet decomposition-based multiscale CNN for fault diagnosis of wind turbine gearbox. IEEE Transactions on Cybernetics, 2023, 53(1): 443−453
|
[11]
|
田娟秀, 刘国才, 谷珊珊, 鞠忠建, 刘劲光, 顾冬冬. 医学图像分析深度学习方法研究与挑战. 自动化学报, 2018, 44(3): 401−424Tian Juan-Xiu, Liu Guo-Cai, Gu Shan-Shan, Ju Zhong-Jian, Liu Jin-Guang, Gu Dong-Dong. Deep learning in medical image analysis and its challenges. Acta Automatica Sinica, 2018, 44(3): 401−424
|
[12]
|
Jin Y Q, Wei N W, Fu M L, Liu H M, Zhang W A. Beyond learning: Back to geometric essence of visual odometry via fusion-based paradigm. IEEE Transactions on Instrumentation and Measurement, 2021, 70: Article No. 5018715
|
[13]
|
Kalman R E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82(1): 35−45 doi: 10.1115/1.3662552
|
[14]
|
Bebis G, Georgiopoulos M. Feed-forward neural networks. IEEE Potentials, 1994, 13(4): 27−31 doi: 10.1109/45.329294
|
[15]
|
Elman J L. Finding structure in time. Cognitive Science, 1990, 14(2): 179−211 doi: 10.1207/s15516709cog1402_1
|
[16]
|
Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278−2324 doi: 10.1109/5.726791
|
[17]
|
Stubberud S C, Lobbia R N, Owen M. An adaptive extended Kalman filter using artificial neural networks. In: Proceedings of the 34th IEEE Conference on Decision and Control. New Orleans, USA: IEEE, 1995. 1852−1856
|
[18]
|
Choi M, Sakthivel R, Chung W K. Neural network-aided extended Kalman filter for SLAM problem. In: Proceedings of the IEEE International Conference on Robotics and Automation. Rome, Italy: IEEE, 2007. 1686−1690
|
[19]
|
Owen M W, Stubberud A R. A neural extended Kalman filter multiple model tracker. In: Proceedings of the Celebrating the Past ${\cdots} $ Teaming Toward the Future (IEEE Cat. No.03CH37492). San Diego, USA: IEEE, 2003. 2111−2119
|
[20]
|
Li Y, Liu J Y, Jiang Y Q, Liu Y, Lei B Y. Virtual adversarial training-based deep feature aggregation network from dynamic effective connectivity for MCI identification. IEEE Transactions on Medical Imaging, 2022, 41(1): 237−251
|
[21]
|
Huang H F, Liu Q, Jiang Y Q, Yang Q Y, Zhu X F, Li Y. Deep spatio-temporal attention-based recurrent network from dynamic adaptive functional connectivity for MCI identification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 2600−2612
|
[22]
|
Zhao Z, Särkkä S, Rad A B. Kalman-based spectro-temporal ECG analysis using deep convolutional networks for atrial fibrillation detection. Journal of Signal Processing Systems, 2020, 92(7): 621−636 doi: 10.1007/s11265-020-01531-4
|
[23]
|
Lee M H, O' Hara N, Sonoda M, Kuroda N, Juhasz C, Asano E, et al. Novel deep learning network analysis of electrical stimulation mapping-driven diffusion MRI tractography to improve preoperative evaluation of pediatric epilepsy. IEEE Transactions on Biomedical Engineering, 2020, 67(11): 3151−3162 doi: 10.1109/TBME.2020.2977531
|
[24]
|
Xu K, Jiang X Y, Lin S J, Dai C Y, Chen W. Stochastic modeling based nonlinear Bayesian filtering for photoplethysmography denoising in wearable devices. IEEE Transactions on Industrial Informatics, 2020, 16(11): 7219−7230
|
[25]
|
Dai C S, Shan G Q, Liu X J, Ru C H, Xin L M, Sun Y. Automated orientation control of motile deformable cells. IEEE Transactions on Automation Science and Engineering, 2023, 20(3): 2126−2134
|
[26]
|
Perafan-Villota J C, Mondragon O H, Mayor-Toro W M. Fast and precise: Parallel processing of vehicle traffic videos using big data analytics. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12064−12073
