-
摘要: 近年来, 人类社会快速步入大数据时代, 数据安全与隐私保护已成为发展大数据生态及相关数字经济的关键问题. 联邦学习(Federated learning)作为分布式机器学习的一种新范式, 致力于在保护数据隐私的同时从分布式本地数据集中训练全局模型, 因而获得了广泛和深入的研究. 然而, 联邦学习体系面临的中心化架构、激励机制设计和系统安全等技术挑战仍有待进一步研究, 而区块链被认为是应对这些挑战的有效解决方案, 并已成功应用于联邦学习的许多研究和实践场景. 在系统性地梳理现阶段区块链与联邦学习集成研究成果的基础上, 提出基于区块链的联邦学习(Blockchain-enabled federated learning, BeFL)概念模型, 阐述其中的若干关键技术、研究问题与当前研究进展, 探讨该领域的应用场景以及有待进一步研究的关键问题, 并讨论未来发展的潜在方向, 致力于为构建去中心化和安全可信的数据生态基础设施、促进数字经济与相关产业的发展提供有益的参考与借鉴.Abstract: In recent years, human society has been witnessed to evolve fast to the era of big data, rendering the data security and privacy protection a key issue for the development of digital economies. Federated learning, as a novel pattern for distributed machine learning, is aimed to train a centralized model from decentralized datasets while protecting user privacy, and is now intensively studied in literature. However, a variety of technical challenges, e.g., centralized architecture, incentive mechanism design, and system-wide security issues, are still awaiting further research efforts. In this respect, blockchain proves to be an elegant solution for federated learning to overcome these issues, and thus has been applied in federated learning in many scenarios with success. In this paper, we proposed the conceptual model for blockchain-enabled federated learning (BeFL) based on a comprehensive review of related literatures, and discussed the key techniques, research issues, as well as the state-of-the-art research progresses. We also investigated potential application scenarios, several key issues to be addressed and the future trends. Our work is aimed at offering useful reference and guidance for establishing a new infrastructure for decentralized, secured and trusted data ecosystem, and also promoting the development of digital economy industries.
-
Key words:
- Blockchain /
- federated learning /
- smart contract /
- machine learning /
- privacy protection
-
表 1 BeFL 研究相关综述
Table 1 Overview of BeFL research
文献及作者 主要内容 与本文的差异 应用领域 Nguyen等[20] 边缘计算中基于区块链的联邦学习概念、应用场景、优势和挑战 文献方法重点讨论边缘计算中基于区块链的联邦学习的通信成本、资源配置、激励学习、安全和隐私保护; 而本文则从通用领域整体归纳了区块链与联邦学习的集成, 及二者进一步研究问题和未来研究方向 边缘计算 Ali等[21] 物联网中基于区块链的联邦学习发展历程、应用案例、挑战和解决方案 文献方法主要关注物联网中基于区块链的联邦学习的整体研究历程; 而本文从通用领域的角度提供了一个更全面的基于区块链与联邦学习的概览 物联网 Issa等[22] 物联网中基于区块链的联邦学习的安全性问题 文献方法讨论了在隐私保护、数据共享、攻击防御等方面的优势, 并评估了现有的安全机制和协议; 而本文则关注于通用领域的安全、效率等研究问题和应用领域 物联网 Zhu等[23] 从多个角度综合考虑了基于区块链的联邦学习所面临的问题和解决方法 文献方法聚焦基于区块链的联邦学习中的安全和奖励等问题及其解决方案, 分析了不同系统架构及未来挑战; 而本文更侧重于以统一的区块链与联邦学习集成的概念模型出发, 更加全面归纳了进一步研究问题 通用领域 Javed等[24] 车载网络中基于区块链技术和联邦学习技术的优势和挑战 文献方法专注于车联网领域; 而本文则提供了一个针对区块链和联邦学习整合的全面概述, 并适用于众多应用领域 车联网 Qu 等[25] 基于区块链的联邦学习的概念、原理、应用和现有研究工作 文献方法主要从区块链的角度全面介绍了基于区块链的联邦学习; 而本文对比之下则讨论两者的集成概念模型, 并讨论了其架构应用的局限性和现有解决方案 通用领域 李凌霄等[26] 基于区块链的联邦学习技术的发展背景、研究现状和主要挑战 文献方法从架构特点、资源分配、安全机制、激励机制等方面进行了简述; 而本文更为详细和全面地给出了统一的区块链联邦学习概念模型, 并总结了关键研究问题和未来研究方向 通用领域 孙睿等[27] 基于区块链的联邦学习所面临问题、解决方法和应用领域 文献方法主要阐述了体系架构、激励、安全和效率等问题; 而本文更全面归纳了研究现状, 详细讨论了基于区块链的联邦学习在效率、异构、博弈和安全等方面的问题, 并讨论了进一步研究问题和未来方向 通用领域 Saraswat等[28] 5G网络中无人机中基于区块链的联邦学习技术 文献方法的研究是关于在5G网络的无人机中使用的技术; 而本文则主要关注通用领域, 并以架构模型为基础讨论了基于区块链的联邦学习如何应用在相关领域中 无人机 表 2 BeFL 研究现状
Table 2 Current status of BeFL research
架构 研究要点 研究内容 代表性文献 基础架构 去中心化架构 采用区块链的去中心化P2P网络替代传统联邦学习的星型网络 [29−34] 参数/身份校验 对参与节点身份和上传参数进行验证、筛选和授权 [29−30, 33−34] 链上−链下架构 结合分布式存储系统, 链上传输参数, 链下训练模型 [31] 共识机制 选举类联邦共识 基于预置的投票和选举规则对训练节点进行选择 [35−38] 证明类联邦共识 参与节点竞争解决联合学习任务 [20, 39−41] 联盟类联邦共识 选举委员会节点来评估全局模型 [42−43] 联邦学习改进共识算法 利用联邦学习来分析和预测节点间进行共识过程时的网络状况 [44−45] 经济激励 面向数据的激励 衡量用户贡献数据的质量 [31, 46−48] 面向行为的激励 激励用户选择正确的参与训练的方式 [49−54] 面向信誉的激励 多维度对参与节点进行信誉评分 [55−58] 智能合约 基于智能合约的调度 利用智能合约代替中央协调器来调度整个联邦学习流程 [43, 59−61] 集成AI算法的智能组件 将人工智能算法集成到智能合约中, 形成基于BeFL的智能组件 [62−69] 多智能体与DAO 基于多智能体技术和DAO的自组织联邦生态 [70−73] 隐私安全 加密机制 与同态加密、安全多方计算、差分隐私等加密技术相集成 [74−83] 推理攻击 抵御BeFL的成员推理攻击、特征推理攻击和模型反演攻击等 [79, 84−85] 投毒攻击 缓解BeFL的数据投毒攻击和模型投毒攻击等 [86−88] 应用领域 联邦云计算 实现云计算节点、雾计算节点、边缘计算节点之间互联互通 [89−96] 医疗健康 实现医疗数据共享同时保证医疗数据安全 [97−108] 车联网 保证车联网安全有效的同时促进车辆间的数据共享 [109−112] 智慧城市 打通城市“数据孤岛”, 构建城市数据安全共享机制 [113−117] 移动网络 在移动网络中, 保护数据隐私的同时提供可靠、高效的网络服务 [118−119] 表 3 BeFL架构实验设计
Table 3 Experimental design of the BeFL architecture
文献 训练模型 区块链平台 数据集 评估标准 [20] CNN/MLP 区块链仿真平台 MNIST/CIFAR-10 模型准确率 [29] CNN Ethereum MNIST/CIFAR-10 模型准确率 [31] NN/CNN Ethereum 私有数据集 任务分类准确率 [32] NN 许可链 私有数据集 AUC/准确率/灵敏度/特异性/F1得分 [34] GCN 许可链 路透社数据集/新闻组数据集 AUC/安全性分析/模型准确率/运行时间 [37] MLP 区块链仿真平台 MNIST 模型准确率 [38] NN Hyperledger Fabric MNIST 模型准确率 [39] CNN 区块链仿真平台 MNIST 模型准确率 [40] CNN EOSIO区块链 MNIST/CIFAR-10 运行时间/模型准确率 [41] LDA 区块链仿真平台 单词数据集 网络中延迟的节点数 [42] CNN Corda V3.0 MNIST 密码大小/吞吐量/训练精度/总时间成本 [43] AlexNet FISCO BCOS FEMNIST 模型准确率 [46] / 区块链仿真平台 MNIST 搬土距离/区块生成时间/准确率 [47] LR 区块链仿真平台 手写体数字光学识别数据集 余弦相似度/运行时间 [48] / Hyperledger Fabric MNIST 模型准确率 [49] MLP/VGG11 区块链仿真平台 MNIST/Fashion-MNIST 损失函数/准确率 [52] NN Truffle 威斯康星州乳腺癌数据集(BCWD)/
心脏病数据集 (HDD)测试精度/时间开销/通信开销 [53] CNN 联盟链 MNIST 测试准确率/训练时间 [57] / 联盟链 MNIST 搬土距离/准确率 [61] ResNet50/GhostNet 联盟链 X激光图片数据集 损失函数/准确率 [62] XGBoost Ethereum 交易和源代码数据集 精准度/召回率/F1得分 [67] DNN Ethereum 出租车运行数据 效益分析/燃气费/运行时间 [69] CNN 许可链/DAG MNIST 损失函数/模型准确率/累计消耗时间/
标准化即时奖励[70] CNN 区块链仿真平台 MNIST 平均作用时间/训练时间/模型准确率 [71] NN Ethereum 私有数据 损失函数/模型准确率 [77] NN 区块链仿真平台 MNIST 模型准确率 [78] NN 私有链 私有采集数据集 分类交叉熵损失/模型准确率 [79] AlexNet Ethereum MNIST/CIFAR-10 模型准确率/搬土距离 [82] CNN/MLP 私有链 MNIST 测试准确率 [83] CNN 区块链仿真平台 公有数据集/MNIST 模型准确率/迭代次数 [84] LR 区块链仿真平台 合成数据/眼状态数据集 模型推理运行时间 [86] LR 区块链仿真平台 信用卡数据集/MNIST/
