2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自然梯度的非线性变分贝叶斯滤波算法

胡玉梅 潘泉 邓豹 郭振 陈立峰

胡玉梅, 潘泉, 邓豹, 郭振, 陈立峰. 基于自然梯度的非线性变分贝叶斯滤波算法. 自动化学报, 2025, 51(2): 1−19 doi: 10.16383/j.aas.c230359
引用本文: 胡玉梅, 潘泉, 邓豹, 郭振, 陈立峰. 基于自然梯度的非线性变分贝叶斯滤波算法. 自动化学报, 2025, 51(2): 1−19 doi: 10.16383/j.aas.c230359
Hu Yu-Mei, Pan Quan, Deng Bao, Guo Zhen, Chen Li-Feng. A novel nonlinear variational bayesian filtering algorithm using natural gradient. Acta Automatica Sinica, 2025, 51(2): 1−19 doi: 10.16383/j.aas.c230359
Citation: Hu Yu-Mei, Pan Quan, Deng Bao, Guo Zhen, Chen Li-Feng. A novel nonlinear variational bayesian filtering algorithm using natural gradient. Acta Automatica Sinica, 2025, 51(2): 1−19 doi: 10.16383/j.aas.c230359

基于自然梯度的非线性变分贝叶斯滤波算法

doi: 10.16383/j.aas.c230359 cstr: 32138.14.j.aas.c230359
基金项目: 国家自然科学基金(61790552, 61976080)资助, 西北工业大学博士论文创新基金(CX201915), 航空科学基金(2024M066031002)资助
详细信息
    作者简介:

    胡玉梅:航空工业西安航空计算技术研究所工程师. 主要研究方向为多源信息融合, 航空电子系统. E-mail: hym_henu@163.com

    潘泉:西北工业大学自动化学院教授, 信息融合技术教育部重点实验室主任. 主要研究方向为信息融合理论, 目标跟踪与识别技术, 无人机探测导航与安全控制. 本文通信作者. E-mail: quanpan@nwpu.edu.cn

    邓豹:航空工业西安航空计算技术研究所研究员. 主要研究方向为航空电子系统, 分布式并行处理. E-mail: dengbao15@sina.com

    郭振:湖北航天技术研究院总体设计所工程师. 主要研究方向为多源信息融合, 目标跟踪. E-mail: guozhennpu@126.com

    陈立峰:湖北三江航天险峰电子信息有限公司研究员. 主要研究方向为目标探测, 雷达信号处理. E-mail: chenlf22@mails.tsinghua.edu.cn

A Novel Nonlinear Variational Bayesian Filtering Algorithm Using Natural Gradient

Funds: Supported by National Natural Science Foundation of China (61790552, 61976080), Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201915), and Aeronautical Science Foundation (2024M066031002)
More Information
    Author Bio:

    HU Yu-Mei Engineer at Xi'an Aeronautics Computing Technique Research Institute, AVIC. Her research interest covers information fusion and avionics systems

    PAN Quan Professor at the School of Automation, Northwestern Polytechnical University. He is also the Director of the Key Laboratory of Information Fusion Technology, Ministry of Education. His research interest covers information fusion theory, target tracking and recognition technology, and UAV detection navigation and safely control. Corresponding author of this paper

    DENG Bao Professor at Xi'an Aeronautics Computing Technique Research Institute, AVIC. His research interest covers avionics systems and distributed parallel processing

    GUO Zhen Engineer at System Design Institute, Hubei Aerospace Technology Academy. His research interest covers multi-source information fusion, target tracking

    CHEN Li-Feng Professor at Hubei Sanjiang Aerospace Xianfeng Electronic Information Co., Ltd. His research interest covers target detection and radar signal processing