|
[27]
|
Maha Vishnu V C, Rajalakshmi M, Nedunchezhian R. Intelligent traffic video surveillance and accident detection system with dynamic traffic signal control. Cluster Computing, 2018, 21(1): 135−147
|
[28]
|
Abdelali H A, Derrouz H, Zennayi Y, Thami R O H, Bourzeix F. Multiple hypothesis detection and tracking using deep learning for video traffic surveillance. IEEE Access, 2021, 9: 164282−164291
|
[29]
|
Chen Y R, Xie X Y, Yu B, Li Y, Lin K H. Multitarget vehicle tracking and motion state estimation using a novel driving environment perception system of intelligent vehicles. Journal of Advanced Transportation, 2021, 2021: Article No. 6251399
|
[30]
|
Sudha D, Priyadarshini J. An intelligent multiple vehicle detection and tracking using modified vibe algorithm and deep learning algorithm. Soft Computing, 2020, 24(22): 17417−17429 doi: 10.1007/s00500-020-05042-z
|
[31]
|
Zhu D, Song R, Chen H, Klette R, Xu Y Y. Moment-based multi-lane detection and tracking. Signal Processing: Image Communication, 2021, 95: Article No. 116230
|
[32]
|
Van Wyk F, Wang Y Y, Khojandi A, Masoud N. Real-time sensor anomaly detection and identification in automated vehicles. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1264−1276 doi: 10.1109/TITS.2019.2906038
|
[33]
|
Jin Y Q, Zhang W A, Sun H, Yu L. Learning-aided inertial odometry with nonlinear state estimator on manifold. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 9792−9803 doi: 10.1109/TITS.2023.3273391
|
[34]
|
Piga N A, Onyshchuk Y, Pasquale G, Pattacini U, Natale L. ROFT: Real-time optical flow-aided 6D object pose and velocity tracking. IEEE Robotics and Automation Letters, 2022, 7(1): 159−166 doi: 10.1109/LRA.2021.3119379
|
[35]
|
Liu J G, Guo G. Vehicle localization during GPS outages with extended Kalman filter and deep learning. IEEE Transactions on Instrumentation and Measurement, 2021, 70: Article No. 7503410
|
[36]
|
Shen C, Zhang Y, Guo X T, Chen X Y, Cao H L, Tang J, et al. Seamless GPS/inertial navigation system based on self-learning square-root cubature Kalman filter. IEEE Transactions on Industrial Electronics, 2021, 68(1): 499−508
|
[37]
|
Shu X, Li G, Zhang Y J, Shen S Q, Chen Z, Liu Y G. Stage of charge estimation of lithium-ion battery packs based on improved cubature Kalman filter with long short-term memory model. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1271−1284
|
[38]
|
Surya S, Samanta A, Marcis V, Williamson S. Hybrid electrical circuit model and deep learning-based core temperature estimation of lithium-ion battery cell. IEEE Transactions on Transportation Electrification, 2022, 8(3): 3816−3824
|
[39]
|
Zhang H F, Yue D, Dou C X, Li K, Hancke G P. Two-step wind power prediction approach with improved complementary ensemble empirical mode decomposition and reinforcement learning. IEEE Systems Journal, 2022, 16(2): 2545−2555
|
[40]
|
Lee M S, Shifat T A, Hur J W. Kalman filter assisted deep feature learning for RUL prediction of hydraulic gear pump. IEEE Sensors Journal, 2022, 22(11): 11088−11097
|
[41]
|
Dantas H, Warren D J, Wendelken S M, Davis T S, Clark G A, Mathews V J. Deep learning movement intent decoders trained with dataset aggregation for prosthetic limb control. IEEE Transactions on Biomedical Engineering, 2019, 66(11): 3192−3203
|
[42]
|
Baek D, Seo J H, Kim J, Kwon D S. Hysteresis compensator with learning-based hybrid joint angle estimation for flexible surgery robots. IEEE Robotics and Automation Letters, 2020, 5(4): 6837−6844