CIFAR-10 人脸数据集测试误差/每次迭代的平均时间/攻击率 [87] LR Ethereum 成人人口普查收入数据 F1得分 注: NN: 神经网络, CNN: 卷积神经网络, DNN: 深度神经网络, MLP: 多层感知机, LR: 逻辑回归, GCN: 图卷积神经网络, LDA: 文档主题生成模型, XGBoost: 分布式梯度增强库, AUC: 曲线下面积, ResNet50: 一种残差神经网络, GhostNet: 一种端侧神经网络架构. 表 4 关键问题与未来方向
Table 4 Key issues and future directions
研究要点 研究内容 代表文献 关键问题 效率 调整区块生成率 在通信、算力和共识延迟之间权衡 [68, 93, 120−121] 压缩梯度和模型 压缩梯度和模型以减少通信开销 [122−124] 采用双链架构 联盟链上执行聚合, 公链上实施奖惩 [69, 125−126] 异构 数据异构 设计优化算法处理非独立同分布的联合训练数据 [127] 模型异构 使BeFL架构满足参与节点, 依据需求选取不同的模型来参与联合训练 [128] 网络资源异构 处理各参与节点网络环境和网络资源不同而引发的可靠交互问题 [129] 博弈 共识与激励机制设计 依据博弈论来设计共识算法, 经济激励机制等 [45−47, 50] 系统性能分析 依据博弈论对BeFL在计算开销、通信成本、系统效率之间做权衡 [95] 参与节点竞合分析 在信息不对等时, 利用博弈论来对参与节点进行竞合分析 [130−133] 安全 节点可信 利用身份认证和敌手节点阈值分析来确保节点可信 [134−135] 数据安全 对智能合约数据、参与方本地模型数据和存储设备上的数据进行安全保护 [136−138] 系统安全 对计算环境、通信环境和智能合约运行环境进行安全保护 [139−140] 未来方向 数据要素市场 参与对象 对于数据要素市场的参与对象进行划分 [126, 141] 交易机制 数据竞价定价机制, 确保成交价最优 [142] 供需情况 考虑算力、模型、数据三者之间的供需情况来构建市场模型 [143] 与新一代人工智能
技术集成推荐模型 利用BeFL架构隐私保护和去中心化特点增强推荐模型 [144−146] 搜索模型 集成BeFL增强搜索模型对于去中心化存储和加密数据查询分析需求 [52, 147] AIGC模型 结合BeFL架构激励用户参与并贡献数据来提升AIGC模型 [148−149] 隐私与监管 隐私与监管的权衡 在多方参与弱信任环境中利用区块链监管计算流程 [150] 量子计算带来的
机遇与挑战量子数据安全共享 利用区块链和联邦学习可以使量子数据留在本地,
有效防止中心节点故障, 并实现量子数据的安全共享[151−153] 未来数字空间
元宇宙中的应用数据协作和价值共享 利用区块链的去中心化信任机制与联邦学习的隐私保护属性,
在元宇宙不同平台、应用、空间之间实现数据协作和价值交换[154−161] -
[1] Antunes R S, André da Costa C, Küderle A, Yari I A, Eskofier B. Federated learning for healthcare: Systematic review and architecture proposal. ACM Transactions on Intelligent Systems and Technology (TIST), 2022, 13(4): 1−23 [2] Ghimire B, Rawat D B. Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things. IEEE Internet of Things Journal, 2022, 9(11): 8229−8249 doi: 10.1109/JIOT.2022.3150363 [3] Nguyen D C, Pham Q V, Pathirana P N, Ding M, Seneviratne A, Lin Z H, et al. Federated learning for smart healthcare: A survey. ACM Computing Surveys (CSUR), 2023, 55(3): 1−37 [4] Cheung D W, Ng V T, Fu A W, Fu Y J. Efficient mining of association rules in distributed databases. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 911−922 doi: 10.1109/69.553158 [5] Konečný J, McMahan H B, Yu F X, Richtárik P, Suresh A T, Bacon D. Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv: 1610.05492, 2016. [6] Tan B, Zhang Y, Pan S, Yang Q. Distant domain transfer learning. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI, 2017. 2604−2610 [7] Liu Y, Kang Y, Xing C P, Chen T J, Yang Q. A secure federated transfer learning framework. IEEE Intelligent Systems, 2020, 35(4): 70−82 doi: 10.1109/MIS.2020.2988525 [8] Yang Q, Liu Y, Chen T J, Tong Y X. Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): Article No. 20 [9] Kairouz P, McMahan H B, Avent B, Bellet A, Bennis M, Bhagoji A N, et al. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 2019, 11(1−2): 1−210 [10] Mothukuri V, Parizi R M, Pouriyeh S, Huang Y, Dehghantanha A, Srivastava G. A survey on security and privacy of federated learning. Future Generation Computer Systems, 2021, 115: 619−640 doi: 10.1016/j.future.2020.10.007 [11] Li T, Sahu A K, Talwalkar A, Smith V. Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 2020, 37(3): 50−60 doi: 10.1109/MSP.2020.2975749 [12] Zhao Y, Chen J J, Zhang J L, Wu D, Blumenstein M, Yu S. Detecting and mitigating poisoning attacks in federated learning using generative adversarial networks. Concurrency and Computation: Practice and Experience, 2022, 34(7): Article No. e5906 doi: 10.1002/cpe.5906 [13] Wang L P, Wang W, Li B. CMFL: Mitigating communication overhead for federated learning. In: Proceedings of the 39th International Conference on Distributed Computing Systems (ICDCS). Dallas, USA: IEEE, 2019. 954−964 [14] 袁勇, 王飞跃. 区块链技术发展现状与展望. 自动化学报, 2016, 42(4): 481−494Yuan Yong, Wang Fei-Yue. Blockchain: The state of the art and future trends. Acta Automatica Sinica, 2016, 42(4): 481−494 [15] Whig P, Velu A, Sharma P. Demystifying federated learning for blockchain: A case study. Demystifying Federated Learning for Blockchain and Industrial Internet of Things. IGI Global Press, 2022. 143−165 [16] Singh S, Rathore S, Alfarraj O, Tolba A, Yoon B. A framework for privacy-preservation of IoT healthcare data using federated learning and blockchain technology. Future Generation Computer Systems, 2022, 129: 380−388 doi: 10.1016/j.future.2021.11.028 [17] Miao Y B, Liu Z T, Li H W, Choo K K R, Deng R H. Privacy-preserving Byzantine-robust federated learning via blockchain systems. IEEE Transactions on Information Forensics and Security, 2022, 17: 2848−2861 doi: 10.1109/TIFS.2022.3196274 [18] 邵俊, 蔺静茹. 基于区块链的联邦学习应用研究. 中国新通信, 2021, 23(5): 124−125Shao Jun, Lin Jing-Ru. Research on the application of federated learning based on blockchain. China New Telecommunications, 2021, 23(5): 124−125 [19] 高胜, 袁丽萍, 朱建明, 马鑫迪, 章睿, 马建峰. 一种基于区块链的隐私保护异步联邦学习. 