  • 摘要: 在统计流形空间中, 从信息几何角度考虑非线性状态后验分布近似的实质是后验分布与相应参数化变分分布之间的Kullback-Leibler散度最小化问题, 同时也可以转化为变分置信下界的最大化问题. 为了提升非线性系统状态估计的精度, 在高斯系统假设条件下结合变分贝叶斯推断和Fisher信息矩阵推导出置信下界的自然梯度, 并通过分析其信息几何意义, 阐述在统计流形空间中置信下界沿其方向不断迭代增大, 实现变分分布与后验分布的 “紧密” 近似; 在此基础上, 以状态估计及其误差协方差作为变分超参数, 结合最优估计理论给出一种基于自然梯度的非线性变分贝叶斯滤波算法; 最后, 通过天基光学传感器量测条件下近地轨道卫星跟踪定轨和纯角度被动传感器量测条件下运动目标跟踪仿真实验验证: 与对比算法相比, 所提算法具有更高的精度.
  • 图  1  变量分布近似过程中的KL散度示意图

    Fig.  1  The KL divergence of the distribution approximation of a variable

    图  2  非线性动态系统状态转移和量测的示意图

    Fig.  2  The state transition and measurement in a nonlinear dynamic system

    图  3  单变量高斯分布的欧氏距离示意图

    Fig.  3  The Euclidean distance for univariate Gaussian distributions

    图  4  多变量高斯分布的欧氏距离示意图

    Fig.  4  The Euclidean distance for multivariate Gaussian distributions

    图  5  非线性状态估计在不同空间中的含义示意图

    Fig.  5  The meaning of nonlinear state estimation in different spaces

    图  6  O沿切向量方向向点P处移动的示意图

    Fig.  6  Point O moves in the tangential direction towards P

    图  7  变分迭代过程中置信下界自然梯度的示意图

    Fig.  7  The natural gradient of ELBO in variation1al Bayesian iteration

    图  8  天基量测条件下LEO跟踪定轨仿真场景

    Fig.  8  Scenario of LEO orbit determination and tracking with space-based measurement