|
[43]
|
Rezaee K, Mousavirad S J, Khosravi M R, Moghimi M K, Heidari M. An autonomous UAV-assisted distance-aware crowd sensing platform using deep shuffleNet transfer learning. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9404−9413
|
[44]
|
Zhang K Y, Jiang C X, Li J H, Yang S, Ma T, Xu C, et al. DIDO: Deep inertial quadrotor dynamical odometry. IEEE Robotics and Automation Letters, 2022, 7(4): 9083−9090
|
[45]
|
潘泉, 于昕, 程咏梅, 张洪才. 信息融合理论的基本方法与进展. 自动化学报, 2003, 29(4): 599−615Pan Quan, Yu Xin, Cheng Yong-Mei, Zhang Hong-Cai. Essential methods and progress of information fusion theory. Acta Automatica Sinica, 2003, 29(4): 599−615
|
[46]
|
潘泉, 胡玉梅, 兰华, 孙帅, 王增福, 杨峰. 信息融合理论研究进展: 基于变分贝叶斯的联合优化. 自动化学报, 2019, 45(7): 1207−1223Pan Quan, Hu Yu-Mei, Lan Hua, Sun Shuai, Wang Zeng-Fu, Yang Feng. Information fusion progress: Joint optimization based on variational Bayesian theory. Acta Automatica Sinica, 2019, 45(7): 1207−1223
|
[47]
|
Kalman R E, Bucy R S. New results in linear filtering and prediction theory. Journal of Basic Engineering, 1961, 83(1): 95−108
|
[48]
|
Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401−422
|
[49]
|
Yang X S, Zhang W A, Liu A D, Yu L. Linear fusion estimation for range-only target tracking with nonlinear transformation. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6403−6412
|
[50]
|
Gibbs R G. New Kalman filter and smoother consistency tests. Automatica, 2013, 49(10): 3141−3144
|
[51]
|
杨峰, 王永齐, 梁彦, 潘泉. 基于概率假设密度滤波方法的多目标跟踪技术综述. 自动化学报, 2013, 39(11): 1944−1956Yang Feng, Wang Yong-Qi, Liang Yan, Pan Quan. A survey of PHD filter based multi-target tracking. Acta Automatica Sinica, 2013, 39(11): 1944−1956
|
[52]
|
Huang Y L, Zhang Y G, Wu Z M, Li N, Chambers J. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices. IEEE Transactions on Automatic Control, 2018, 63(2): 594−601
|
[53]
|
Hu Y M, Wang X Z, Pan Q, Hu Z T, Moran B. Variational Bayesian Kalman filter using natural gradient. Chinese Journal of Aeronautics, 2022, 35(5): 1−10
|
[54]
|
He Y, Song Q, Dong Y L, Yang J. Adaptive tracking algorithm based on modified strong tracking filter. In: Proceedings of the CIE International Conference on Radar. Shanghai, China: IEEE, 2006. 1−4
|
[55]
|
Yang X S, Zhang W A, Yu L, Xing K X. Multi-rate distributed fusion estimation for sensor network-based target tracking. IEEE Sensors Journal, 2016, 16(5): 1233−1242
|
[56]
|
Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 1993, 140(2): 107−113
|
[57]
|
Liu J S, Chen R. Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association, 1998, 93(443): 1032−1044
|
[58]
|
杨旭升, 张文安, 俞立. 适用于事件触发的分布式随机目标跟踪方法. 自动化学报, 2017, 43(8): 1393−1401Yang Xu-Sheng, Zhang Wen-An, Yu Li. Distributed tracking method for maneuvering targets with event-triggered mechanism. Acta Automatica Sinica, 2017, 43(8): 1393−1401
|
[59]
|
Kingma D P, Welling M. Auto-encoding variational Bayes. In: Proceedings of the 2nd International Conference on Learning Representations. Banff, Canada: ICLR, 2014.
|
[60]
|
Krishnan R G, Shalit U, Sontag D. Deep Kalman filters. arXiv preprint arXiv: 1511.05121, 2015.
|
[61]
|
Karl M, Soelch M, Bayer J, Van Der Smagt P. Deep variational Bayes filters: Unsupervised learning of state space models from raw data. In: Proceedings of the 5th International Conference on Learning Representations. Toulon, France: ICLR, 2017.