中国科学: 信息科学, 2021, 51(10): 1755−1774 doi: 10.1360/SSI-2021-0087Gao Sheng, Yuan Li-Ping, Zhu Jian-Ming, Ma Xin-Di, Zhang Rui, Ma Jian-Feng. A blockchain-based privacy-preserving asynchronous federated learning. SCIENTIA SINICA Informationis, 2021, 51(10): 1755−1774 doi: 10.1360/SSI-2021-0087 [20] Nguyen D C, Ding M, Pham Q V, Pathirana P N, Le L B, Seneviratne A, et al. Federated learning meets blockchain in edge computing: Opportunities and challenges. IEEE Internet of Things Journal, 2021, 8(16): 12806−12825 doi: 10.1109/JIOT.2021.3072611 [21] Ali M, Karimipour H, Tariq M. Integration of blockchain and federated learning for internet of things: Recent advances and future challenges. Computers & Security, 2021, 108: Article No. 102355 [22] Issa W, Moustafa N, Turnbull B, Sohrabi N, Tari Z. Blockchain-based federated learning for securing internet of things: A comprehensive survey. ACM Computing Surveys, 2023, 55(9): Article No. 191 [23] Zhu J C, Cao J N, Saxena D, Jiang S, Ferradi H. Blockchain-empowered federated learning: Challenges, solutions, and future directions. ACM Computing Surveys, 2023, 55(11): Article No. 240 [24] Javed A R, Hassan M A, Shahzad F, Ahmed W, Singh S, Baker T, et al. Integration of blockchain technology and federated learning in vehicular (IoT) networks: A comprehensive survey. Sensors, 2022, 22(12): Article No. 4394 doi: 10.3390/s22124394 [25] Qu Y Y, Uddin M P, Gan C Q, Xiang Y, Gao L X, Yearwood J. Blockchain-enabled federated learning: A survey. ACM Computing Surveys, 2023, 55(4): Article No. 70 [26] 李凌霄, 袁莎, 金银玉. 基于区块链的联邦学习技术综述. 计算机应用研究, 2021, 38(11): 3222−3230Li Ling-Xiao, Yuan Sha, Jin Yin-Yu. Review of blockchain-based federated learning. Application Research of Computers, 2021, 38(11): 3222−3230 [27] 孙睿, 李超, 王伟, 童恩栋, 王健, 刘吉强. 基于区块链的联邦学习研究进展. 计算机应用, 2022, 42(11): 3413−3420Sun Rui, Li Chao, Wang Wei, Tong En-Dong, Wang Jian, Liu Ji-Qiang. Research progress of blockchain-based federated learning. Journal of Computer Applications, 2022, 42(11): 3413−3420 [28] Saraswat D, Verma A, Bhattacharya P, Tanwar S, Sharma G, Bokoro P N, et al. Blockchain-based federated learning in UAVs beyond 5G networks: A solution taxonomy and future directions. IEEE Access, 2022, 10: 33154−33182 doi: 10.1109/ACCESS.2022.3161132 [29] Hu Y F, Zhou Y H, Xiao J, Wu C. GFL: A decentralized federated learning framework based on blockchain. arXiv preprint arXiv: 2010.10996, 2020. [30] Ma C, Li J, Shi L, Ding M, Wang T T, Han Z, et al. When federated learning meets blockchain: A new distributed learning paradigm. IEEE Computational Intelligence Magazine, 2022, 17(3): 26−33 doi: 10.1109/MCI.2022.3180932 [31] Mendis G J, Sabounchi M, Wei J, Roche' R. Blockchain as a service: An autonomous, privacy preserving, decentralized architecture for deep learning. arXiv preprint arXiv: 1807.02515, 2018. [32] Warnat-Herresthal S, Schultze H, Shastry K L, Manamohan S, Mukherjee S, Garg V, et al. Swarm learning for decentralized and confidential clinical machine learning. Nature, 2021, 594(7862): 265−270 doi: 10.1038/s41586-021-03583-3 [33] Kim H, Park J, Bennis M, Kim S L. Blockchained on-device federated learning. IEEE Communications Letters, 2020, 24(6): 1279−1283 doi: 10.1109/LCOMM.2019.2921755 [34] Lu Y L, Huang X H, Dai Y Y, Maharjan S, Zhang Y. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Transactions on Industrial Informatics, 2020, 16(6): 4177−4186 doi: 10.1109/TII.2019.2942190 [35] 袁勇, 倪晓春, 曾帅, 王飞跃. 区块链共识算法的发展现状与展望. 自动化学报, 2018, 44(11): 2011−2022Yuan Yong, Ni Xiao-Chun, Zeng Shuai, Wang Fei-Yue. Blockchain consensus algorithms: The state of the art and future trends. Acta Automatica Sinica, 2018, 44(11): 2011−2022 [36] Zhang K S, Huang H W, Guo S, Zhou X C. Blockchain-based participant selection for federated learning. In: Proceedings of the 2nd International Conference on Blockchain and Trustworthy Systems. Dali, China: Springer, 2020. 112−125 [37] Kim Y J, Hong C S. Blockchain-based node-aware dynamic weighting methods for improving federated learning performance. In: Proceedings of the 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). Matsue, Japan: IEEE, 2019. 1−4 [38] Wu X, Wang Z, Zhao J, Zhang Y, Wu Y. FedBC: Blockchain-based decentralized federated learning. In: Proceedings of the IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). Dalian, China: IEEE, 2020. 217−221 [39] Chen H, Asif S A, Park J, Shen C C, Bennis M. Robust blockchained federated learning with model validation and proof-of-stake inspired consensus. arXiv preprint arXiv: 2101.03300, 2021. [40] Kang J W, Xiong Z H, Jiang C X, Liu Y, Guo S, Zhang Y, et al. Scalable and communication-efficient decentralized federated edge learning with multi-blockchain framework. In: Proceedings of the 2nd International Conference on Blockchain and Trustworthy Systems. Dali, China: Springer, 2020. 152−165 [41] Doku R, Rawat D B. IFLBC: On the edge intelligence using federated learning blockchain network. In: Proceedings of the 6th International Conference on Big Data Security on Cloud (BigDataSecurity). Baltimore, USA: IEEE, 2020. 221−226 [42] Weng J S, Weng J, Zhang J L, Li M, Zhang Y, Luo W Q. DeepChain: Auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Transactions on Dependable and Secure Computing, 2021, 18(5): 2438−2455 [43] Li Y Z, Chen C, Liu N, Huang H W, Zheng Z B, Yan Q. A blockchain-based decentralized federated learning framework with committee consensus. IEEE Network, 2021, 35(1): 234−241 doi: 10.1109/MNET.011.2000263 [44] Kim D, Doh I, Chae K. Improved raft algorithm exploiting federated learning for private blockchain performance enhancement. In: Proceedings of the International Conference on Information Networking (ICOIN). Jeju Island, South Korea: IEEE, 2021. 