    图  9  x轴位置估计RMSE的对比

    Fig.  9  RMSE of position estimation in x axis

    图  10  y轴位置估计RMSE的对比

    Fig.  10  RMSE of position estimation in y axis

    图  11  z轴位置估计RMSE的对比

    Fig.  11  RMSE of position estimation in z axis

    图  12  x轴速度估计RMSE的对比

    Fig.  12  RMSE of velocity estimation in x axis

    图  13  y轴速度估计RMSE的对比

    Fig.  13  RMSE of velocity estimation in y axis

    图  14  z轴速度估计RMSE的对比

    Fig.  14  RMSE of velocity estimation in z axis

    图  15  x轴位置估计误差

    Fig.  15  The position estimation errors in x axis

    图  16  x轴速度估计误差

    Fig.  16  The velocity estimation errors in x axis

    图  17  y轴位置估计误差

    Fig.  17  The position estimation errors in y axis

    图  18  y轴速度估计误差

    Fig.  18  The velocity estimation errors in y axis

    图  19  z轴位置估计误差

    Fig.  19  The position estimation errors in z axis

    图  20  z轴速度估计误差

    Fig.  20  The velocity estimation errors in z axis

    图  21  纯角度被动跟踪仿真场景

    Fig.  21  Pure Angle Passive Tracking Simulation Scenes

    图  22  算法的RMSE对比

    Fig.  22  Comparison of RMSE for Algorithms

    图  23  所有时刻的归一化KL散度的变化

    Fig.  23  The change in normalized KL divergence at all times

    图  24  所有时刻的归一化ELBO的变化

    Fig.  24  The change in normalized ELBO at all times

    表  1  文中变量和符号含义

    Table  1  The meaning of variables and symbols

    $ {\boldsymbol x}_k $$ k $时刻目标状态真实值
    $ {\boldsymbol x}_{k|k} $$ k $时刻目标状态估计值
    $ {\boldsymbol P}_{k|k} $$ k $时刻目标状态估计误差协方差
    $ {\boldsymbol z}_k $传感器在$ k $时刻的量测值
    $ {\boldsymbol\omega}_k $$ k $时刻的系统噪声
    $ {\boldsymbol\upsilon}_k $$ k $时刻的量测噪声
    $ {\boldsymbol Q}_k $$ k $时刻系统噪声方差
    $ {\boldsymbol R}_k $$ k $时刻量测噪声方差
    $ d_x $目标状态向量的维数
    $ d_z $量测向量的维数
    $ {\boldsymbol F}_{k|k-1} $$ k-1 $时刻到$ k $时刻的状态转移矩阵
    $ {\boldsymbol H}_{k} $$ k $时刻量测矩阵
    $ {\boldsymbol\psi}_{k} $变分分布参数
    $ p\left({\boldsymbol x}_k|{\boldsymbol z}_{k}\right) $$ k $时刻目标状态后验分布
    $ q\left({\boldsymbol x}_k|{\boldsymbol\psi}_{k}\right) $以$ {\boldsymbol\psi}_{k} $为参数的变分分布
    $ \mathcal{L}\left({\boldsymbol\psi}_{k}\right) $以$ {\boldsymbol\psi}_{k} $为变分分布参数的置信下界
    $ \mathbb{D}\left(q\left({\boldsymbol x}_k|{\boldsymbol\psi}_{k}\right)|| p\left({\boldsymbol x}_k|{\boldsymbol z}_{k}\right)\right) $变分分布$ q\left({\boldsymbol x}_k|{\boldsymbol\psi}_{k}\right) $与状态后验分布$ p\left({\boldsymbol x}_k|{\boldsymbol z}_{k}\right) $的KL散度
    $ {\boldsymbol J}_{{\boldsymbol\psi}_k} $以$ {{\boldsymbol\psi}_k} $为参数的 Fisher 信息矩阵
    $ \mathcal{M} $流型空间
    $ \mathcal{S} $流型空间中的概率分布集合
    $ \mathcal{F} $流型空间中的平滑映射函数
    $ {\overrightarrow{\boldsymbol v}}_{OP} $流型空间中的$ O $点处指向$ P $点的切向量
    $ |{\overrightarrow{\boldsymbol v}}_{OP}| $切向量$ {\overrightarrow{\boldsymbol v}}_{OP} $的模
    下载: 导出CSV

    表  2  目标的轨道根数

    Table  2  The orbital elements of target

    半长轴 (km) 离心率 倾角 (deg) 近地点角 (deg) 升交点赤经 (deg)
    7500 0.1 15 30 12
    下载: 导出CSV

    表  3  算法平均估计误差均值的对比

    Table  3  Comparison of the mean estimation error of the algorithm

    算法EKFUKFIEKFVBKF-NG
    x 轴位置6.87316.84936.82906.6025
    x 轴速度0.03820.04180.03680.0241
    y 轴位置2.87932.87702.86882.7563
    y 轴速度0.02570.02430.02220.0103
    z 轴位置4.76654.67594.55464.3286
    z 轴速度0.12720.10970.10760.1062
    下载: 导出CSV

    表  4  算法平均运行时间$( \times 10^{-4}\;{\rm{s}}) $的对比

    Table  4  The comparison of the average run time $( \times 10^{-4}\;{\rm{s}}) $ of algorithms

    算法 EKF UKF IEKF VBKF-NG
    时间 0.2580 0.9542 1.0989 1.1205
    下载: 导出CSV

    表  5  算法平均RMSE的对比

    Table  5  Comparison of average RMSE between algorithms

    算法径向距(km)径向速度(k/min)
    EKF1.50520.0813
    UKF1.18330.0670
    VBKF-COD0.91810.0432
    VBKF-NG0.29900.0161
    下载: 导出CSV
  • [1] 潘泉, 胡玉梅, 兰华, 孙帅, 王增福, 杨峰. 信息融合理论研究进展: 基于变分贝叶斯的联合优化. 自动化学报, 2019, 45(7): 1207−1233

    Pan Quan, Hu Yu-Mei, Lan Hua, Sun Shuai, Wang Zeng-Fu, Yang Feng. Information fusion progress: Joint optimization based on variational Bayesian theory. Acta Automatica Sinica, 2019, 45(7): 1207−1233
    [2] Ito K, Xiong K Q. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 2000, 45(5): 910−927 doi: 10.1109/9.855552
    [3] Hu Y M, Wang X Z, Pan Q, Hu Z T, Moran B. Variational Bayesian Kalman filter using natural gradient. Chinese Journal of Aeronautics, 2022, 35(5): 1−10 doi: 10.1016/j.cja.2021.08.033
    [4] Gu D B. A game theory approach to target tracking in sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 41(1): 2−13 doi: 10.1109/TSMCB.2010.2040733
    [5] 潘泉, 胡玉梅, 马季容. 基于变分贝叶斯联合优化的情报监视与侦察. 指挥信息系统与技术, 2020, 11(2): 1−8