|
[62]
|
Liu W, Lai Z L, Bacsa K, Chatzi E. Neural extended Kalman filters for learning and predicting dynamics of structural systems. Structural Health Monitoring, 2024, 23(2): 1037−1052
|
[63]
|
Gedon D, Wahlström N, Schön T B, Ljung L. Deep state space models for nonlinear system identification. IFAC-PapersOnLine, 2021, 54(7): 481−486
|
[64]
|
Li L Y, Yan J C, Yang X K, Jin Y H. Learning interpretable deep state space model for probabilistic time series forecasting. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China: ACM, 2019. 2901−2908
|
[65]
|
Zhao C, Sun L, Yan Z, Neumann G, Duckett T, Stolkin R. Learning Kalman network: A deep monocular visual odometry for on-road driving. Robotics and Autonomous Systems, 2019, 121: Article No. 103234
|
[66]
|
杨旭升, 王雪儿, 汪鹏君, 张文安. 基于渐进无迹卡尔曼滤波网络的人体肢体运动估计. 自动化学报, 2023, 49(8): 1723−1731Yang Xu-Sheng, Wang Xue-Er, Wang Peng-Jun, Zhang Wen-An. Estimation of human limb motion based on progressive unscented Kalman filter network. Acta Automatica Sinica, 2023, 49(8): 1723−1731
|
[67]
|
Millidge B, Tschantz A, Seth A, Buckley C. Neural Kalman filtering. arXiv preprint arXiv: 2102.10021, 2021.
|
[68]
|
Rangapuram S S, Seeger M, Gasthaus J, Stella L, Wang Y Y, Januschowski T. Deep state space models for time series forecasting. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: ACM, 2018. 7796−7805
|
[69]
|
Bao T Z, Zhao Y H, Zaidi S A R, Xie S Q, Yang P F, Zhang Z Q. A deep Kalman filter network for hand kinematics estimation using sEMG. Pattern Recognition Letters, 2021, 143: 88−94
|
[70]
|
Zheng X, Zaheer M, Ahmed A, Wang Y, Xing E P, Smola A J. State space LSTM models with particle MCMC inference. arXiv preprint arXiv: 711.11179, 2017.
|
[71]
|
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735−1780
|
[72]
|
尹宏鹏, 陈波, 柴毅, 刘兆栋. 基于视觉的目标检测与跟踪综述. 自动化学报, 2016, 42(10): 1466−1489Yin Hong-Peng, Chen Bo, Chai Yi, Liu Zhao-Dong. Vision-based object detection and tracking: A review. Acta Automatica Sinica, 2016, 42(10): 1466−1489
|
[73]
|
孟琭, 杨旭. 目标跟踪算法综述. 自动化学报, 2019, 45(7): 1244−1260Meng Lu, Yang Xu. A survey of object tracking algorithms. Acta Automatica Sinica, 2019, 45(7): 1244−1260
|
[74]
|
Lin W Y, Ren X Y, Hu J J, He Y Z, Li Z, Tong M S. Fast, robust and accurate posture detection algorithm based on Kalman filter and SSD for AGV. Neurocomputing, 2018, 316: 306−312
|
[75]
|
Ozaki R, Kuroda Y. EKF-based real-time self-attitude estimation with camera DNN learning landscape regularities. IEEE Robotics and Automation Letters, 2021, 6(2): 1737−1744
|
[76]
|
Tian J P, Xiong R, Shen W X, Lu J H. State-of-charge estimation of LiFePO_4 batteries in electric vehicles: A deep-learning enabled approach. Applied Energy, 2021, 291: Article No. 116812
|
[77]
|
Youn W, Lim H, Choi H S, Rhudy M B, Ryu H, Kim S, et al. State estimation for HALE UAVs with deep-learning-aided virtual AOA/SSA sensors for analytical redundancy. IEEE Robotics and Automation Letters, 2021, 6(3): 5276−5283
|
[78]
|
Haarnoja T, Ajay A, Levine S, Abbeel P. Backprop KF: Learning discriminative deterministic state estimators. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: ACM, 2016. 4383−4391
|
[79]
|
Bharadwaj S, Prasad S, Almekkawy M. An upgraded siamese neural network for motion tracking in ultrasound image sequences. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(12): 3515−3527
|
[80]
|
Xiao B, Xiao H R, Wang J W, Chen Y. Vision-based method for tracking workers by integrating deep learning instance segmentation in off-site construction. Automation in Construction, 2022, 136: Article No. 104148
|
[81]
|
Lim H, Ryu H, Rhudy M B, Lee D, Jang D, Lee C, et al. Deep learning-aided synthetic airspeed estimation of UAVs for analytical redundancy with a temporal convolutional network. IEEE Robotics and Automation Letters, 2022, 7(1): 17−24
|
[82]
|