828−832 [45] Qu X D, Wang S L, Hu Q, Cheng X Z. Proof of federated learning: A novel energy-recycling consensus algorithm. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(8): 2074−2085 doi: 10.1109/TPDS.2021.3056773 [46] Liu Y, Ai Z P, Sun S, Zhang S F, Liu Z L, Yu H. FedCoin: A peer-to-peer payment system for federated learning. Federated Learning: Privacy and Incentive. Cham: Springer, 2020. 125−138 [47] Ma S C, Cao Y, Xiong L. Transparent contribution evaluation for secure federated learning on blockchain. In: Proceedings of the 37th International Conference on Data Engineering Workshops (ICDEW). Chania, Greece: IEEE, 2021. 88−91 [48] Martinez I, Francis S, Hafid A S. Record and reward federated learning contributions with blockchain. In: Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). Guilin, China: IEEE, 2019. 50−57 [49] Li J, Shao Y M, Wei K, Ding M, Ma C, Shi L, et al. Blockchain assisted decentralized federated learning (BLADE-FL): Performance analysis and resource allocation. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(10): 2401−2415 doi: 10.1109/TPDS.2021.3138848 [50] Toyoda K, Zhang A N. Mechanism design for an incentive-aware blockchain-enabled federated learning platform. In: Proceedings of the IEEE International Conference on Big Data (Big Data). Los Angeles, USA: IEEE, 2019. 395−403 [51] Pandey S R, Tran N H, Bennis M, Tun Y K, Manzoor A, Hong C S. A crowdsourcing framework for on-device federated learning. IEEE Transactions on Wireless Communications, 2020, 19(5): 3241−3256 doi: 10.1109/TWC.2020.2971981 [52] Li Z Y, Liu J, Hao J L, Wang H M, Xian M. CrowdSFL: A secure crowd computing framework based on blockchain and federated learning. Electronics, 2020, 9(5): Article No. 773 doi: 10.3390/electronics9050773 [53] Zhao Y, Zhao J, Jiang L S, Tan R, Niyato D, Li Z X, et al. Privacy-preserving blockchain-based federated learning for IoT devices. IEEE Internet of Things Journal, 2021, 8(3): 1817−1829 doi: 10.1109/JIOT.2020.3017377 [54] Cai H, Rueckert D, Passerat-Palmbach J. 2CP: Decentralized protocols to transparently evaluate contributivity in blockchain federated learning environments. arXiv preprint arXiv: 2011.07516, 2020. [55] ur Rehman M H, Salah K, Damiani E, Svetinovic D. Towards blockchain-based reputation-aware federated learning. In: Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). Toronto, Canada: IEEE, 2020. 183−188 [56] Kang J W, Xiong Z H, Niyato D, Zou Y Z, Zhang Y, Guizani M. Reliable federated learning for mobile networks. IEEE Wireless Communications, 2020, 27(2): 72−80 doi: 10.1109/MWC.001.1900119 [57] Kang J W, Xiong Z H, Niyato D, Xie S L, Zhang J S. Incentive mechanism for reliable federated learning: A joint optimization approach to combining reputation and contract theory. IEEE Internet of Things Journal, 2019, 6(6): 10700−10714 doi: 10.1109/JIOT.2019.2940820 [58] Qi J H, Lin F L, Chen Z Y, Tang C B, Jia R H, Li M L. High-quality model aggregation for blockchain-based federated learning via reputation-motivated task participation. IEEE Internet of Things Journal, 2022, 9(19): 18378−18391 doi: 10.1109/JIOT.2022.3160425 [59] Short A R, Leligou H C, Theocharis E. Execution of a federated learning process within a smart contract. In: Proceedings of the IEEE International Conference on Consumer Electronics (ICCE). Las Vegas, USA: IEEE, 2021. 1−4 [60] Behera M R, Upadhyay S, Shetty S. Federated learning using smart contracts on blockchains, based on reward driven approach. arXiv preprint arXiv: 2107.10243, 2021. [61] Lo S K, Liu Y, Lu Q H, Wang C, Xu X W, Paik H Y, et al. Toward trustworthy AI: Blockchain-based architecture design for accountability and fairness of federated learning systems. IEEE Internet of Things Journal, 2023, 10(4): 3276−3284 doi: 10.1109/JIOT.2022.3144450 [62] Chen W L, Zheng Z B, Cui J H, Ngai E, Zheng P L, Zhou Y R. Detecting ponzi schemes on ethereum: Towards healthier blockchain technology. In: Proceedings of the World Wide Web Conference. Lyon, France: ACM, 2018. 1409−1418 [63] Hua G F, Zhu L, Wu J S, Shen C Z, Zhou L Y, Lin Q Q. Blockchain-based federated learning for intelligent control in heavy haul railway. IEEE Access, 2020, 8: 176830−176839 doi: 10.1109/ACCESS.2020.3021253 [64] Majeed U, Hong C S. Blockchain-assisted ensemble federated learning for automatic modulation classification in wireless networks. In: Proceedings of the Korean Network Operations and Management (KNOM). Daejeon, South Korea: 2020. 111−113 [65] Preuveneers D, Rimmer V, Tsingenopoulos I, Spooren J, Joosen W, Ilie-Zudor E. Chained anomaly detection models for federated learning: An intrusion detection case study. Applied Sciences, 2018, 8(12): Article No. 2663 doi: 10.3390/app8122663 [66] 任涛, 金若辰, 罗咏梅. 融合区块链与联邦学习的网络入侵检测算法. 信息网络安全, 2021, 21(7): 27−34Ren Tao, Jin Ruo-Chen, Luo Yong-Mei. Network intrusion detection algorithm integrating blockchain and federated learning. Netinfo Security, 2021, 21(7): 27−34 [67] Ramanan P, Nakayama K. BAFFLE: Blockchain based aggregator free federated learning. In: Proceedings of the IEEE International Conference on Blockchain (Blockchain). Rhodes, Greece: IEEE, 2020. 