    Pan Quan, Hu Yu-Mei, Ma Ji-Rong. Intelligence, surveillance and reconnaissance based on variational Bayesian joint optimization. Command Information System and Technology, 2020, 11(2): 1−8
    [6] Hu X Y, Yang L Q, Xiong W. A novel wireless sensor network frame for urban transportation. IEEE Internet of Things Journal, 2015, 2(6): 586−595 doi: 10.1109/JIOT.2015.2475639
    [7] Spantini A, Baptista R, Marzouk Y. Coupling techniques for nonlinear ensemble filtering. SIAM Review, 2022, 64(4): 921−953 doi: 10.1137/20M1312204
    [8] Silva B, Fisher R M, Kumar A, Hancke G P. Experimental link quality characterization of wireless sensor networks for underground monitoring. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1099−1110 doi: 10.1109/TII.2015.2471263
    [9] Vu T, Rahmani A. Distributed consensus-based Kalman filter estimation and control of formation flying spacecraft: Simulation and validation. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference. Kissimmee, USA: AIAA, 2015. 7−12
    [10] Wang B H, Chen W S, Zhang B, Shi P, Zhang H Y. A nonlinear observer-based approach to robust cooperative tracking for heterogeneous spacecraft attitude control and formation applications. IEEE Transactions on Automatic Control, 2023, 68(1): 400−407 doi: 10.1109/TAC.2022.3143082
    [11] Tronarp F, García-Fernández Á F, Särkkä S. Iterative filtering and smoothing in nonlinear and non-Gaussian systems using conditional moments. IEEE Signal Processing Letters, 2018, 25(3): 408−412 doi: 10.1109/LSP.2018.2794767
    [12] Humpherys J, West J. Kalman filtering with newton's method [Lecture Notes]. IEEE Control Systems Magazine, 2010, 30(6): 101−106 doi: 10.1109/MCS.2010.938485
    [13] Alessandri A, Gaggero M. Moving-horizon estimation for discrete-time linear and nonlinear systems using the gradient and newton methods. In: Proceedings of the IEEE 55th Conference on Decision and Control. Las Vegas, USA: IEEE, 2016. 2906−2911
    [14] Akyildiz Ö D, Chouzenoux É, Elvira V, Míguez J. A probabilistic incremental proximal gradient method. IEEE Signal Processing Letters, 2019, 26(8): 1257−1261 doi: 10.1109/LSP.2019.2926926
    [15] Gultekin S, Paisley J. Nonlinear Kalman filtering with divergence minimization. IEEE Transactions on Signal Processing, 2017, 65(23): 6319−6331 doi: 10.1109/TSP.2017.2752729
    [16] Hoffman M D, Blei D M, Wang C, Paisley J. Stochastic variational inference. The Journal of Machine Learning Research, 2013, 14(1): 1303−1347
    [17] Salimans T, Kingma D P, Welling M. Markov chain Monte Carlo and variational inference: Bridging the gap. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille, France: JMLR.org, 2015. 1218−1226
    [18] Acerbi L. Variational Bayesian Monte Carlo. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: Curran Associates Inc., 2018. 8223−8233
    [19] Acerbi L. Variational Bayesian Monte Carlo with noisy likelihoods. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc., 2020. Article No. 688
    [20] Wang P Y, Blunsom P. Collapsed variational Bayesian inference for hidden Markov models. In: Proceedings of the 16th International Conference on Artificial Intelligence and Statistics. Scottsdale, USA: AISTATS, 2013. 599−607
    [21] Amari S I. Natural gradient works efficiently in learning. Neural Computation, 1998, 10(2): 251−276 doi: 10.1162/089976698300017746
    [22] 李宇波. 基于信息几何理论的滤波方法研究 [博士学位论文], 国防科技大学, 中国, 2017