Ju C, Wang Z, Long C, Zhang X Y, Chang D E. Interaction-aware Kalman neural networks for trajectory prediction. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV). Las Vegas, USA: IEEE, 2020. 1793−1800
|
[83]
|
Yin H, Chen R J, Wang Y, Xiong R. RaLL: End-to-end radar localization on lidar map using differentiable measurement model. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6737−6750
|
[84]
|
Li Y J, Yin G D, Zhuang W C, Zhang N, Wang J X, Geng K K. Compensating delays and noises in motion control of autonomous electric vehicles by using deep learning and unscented Kalman predictor. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(11): 4326−4338
|
[85]
|
Lu G, Zhang X Y, Ouyang W L, Xu D, Chen L, Gao Z Y. Deep non-local Kalman network for video compression artifact reduction. IEEE Transactions on Image Processing, 2020, 29: 1725−1737
|
[86]
|
Tariq M, Ali M, Naeem F, Poor H V. Vulnerability assessment of 6G-enabled smart grid cyber-physical systems. IEEE Internet of Things Journal, 2021, 8(7): 5468−5475
|
[87]
|
Li D H, Zhou J, Liu Y Y. Recurrent-neural-network-based unscented Kalman filter for estimating and compensating the random drift of MEMS gyroscopes in real time. Mechanical Systems and Signal Processing, 2021, 147: Article No. 107057
|
[88]
|
Coskun H, Achilles F, DiPietro R, Navab N, Tombari F. Long short-term memory Kalman filters: Recurrent neural estimators for pose regularization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 5525−5533
|
[89]
|
Chen C H, Lu C X, Wang B, Trigoni N, Markham A. DynaNet: Neural Kalman dynamical model for motion estimation and prediction. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5479−5491
|
[90]
|
Cui Y Q, He Y, Tang T T, Liu Y. A new target tracking filter based on deep learning. Chinese Journal of Aeronautics, 2022, 35(5): 11−24
|
[91]
|
Revach G, Shlezinger N, Ni X Y, Escoriza A L, Van Sloun R J G, Eldar Y C. KalmanNet: Neural network aided Kalman filtering for partially known dynamics. IEEE Transactions on Signal Processing, 2022, 70: 1532−1547
|
[92]
|
Klein I, Revach G, Shlezinger N, Mehr J E, Van Sloun R J G, Eldar Y C. Uncertainty in data-driven Kalman filtering for partially known state-space models. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022. 3194−3198
|
[93]
|
Revach G, Shlezinger N, Locher T, Ni X Y, Van Sloun R J G, Eldar Y C. Unsupervised learned Kalman filtering. In: Proceedings of the 30th European Signal Processing Conference (EUSIPCO). Belgrade, Serbia: IEEE, 2022. 1571−1575
|
[94]
|
Zhang Y X, Yu M, Zhang H, Yu D, Wang D L. Neuralkalman: A learnable Kalman filter for acoustic echo cancellation. In: Proceedings of the IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). Taipei, China: IEEE, 2023. 1−7
|
[95]
|
Choi G, Park J, Shlezinger N, Eldar Y C, Lee N. Split-KalmanNet: A robust model-based deep learning approach for state estimation. IEEE Transactions on Vehicular Technology, 2023, 72(9): 12326−12331
|
[96]
|
Deng H R, Revach G, Morgenstern H, Shlezinger N. Kalmanbot: Kalmannet-aided bollinger bands for pairs trading. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Rhodes Island, Greece: IEEE, 2023. 1−5
|
[97]
|
Buchnik I, Steger D, Revach G, Van Sloun R J G, Routtenberg T, Shlezinger N. Latent-KalmanNet: Learned Kalman filtering for tracking from high-dimensional signals. IEEE Transactions on Signal Processing, 2024, 72: 352−367
|
[98]
|
郑婷婷, 杨旭升, 张文安, 俞立. 一种高斯渐进滤波框架下的目标跟踪方法. 自动化学报, 2018, 44(12): 2250−2258Zheng Ting-Ting, Yang Xu-Sheng, Zhang Wen-An, Yu Li. A target tracking method in Gaussian progressive filtering framework. Acta Automatica Sinica, 2018, 44(12): 2250−2258
|
[99]
|
Yang X S, Zhang W A, Yu L, Yang F W. Sequential Gaussian approximation filter for target tracking with nonsynchronous measurements. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 407−418
|
[100]