72−81 [68] Hieu N Q, Anh T T, Luong N C, Niyato D, Kim D I, Elmroth E. Resource management for blockchain-enabled federated learning: A deep reinforcement learning approach. arXiv preprint arXiv: 2004.04104, 2020. [69] Lu Y L, Huang X H, Zhang K, Maharjan S, Zhang Y. Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4298−4311 doi: 10.1109/TVT.2020.2973651 [70] Połap D, Srivastava G, Yu K P. Agent architecture of an intelligent medical system based on federated learning and blockchain technology. Journal of Information Security and Applications, 2021, 58: Article No. 102748 doi: 10.1016/j.jisa.2021.102748 [71] Zhang Z Z, Yang T Z, Liu Y. SABlockFL: A blockchain-based smart agent system architecture and its application in federated learning. International Journal of Crowd Science, 2020, 4(2): 133−147 doi: 10.1108/IJCS-12-2019-0037 [72] Liang J C, Li S Z, Jiang W S, Cao B C, He C Y. OmniLytics: A blockchain-based secure data market for decentralized machine learning. arXiv preprint arXiv: 2107.05252, 2021. [73] 王飞跃, 王艳芬, 陈薏竹, 田永林, 齐红威, 王晓, 等. 联邦生态: 从联邦数据到联邦智能. 智能科学与技术学报, 2020, 2(4): 305−311Wang Fei-Yue, Wang Yan-Fen, Chen Yi-Zhu, Tian Yong-Lin, Qi Hong-Wei, Wang Xiao, et al. Federated ecology: From federated data to federated intelligence. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 305−311 [74] Lyu L J, Yu H, Yang Q. Threats to federated learning: A survey. arXiv preprint arXiv: 2003.02133, 2020. [75] Li Q B, Wen Z Y, Wu Z M, Hu S X, Wang N B, Li Y, et al. A survey on federated learning systems: Vision, hype and reality for data privacy and protection. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3347−3366 doi: 10.1109/TKDE.2021.3124599 [76] 周俊, 方国英, 吴楠. 联邦学习安全与隐私保护研究综述. 西华大学学报(自然科学版), 2020, 39(4): 9−17Zhou Jun, Fang Guo-Ying, Wu Nan. Survey on security and privacy-preserving in federated learning. Journal of Xihua University (Natural Science Edition), 2020, 39(4): 9−17 [77] Short A R, Leligou H C, Papoutsidakis M, Theocharis E. Using blockchain technologies to improve security in federated learning systems. In: Proceedings of the 44th Annual Computers, Software, and Applications Conference (COMPSAC). Madrid, Spain: IEEE, 2020. 1183−1188 [78] Yin B, Yin H, Wu Y L, Jiang Z X. FDC: A secure federated deep learning mechanism for data collaborations in the internet of things. IEEE Internet of Things Journal, 2020, 7(7): 6348−6359 doi: 10.1109/JIOT.2020.2966778 [79] Liu Y, Peng J L, Kang J W, Iliyasu A M, Niyato D, El-Latif A A A. A secure federated learning framework for 5G networks. IEEE Wireless Communications, 2020, 27(4): 24−31 doi: 10.1109/MWC.01.1900525 [80] 赵东明, 刘静, 徐晨兴, 杨爱东, 孔令鲁. “联邦学习+区块链”多方安全计算引擎系统研究. 电子技术与软件工程, 2020, (21): 184−186Zhao Dong-Ming, Liu Jing, Xu Chen-Xing, Yang Ai-Dong, Kong Ling-Lu. Research on the “federated learning + blockchain” multi-party secure computation engine system. Electronic Technology and Software Engineering, 2020, (21): 184−186 [81] 朱建明, 张沁楠, 高胜, 丁庆洋, 袁丽萍. 基于区块链的隐私保护可信联邦学习模型. 计算机学报, 2021, 44(12): 2464−2484Zhu Jian-Ming, Zhang Qin-Nan, Gao Sheng, Ding Qing-Yang, Yuan Li-Ping. Privacy preserving and trustworthy federated learning model based on blockchain. Chinese Journal of Computers, 2021, 44(12): 2464−2484 [82] Wei K, Li J, Ding M, Ma C, Yang H H, Farokhi F, et al. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 2020, 15: 3454−3469 doi: 10.1109/TIFS.2020.2988575 [83] Lyu L, Yu J S, Nandakumar K, Li Y T, Ma X J, Jin J, et al. Towards fair and privacy-preserving federated deep models. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(11): 2524−2541 doi: 10.1109/TPDS.2020.2996273 [84] Shen M, Wang H, Zhang B, Zhu L H, Xu K, Li Q, et al. Exploiting unintended property leakage in blockchain-assisted federated learning for intelligent edge computing. IEEE Internet of Things Journal, 2021, 8(4): 2265−2275 doi: 10.1109/JIOT.2020.3028110 [85] Fang C, Guo Y B, Ma J L, Xie H D, Wang Y F. A privacy-preserving and verifiable federated learning method based on blockchain. Computer Communications, 2022, 186: 1−11 doi: 10.1016/j.comcom.2022.01.002 [86] Kebande V R, Alawadi S, Bugeja J, Persson J A, Olsson C M. Leveraging federated learning & blockchain to counter adversarial attacks in incremental learning. In: Proceedings of the 10th International Conference on the Internet of Things. Malmö, Sweden: ACM, 2020. Article No. 2 [87] Shayan M, Fung C, Yoon C J M, Beschastnikh I. Biscotti: A ledger for private and secure peer-to-peer machine learning. arXiv preprint arXiv: 1811.09904, 2018. [88] Mugunthan V, Rahman R, Kagal L. BlockFLow: An accountable and privacy-preserving solution for federated learning. arXiv preprint arXiv: 2007.03856, 2020. [89] Malomo O O. Cybersecurity Through a Blockchain Enabled Federated Cloud Framework. Howard University, USA, 2018. [90] Wang S F. BlockFedML: Blockchained federated machine learning systems. In: Proceedings of the International Conference on Intelligent Computing, Automation and Systems (ICICAS). Chongqing, China: IEEE, 2019. 751−756 [91] Malomo O, Rawat D, Garuba M. Security through block vault in a blockchain enabled federated cloud framework. Applied Network Science, 2020, 5(1): Article No. 16 doi: 10.1007/s41109-020-00256-4 [92] Malomo O O, Rawat D B, Garuba M. Next-generation cybersecurity through a blockchain-enabled federated cloud framework. The Journal of Supercomputing, 2018, 74(10): 5099−5126 doi: 10.1007/s11227-018-2385-7 [93] Sharma P K, Park J H, Cho K. Blockchain and federated learning-based distributed computing defence framework for sustainable society. Sustainable Cities and Society, 2020, 59: Article No. 102220 doi: 10.1016/j.scs.2020.102220 [94] 方晨, 郭渊博, 王一丰, 胡永进, 马佳利, 张晗, 等. 