    Li Yu-Bo. Study of Filtering Methods via Information Geometry [Ph.D. dissertation], National University of Defense Technology, China, 2017
    [23] Zhang G D, Sun S Y, Duvenaud D, Grosse R B. Noisy natural gradient as variational inference. In: Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: ICML, 2018. 5847−5856
    [24] Ollivier Y. Online natural gradient as a Kalman filter. Electronic Journal of Statistics, 2018, 12(2): 2930−2961
    [25] Cheng Y Q, Wang X Z, Morelande M, Moran B. Information geometry of target tracking sensor networks. Information Fusion, 2013, 14(3): 311−326 doi: 10.1016/j.inffus.2012.02.005
    [26] Schmitt L, Fichter W. Globally valid posterior Cramér-Rao bound for three-dimensional bearings-only filtering. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 2036−2044 doi: 10.1109/TAES.2018.2881352
    [27] 胡玉梅, 潘泉, 胡振涛, 郭振. 基于自然梯度的噪声自适应变分贝叶斯滤波算法. 自动化学报, 2023, 49(10): 2094−2108

    Hu Yu-Mei, Pan Quan, Hu Zhen-Tao, Guo Zhen. A novel noise adaptive variational Bayesian filter using natural gradient. Acta Automatica Sinica, 2023, 49(10): 2094−2108
    [28] Duan T, Avati A, Ding D Y, Thai K K, Basu S, Ng A, Schuler A. NGBoost: Natural gradient boosting for probabilistic prediction. In: Proceedings of the 37th International Conference on Machine Learning. JMLR.org. Vienna, Austria, 2020. Article No. 252
    [29] Tseng P. An analysis of the EM algorithm and entropy-like proximal point methods. Mathematics of Operations Research, 2004, 29(1): 27−44 doi: 10.1287/moor.1030.0073
    [30] Khan M E, Baqué P, Fleuret F, Fua P. Kullback-leibler proximal variational inference. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2015. 3402−3410
    [31] Smidl V, Quinn A. Variational Bayesian filtering. IEEE Transactions on Signal Processing, 2008, 56(10): 5020−5030 doi: 10.1109/TSP.2008.928969
    [32] Beal M J, Ghahramani Z. The Variational Kalman Smoother, Technical Report GCNU TR, 2001, 3, Computational Neuroscience Unit, University College London, UK, 2001.
    [33] Hu Y M, Wang X Z, Lan H, Wang Z F, Moran B, Pan Q. An iterative nonlinear filter using variational Bayesian optimization. Sensors, 2018, 18(12): Article No. 4222
    [34] Ble D M, Kucukelbir A, McAuliffe J D. Variational inference: A review for statisticians. Journal of the American Statistical Association, 2017, 112(518): 859−877 doi: 10.1080/01621459.2017.1285773
    [35] Sain R, Mittal V, Gupta V. A comprehensive review on recent advances in variational Bayesian inference. In: Proceedings of the International Conference on Advances in Computer Engineering and Applications. Ghaziabad, India: IEEE, 2015. 488−492
    [36] Beal M J. Variational Algorithms for Approximate Bayesian Inference [Ph.D. dissertation], Cambridge University, UK, 2003
    [37] Amari S I. Information Geometry and its Applications. Tokyo: Springer, 2016.
    [38] Amari S, Douglas S C. Why natural gradient?. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing. Seattle, USA: IEEE, 1998. 1213−1216
    [39] Rezende D J, Mohamed S, Wierstra D. Stochastic backpropagation and approximate inference in deep generative models. In: Proceedings of the 31st International Conference on International Conference on Machine Learning. Beijing, China: JMLR.org, 2014. II-1278−II-1286
    [40] Lan H, Liang Y, Zhang W, Yang F, Pan Q. Iterated minimum upper bound filter for tracking orbit maneuvering targets. In: Proceedings of the 16th International Conference on Information Fusion. Istanbul, Turkey: IEEE, 2013. 1051−1057
  • 加载中
图(24) / 表(5)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  135
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 录用日期:  2023-11-20
  • 网络出版日期:  2024-02-19

目录

    /

    返回文章
    返回