|
Yuen K V, Hoi K I, Mok K M. Selection of noise parameters for Kalman filter. Earthquake Engineering and Engineering Vibration, 2007, 6(1): 49−56
|
[101]
|
Yuen K V, Liang P F, Kuok S C. Online estimation of noise parameters for Kalman filter. Structural Engineering and Mechanics, 2013, 47(3): 361−381
|
[102]
|
Li P, Zhang W A, Zhang J H. HMM based adaptive Kalman filter for orientation estimation. IEEE Sensors Journal, 2022, 22(17): 17065−17074
|
[103]
|
Jouaber S, Bonnabel S, Velasco-Forero S, Pilté M. NNAKF: A neural network adapted Kalman filter for target tracking. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto, Canada: IEEE, 2021. 4075−4079
|
[104]
|
Zheng T Y, Yao Y, He F H, Zhang X R. An RNN-based learnable extended Kalman filter design and application. In: Proceedings of the 18th European Control Conference (ECC). Naples, Italy: IEEE, 2019. 3304−3309
|
[105]
|
Brossard M, Barrau A, Bonnabel S. AI-IMU dead-reckoning. IEEE Transactions on Intelligent Vehicles, 2020, 5(4): 585−595
|
[106]
|
Xiao Y M, Luo H Y, Zhao F, Wu F, Gao X L, Wang Q, et al. Residual attention network-based confidence estimation algorithm for non-holonomic constraint in GNSS/INS integrated navigation system. IEEE Transactions on Vehicular Technology, 2021, 70(11): 11404−11418
|
[107]
|
Wu F, Luo H Y, Jia H W, Zhao F, Xiao Y M, Gao X L. Predicting the noise covariance with a multitask learning model for Kalman filter-based GNSS/INS integrated navigation. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1−13
|
[108]
|
Yang X S, Zhang W A, Chen M Z Q, Yu L. Hybrid sequential fusion estimation for asynchronous sensor network-based target tracking. IEEE Transactions on Control Systems Technology, 2017, 25(2): 669−676
|
[109]
|
Blom H A P, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Transactions on Automatic Control, 1988, 33(8): 780−783
|
[110]
|
Fu Q E, Lu K L, Sun C Y. Deep learning aided state estimation for guarded semi-Markov switching systems with soft constraints. IEEE Transactions on Signal Processing, 2023, 71: 3100−3116
|
[111]
|
Moon S, Youn W, Bang H. Novel deep-learning-aided multimodal target tracking. IEEE Sensors Journal, 2021, 21(18): 20730−20739
|
[112]
|
Deng L C, Li D, Li R F. Improved IMM algorithm based on RNNs. Journal of Physics: Conference Series, 2020, 1518(1): Article No. 012055
|
[113]
|
崔亚奇, 熊伟, 何友. 不确定航迹自适应预测模型. 航空学报, 2019, 40(5): Article No. 322557Cui Ya-Qi, Xiong Wei, He You. Adaptive forecast model for uncertain track. Acta Aeronauticaet Astronautica Sinica, 2019, 40(5): Article No. 322557
|
[114]
|
纪守领, 李进锋, 杜天宇, 李博. 机器学习模型可解释性方法、应用与安全研究综述. 计算机研究与发展, 2019, 56(10): 2071−2096 doi: 10.7544/issn1000-1239.2019.20190540Ji Shou-Ling, Li Jin-Feng, Du Tian-Yu, Li Bo. Survey on techniques, applications and security of machine learning interpretability. Journal of Computer Research and Development, 2019, 56(10): 2071−2096 doi: 10.7544/issn1000-1239.2019.20190540
|
[115]
|
成科扬, 王宁, 师文喜, 詹永照. 深度学习可解释性研究进展. 计算机研究与发展, 2020, 57(6): 1208−1217 doi: 10.7544/issn1000-1239.2020.20190485Cheng Ke-Yang, Wang Ning, Shi Wen-Xi, Zhan Yong-Zhao. Research advances in the interpretability of deep learning. Journal of Computer Research and Development, 2020, 57(6): 1208−1217 doi: 10.7544/issn1000-1239.2020.20190485
|
[116]
|
Russell R L, Reale C. Multivariate uncertainty in deep learning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7937−7943 doi: 10.1109/TNNLS.2021.3086757
|
[117]
|
武东杰, 仲训昱, 崔晓珍, 彭侠夫, 杨功流. 可在线配置结构的多源融合位姿估计框架. 机器人, 2022, 44(6): 660−671Wu Dong-Jie, Zhong Xun-Yu, Cui Xiao-Zhen, Peng Xia-Fu, Yang Gong-Liu. Multi-source fusion pose estimation framework with online configurable structure. Robot, 2022, 44(6): 660−671
|
[118]
|
Müller S, Hollmann N, Pineda-Arango S, Grabocka J, Hutter F. Transformers can do Bayesian inference. arXiv preprint arXiv: 2112.10510, 2023.