基于区块链和联邦学习的边缘计算隐私保护方法. 通信学报, 2021, 42(11): 28−40Fang Chen, Guo Yuan-Bo, Wang Yi-Feng, Hu Yong-Jin, Ma Jia-Li, Zhang Han, et al. Edge computing privacy protection method based on blockchain and federated learning. Journal on Communications, 2021, 42(11): 28−40 [95] Qu Y Y, Gao L X, Luan T H, Xiang Y, Yu S, Li B, et al. Decentralized privacy using blockchain-enabled federated learning in fog computing. IEEE Internet of Things Journal, 2020, 7(6): 5171−5183 doi: 10.1109/JIOT.2020.2977383 [96] Majeed U, Hong C S. FLchain: Federated learning via MEC-enabled blockchain network. In: Proceedings of the 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). Matsue, Japan: IEEE, 2019. 1−4 [97] Połap D, Srivastava G, Jolfaei A, Parizi R M. Blockchain technology and neural networks for the internet of medical things. In: Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). Toronto, Canada: IEEE, 2020. 508−513 [98] Passerat-Palmbach J, Farnan T, McCoy M, Harris J D, Manion S T, Flannery H L, et al. Blockchain-orchestrated machine learning for privacy preserving federated learning in electronic health data. In: Proceedings of the IEEE International Conference on Blockchain (Blockchain). Rhodes, Greece: IEEE, 2020. 550−555 [99] Aich S, Sinai N K, Kumar S, Ali M, Choi Y R, Joo M I, et al. Protecting personal healthcare record using blockchain & federated learning technologies. In: Proceedings of the 23rd International Conference on Advanced Communication Technology (ICACT). PyeongChang, South Korea: IEEE, 2021. 109−112 [100] Vaid A, Jaladanki S K, Xu J, Teng S, Kumar A, Lee S, et al. Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: Machine learning approach. JMIR Medical Informatics, 2021, 9(1): Article No. e24207 doi: 10.2196/24207 [101] Rahman M A, Hossain M S, Islam M S, Alrajeh N A, Muhammad G. Secure and provenance enhanced Internet of health things framework: A blockchain managed federated learning approach. IEEE Access, 2020, 8: 205071−205087 doi: 10.1109/ACCESS.2020.3037474 [102] Alzubi J A, Alzubi O A, Singh A, Ramachandran M. Cloud-IIoT-based electronic health record privacy-preserving by CNN and blockchain-enabled federated learning. IEEE Transactions on Industrial Informatics, 2023, 19(1): 1080−1087 doi: 10.1109/TII.2022.3189170 [103] Abou El Houda Z, Hafid A S, Khoukhi L, Brik B. When collaborative federated learning meets blockchain to preserve privacy in healthcare. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2455−2465 doi: 10.1109/TNSE.2022.3211192 [104] Passerat-Palmbach J, Farnan T, Miller R, Gross M S, Flannery H L, Gleim B. A blockchain-orchestrated federated learning architecture for healthcare consortia. arXiv preprint arXiv: 1910.12603, 2019. [105] 王生生, 陈境宇, 卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割. 吉林大学学报(工学版), 2021, 51(6): 2164−2173Wang Sheng-Sheng, Chen Jing-Yu, Lu Yi-Nan. COVID-19 chest CT image segmentation based on federated learning and blockchain. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2164−2173 [106] 邢丹, 徐琦, 姚俊明. 边缘计算环境下基于区块链和联邦学习的医疗健康数据共享模型. 医学信息学杂志, 2021, 42(2): 33−37Xing Dan, Xu Qi, Yao Jun-Ming. Medical and health data sharing model based on blockchain and federated learning in the edge computing environment. Journal of Medical Informatics, 2021, 42(2): 33−37 [107] El Rifai O, Biotteau M, de Boissezon X, Megdiche I, Ravat F, Teste O. Blockchain-based federated learning in medicine. In: Proceedings of the 18th International Conference on Artificial Intelligence in Medicine. Minneapolis, USA: Springer, 2020. 214−224 [108] Qayyum A, Ahmad K, Ahsan M A, Al-Fuqaha A, Qadir J. Collaborative federated learning for healthcare: Multi-modal covid-19 diagnosis at the edge. IEEE Open Journal of the Computer Society, 2022, 3: 172−184 doi: 10.1109/OJCS.2022.3206407 [109] 莫梓嘉, 高志鹏, 杨杨, 林怡静, 孙山, 赵晨. 面向车联网数据隐私保护的高效分布式模型共享策略. 通信学报, 2022, 43(4): 83−94Mo Zi-Jia, Gao Zhi-Peng, Yang Yang, Lin Yi-Jing, Sun Shan, Zhao Chen. Efficient distributed model sharing strategy for data privacy protection in internet of vehicles. Journal on Communications, 2022, 43(4): 83−94 [110] Wang R, Li H J, Liu E W. Blockchain-based federated learning in mobile edge networks with application in internet of vehicles. arXiv preprint arXiv: 2103.01116, 2021. [111] Posner J, Tseng L, Aloqaily M, Jararweh Y. Federated learning in vehicular networks: Opportunities and solutions. IEEE Network, 2021, 35(2): 152−159 doi: 10.1109/MNET.011.2000430 [112] Chai H Y, Leng S P, Chen Y J, Zhang K. A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 3975−3986 doi: 10.1109/TITS.2020.3002712 [113] Guo S Y, Xiang B Y, Xia X W, Yan Z H, Li Y L. Blockchain and federated learning based data security sharing mechanism over smart city. Research Square, DOI: 10.21203/rs.3.rs-104012/v1 [114] Yang F, Qiao Y N, Abedin M Z, Huang C. Privacy-preserved credit data sharing integrating blockchain and federated learning for industrial 4.0. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8755−8764 doi: 10.1109/TII.2022.3151917 [115] Kang J W, Li X D, Nie J T, Liu Y, Xu M R, Xiong Z H, et al. Communication-efficient and cross-chain empowered federated learning for artificial intelligence of things. IEEE Transactions on Network Science and Engineering, 2022, 9(5): 2966−2977 doi: 10.1109/TNSE.2022.3178970 [116] 于秋雨, 卢清华, 张卫山. 基于区块链的工业物联网联邦学习系统架构. 计算机系统应用, 2021, 30(9): 69−76Yu Qiu-Yu, Lu Qing-Hua, Zhang Wei-Shan. Federated learning system architecture in industrail IoT based on blockchain. Computer Systems & Applications, 2021, 30(9): 69−76 [117] Demertzis K. Blockchained federated learning for threat defense. arXiv preprint arXiv: 2102.12746, 2021. [118] Lu Y L, Huang X H, Zhang K, Maharjan S, Zhang Y. Communication-efficient federated learning and permissioned blockchain for digital twin edge networks. IEEE Internet of Things Journal, 2021, 8(4): 2276−2288 doi: 10.1109/JIOT.2020.3015772 [119] Lu Y L, Huang X H, Zhang K, Maharjan S, Zhang Y. Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks. IEEE Transactions on Industrial Informatics, 2021, 17(7): 5098−5107 doi: 10.1109/TII.2020.3017668 [120] Pokhrel S R, Choi J. A decentralized federated learning approach for connected autonomous vehicles. In: Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW). Seoul, South Korea: IEEE, 2020. 1−6 [121] Pokhrel S R, Choi J. Federated learning with blockchain for autonomous vehicles: Analysis and design challenges. IEEE Transactions on Communications, 2020, 68(8): 4734−4746 doi: 10.1109/TCOMM.2020.2990686 [122] Cui L Z, Su X X, Ming Z X, Chen Z T, Yang S, Zhou Y P, et al. CREAT: Blockchain-assisted compression algorithm of federated learning for content caching in edge computing. IEEE Internet of Things Journal, 2022, 9(16): 14151−14161 doi: 10.1109/JIOT.2020.3014370 [123] Qin Z, Yan X Q, Zhou M C, Deng S G. BlockDFL: A blockchain-based fully decentralized peer-to-peer federated learning framework. In: Proceedings of the ACM on Web Conference. ACM, 2024. 2914−2925 [124] Chen Y T, Chen Q, Xie Y X. A methodology for high-efficient federated-learning with consortium blockchain. In: Proceedings of the 4th Conference on Energy Internet and Energy System Integration (EI2). Wuhan, China: IEEE, 2020. 3090−3095 [125] Desai H B, Ozdayi M S, Kantarcioglu M. BlockFLA: Accountable federated learning via hybrid blockchain architecture. In: Proceedings of the 11th ACM Conference on Data and Application Security and Privacy. ACM, 2021. 101−112 [126] Fan S Z, Zhang H B, Zeng Y C, Cai W. Hybrid blockchain-based resource trading system for federated learning in edge computing. IEEE Internet of Things Journal, 2021, 8(4): 2252−2264 doi: 10.1109/JIOT.2020.3028101 [127] Zhang W S, Lu Q H, Yu Q Y, Li Z T, Liu Y, Lo S K, et al. Blockchain-based federated learning for device failure detection in industrial IoT. IEEE Internet of Things Journal, 2021, 8(7): 5926−5937 doi: 10.1109/JIOT.2020.3032544 [128] Wang Q L, Guo Y F, Wang X F, Ji T X, Yu L X, Li P. AI at the edge: Blockchain-empowered secure multiparty learning with heterogeneous models. IEEE Internet of Things Journal, 2020, 7(10): 9600−9610 doi: 10.1109/JIOT.2020.2987843 [129] Yu S, Chen X, Zhou Z, Gong X W, Wu D. When deep reinforcement learning meets federated learning: Intelligent multitimescale resource management for multiaccess edge computing in 5G ultradense network. IEEE Internet of Things Journal, 2021, 8(4): 2238−2251 doi: 10.1109/JIOT.2020.3026589 [130] 张沁楠, 朱建明, 高胜, 熊泽辉, 丁庆洋, 朴桂荣. 基于区块链和贝叶斯博弈的联邦学习激励机制. 中国科学: 信息科学, 2022, 52(6): 971−991 doi: 10.1360/SSI-2022-0020Zhang Qin-Nan, Zhu Jian-Ming, Gao Sheng, Xiong Ze-Hui, Ding Qing-Yang, Piao Gui-Rong. Incentive mechanism for federated learning based on blockchain and bayesian game. Scientia Sinica Informationis, 2022, 52(6): 971−991 doi: 10.1360/SSI-2022-0020 [131] Wang Z L, Hu Q, Li R N, Xu M H, Xiong Z H. Incentive mechanism design for joint resource allocation in blockchain-based federated learning. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(5): 1536−1547 doi: 10.1109/TPDS.2023.3253604 [132] He Y H, Luo M S, Wu B, Sun L M, Wu Y D, Liu Z Q, et al. A game theory-based incentive mechanism for collaborative security of federated learning in energy blockchain environment. IEEE Internet of Things Journal, 2023, 10(24): 21294−21308 doi: 10.1109/JIOT.2023.3282732 [133] Ding N N, Fang Z X, Huang J W. Optimal contract design for efficient federated learning with multi-dimensional private information. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 186−200 doi: 10.1109/JSAC.2020.3036944 [134] Feng C S, Liu B, Yu K P, Goudos S K, Wan S H. Blockchain-empowered decentralized horizontal federated learning for 5G-enabled UAVs. IEEE Transactions on Industrial Informatics, 2022, 18(5): 3582−3592 doi: 10.1109/TII.2021.3116132 [135] Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan H B, Patel S, et al. Practical secure aggregation for federated learning on user-held data. arXiv preprint arXiv: 1611.04482, 2016. [136] Kosba A, Miller A, Shi E, Wen Z K, Papamanthou C. Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In: Proceedings of the IEEE Symposium on Security and Privacy (SP). San Jose, USA: IEEE, 2016. 839−858 [137] Zhang F, Cecchetti E, Croman K, Juels A, Shi E L N. Town crier: An authenticated data feed for smart contracts. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. Vienna, Austria: ACM, 2016. 270−282 [138] Li B W, Fan L X, Gu H L, Li J, Yang Q. FedIPR: Ownership verification for federated deep neural network models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4521−4536 [139] Zhang X L, Li F T, Zhang Z Y, Li Q, Wang C, Wu J P. Enabling execution assurance of federated learning at untrusted participants. In: Proceedings of the IEEE Conference on Computer Communications. Toronto, Canada: IEEE, 2020. 1877−1886 [140] Chen T, Li X Q, Luo X P, Zhang X S. Under-optimized smart contracts devour your money. In: Proceedings of the 24th International Conference on Software Analysis, Evolution and Reengineering (SANER). Klagenfurt, Austria: IEEE, 2017. 442−446 [141] Wang P F, Zhao Y A, Obaidat M S, Wei Z Z, Qi H, Lin C, et al. Blockchain-enhanced federated learning market with social internet of things. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3405−3421 doi: 10.1109/JSAC.2022.3213314 [142] Somy N B, Kannan K, Arya V, Hans S, Singh A, Lohia P, et al. Ownership preserving ai market places using blockchain. In: Proceedings of the IEEE International Conference on Blockchain (Blockchain). Atlanta, USA: IEEE, 2019. 156−165 [143] Ouyang L W, Yuan Y, Wang F Y. Learning markets: An ai collaboration framework based on blockchain and smart contracts. IEEE Internet of Things Journal, 2022, 9(16): 14273−14286 doi: 10.1109/JIOT.2020.3032706 [144] Wang F Y. New control paradigm for industry 5.0: From big models to foundation control and management. IEEE/CAA Journal of Automatica Sinica, 2023, 10(8): 1643−1646 doi: 10.1109/JAS.2023.123768 [145] Wang Y C, Tian Y Y, Yin X Y, Hei X. A trusted recommendation scheme for privacy protection based on federated learning. CCF Transactions on Networking, 2020, 3(3): 218−228 [146] Hai T, Zhou J C, Srividhya S R, Jain S K, Young P, Agrawal S. BVFLEMR: An integrated federated learning and blockchain technology for cloud-based medical records recommendation system. Journal of Cloud Computing, 2022, 11(1): Article No. 22 doi: 10.1186/s13677-022-00294-6 [147] Peng Z, Xu J L, Chu X W, Gao S, Yao Y, Gu R, et al. VFChain: Enabling verifiable and auditable federated learning via blockchain systems. IEEE Transactions on Network Science and Engineering, 2022, 9(1): 173−186 doi: 10.1109/TNSE.2021.3050781 [148] Xu M R, Ng W C, Lim W Y B, Kang J W, Xiong Z H, Niyato D, et al. A full dive into realizing the edge-enabled metaverse: Visions, enabling technologies, and challenges. IEEE Communications Surveys & Tutorials, 2023, 25(1): 656−700 [149] Huang H W, Zhang Q N, Li T T, Yang Q L, Yin Z K, Wu J H, et al. Economic systems in the metaverse: Basics, state of the art, and challenges. ACM Computing Surveys, 2023, 56(4): Article No. 99 [150] Truong N B, Sun K, Lee G M, Guo Y K. Gdpr-compliant personal data management: A blockchain-based solution. IEEE Transactions on Information Forensics and Security, 2020, 15: 1746−1761 doi: 10.1109/TIFS.2019.2948287 [151] Chehimi M, Saad W. Quantum federated learning with quantum data. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022. 8617−8621 [152] Xia Q, Li Q. QuantumFed: A federated learning framework for collaborative quantum training. In: Proceedings of the IEEE Global Communications Conference (GLOBECOM). Madrid, Spain: IEEE, 2021. 1−6 [153] Pujahari R M, Tanwar A. Quantum federated learning for wireless communications. Federated Learning for IoT Applications. Cham: Springer, 2022. 215−230 [154] Wang F Y. Parallel intelligence in metaverses: Welcome to Hanoi! IEEE Intelligent Systems, 2022, 37(1): 16−20 doi: 10.1109/MIS.2022.3154541 [155] Kang J W, Ye D D, Nie J T, Xiao J, Deng X J, Wang S M, et al. Blockchain-based federated learning for industrial metaverses: Incentive scheme with optimal AoI. In: Proceedings of the IEEE International Conference on Blockchain (Blockchain). Espoo, Finland: IEEE, 2022. 71−78 [156] Moudoud H, Cherkaoui S. Federated learning meets blockchain to secure the metaverse. In: Proceedings of the International Wireless Communications and Mobile Computing (IWCMC). Marrakesh, Morocco: IEEE, 2023. 339−344 [157] Chatterjee P, Das D, Rawat D B. Next generation financial services: Role of blockchain enabled federated learning and metaverse. In: Proceedings of the 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW). Bangalore, India: IEEE, 2023. 69−74 [158] Cao L B. Decentralized AI: Edge intelligence and smart blockchain, metaverse, Web3, and DeSci. IEEE Intelligent Systems, 2022, 37(3): 6−19 doi: 10.1109/MIS.2022.3181504 [159] Fu Y C, Li C L, Yu F R, Luan T H, Zhao P C, Liu S. A survey of blockchain and intelligent networking for the metaverse. IEEE Internet of Things Journal, 2023, 10(4): 3587−3610 doi: 10.1109/JIOT.2022.3222521 [160] Wang X X, Yang J, Wang Y T, Miao Q H, Wang F Y, Zhao A J, et al. Steps toward industry 5.0: Building “6S” parallel industries with cyber-physical-social intelligence. IEEE/CAA Journal of Automatica Sinica, 2023, 10(8): 1692−1703 doi: 10.1109/JAS.2023.123753 [161] Wang F Y, Qin R, Wang X, Hu B. Metasocieties in metaverse: Metaeconomics and metamanagement for metaenterprises and metacities. IEEE Transactions on Computational Social Systems, 2022, 9(1): 2−7 doi: 10.1109/TCSS.2022.3145165