|
[119]
|
Xue B Y, Yu J W, Xu J H, Liu S S, Hu S K, Ye Z, et al. Bayesian transformer language models for speech recognition. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto, Canada: IEEE, 2021. 7378−7382
|
[120]
|
Ansari-Ram F, Ebrahimi-Moghadam A, Khademi M, Sadoghi-Yazdi H. Diffusion-based Kalman iterative thresholding for compressed sampling recovery over network. Signal Processing, 2023, 202: Article No. 108750
|
[121]
|
Alcaraz J M L, Strodthoff N. Diffusion-based time series imputation and forecasting with structured state space models. Transactions on Machine Learning Research, 2023.
|
[122]
|
Munir A, Blasch E, Kwon J, Kong J, Aved A. Artificial intelligence and data fusion at the edge. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(7): 62−78 doi: 10.1109/MAES.2020.3043072
|
[123]
|
Blasch E, Pham T, Chong C Y, Koch W, Leung H, Braines D, et al. Machine learning/artificial intelligence for sensor data fusion-opportunities and challenges. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(7): 80−93
|
[124]
|
张鋆豪, 何百岳, 杨旭升, 张文安. 基于可穿戴式惯性传感器的人体运动跟踪方法综述. 自动化学报, 2019, 45(8): 1439−1454Zhang Jun-Hao, He Bai-Yue, Yang Xu-Sheng, Zhang Wen-An. A review on wearable inertial sensor based human motion tracking. Acta Automatica Sinica, 2019, 45(8): 1439−1454
|
[125]
|
Liu Q, Wang X, Rao N S V. Artificial neural networks for estimation and fusion in long-haul sensor networks. In: Proceedings of the 18th International Conference on Information Fusion (Fusion). Washington, USA: IEEE, 2015. 460−467
|
[126]
|
Brigham K, Kumar B V K V, Rao N S V. Learning-based approaches to nonlinear multisensor fusion in target tracking. In: Proceedings of the 16th International Conference on Information Fusion. Istanbul, Turkey: IEEE, 2013. 1320−1327
|
[127]
|
Chowdhury F N. A neural approach to data fusion. In: Proceedings of the American Control Conference (ACC'95). Seattle, USA: IEEE, 1995. 1693−1697
|
[128]
|
Peng Z X, Li Y, Hao G. The research on distributed fusion estimation based on machine learning. IEEE Access, 2020, 8: 38174−38184
|
[129]
|
Chen Y S, Yan G F. Multi-sensors data tracking fusion based on a neural network filter. In: Proceedings of the IEEE International Joint Conference on Neural Network Proceedings. Vancouver, Canada: IEEE, 2006. 981−984
|
[130]
|
Yang X S, Zhang W A, Yu L. A bank of decentralized extended information filters for target tracking in event-triggered WSNs. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(9): 3281−3289 doi: 10.1109/TSMC.2018.2883706
|
[131]
|
Liu P, Wang L Z, Ranjan R, He G J, Zhao L. A survey on active deep learning: From model driven to data driven. ACM Computing Surveys, 2022, 54(10s): Article No. 221
|
[132]
|
Yang X S, Zhang W A, Yu L, Shi L. Performance evaluation of distributed linear regression Kalman filtering fusion. IEEE Transactions on Automatic Control, 2021, 66(6): 2889−2896 doi: 10.1109/TAC.2020.3012638
|
[133]
|
Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D. Weight uncertainty in neural networks. In: Proceedings of the 32nd International Conference on Machine Learning. Lille, France: ACM, 2015. 1613−1622
|
[134]
|
Kendall A, Gal Y. What uncertainties do we need in Bayesian deep learning for computer vision? In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: ACM, 2017. 5580−5590
|