2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外部干扰和随机DoS攻击下的网联车安全H 队列控制

宋秀兰 李洋阳 何德峰

宋秀兰, 李洋阳, 何德峰. 外部干扰和随机DoS攻击下的网联车安全H∞ 队列控制. 自动化学报, 2024, 50(2): 348−355 doi: 10.16383/j.aas.c230327
引用本文: 宋秀兰, 李洋阳, 何德峰. 外部干扰和随机DoS攻击下的网联车安全H 队列控制. 自动化学报, 2024, 50(2): 348−355 doi: 10.16383/j.aas.c230327
Song Xiu-Lan, Li Yang-Yang, He De-Feng. Secure H∞ platooning control for connected vehicles subject to external disturbance and random DoS attacks. Acta Automatica Sinica, 2024, 50(2): 348−355 doi: 10.16383/j.aas.c230327
Citation: Song Xiu-Lan, Li Yang-Yang, He De-Feng. Secure H platooning control for connected vehicles subject to external disturbance and random DoS attacks. Acta Automatica Sinica, 2024, 50(2): 348−355 doi: 10.16383/j.aas.c230327

外部干扰和随机DoS攻击下的网联车安全H 队列控制

doi: 10.16383/j.aas.c230327
基金项目: 国家自然科学基金(62273307), 浙江省公益性技术应用研究项目(LGF22F030013)资助
详细信息
    作者简介:

    宋秀兰:浙江工业大学信息工程学院副教授. 主要研究方向为多媒体无线通信, 网联车辆安全队列控制. 本文通信作者. E-mail: songxl2008@zjut.edu.cn

    李洋阳:浙江工业大学信息工程学院硕士研究生. 主要研究方向为车辆安全队列控制. E-mail: seanlee1122@163.com

    何德峰:浙江工业大学信息工程学院教授. 主要研究方向为智能预测控制, 多智能体分布式估计与协同控制和安全控制理论. E-mail: hdfzj@zjut.edu.cn

Secure H Platooning Control for Connected Vehicles Subject to External Disturbance and Random DoS Attacks

Funds: Supported by National Natural Science Foundation of China (62273307) and Project of Zhejiang Province Public Welfare Technology Application Research (LGF22F030013)
More Information
    Author Bio:

    SONG Xiu-Lan Associate professor at the College of Information Engineering, Zhejiang University of Technology. Her research interest covers multi-media wireless communication and secure platooning control for connected ve-hicles. Corresponding author of this paper

    LI Yang-Yang Master student at the College of Information Engineering, Zhejiang University of Technology. His main research interest is secure platooning control for vehicles

    HE De-Feng Professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers intelligent predictive control, multi-agent distributed estimation and collaborative control, and security control theory

  • 摘要: 针对网联车队列系统易受到干扰和拒绝服务(Denial of service, DoS)攻击问题, 提出一种外部干扰和随机DoS攻击作用下的网联车安全H队列控制方法. 首先, 采用马尔科夫随机过程, 将网联车随机DoS攻击特性建模为一个随机通信拓扑切换模型, 据此设计网联车安全队列控制协议. 然后, 采用线性矩阵不等式(Linear matrix inequality, LMI)技术计算安全队列控制器参数, 并应用Lyapunov-Krasovskii稳定性理论, 建立在外部扰动和随机DoS攻击下队列系统稳定性充分条件. 在此基础上, 分析得到该队列闭环系统的弦稳定性充分条件. 最后, 通过7辆车组成的队列系统对比仿真实验, 验证该方法的优越性.
  • 图  1  DoS攻击下的网联车队列示意图

    Fig.  1  A schematic of a connected vehicle platoon subject to DoS attacks

    图  2  DoS攻击造成的拓扑切换示意图

    Fig.  2  A schematic of topologies switching suffered from DoS attacks

    图  3  4种常见的通信拓扑示意图

    Fig.  3  Four common communication topology diagrams

    图  4  DoS攻击过程

    Fig.  4  Process of DoS attacks

    图  5  车辆速度曲线

    Fig.  5  Velocity profiles of vehicles

    图  6  车辆间距误差曲线

    Fig.  6  Spacing error profiles of vehicles

    表  1  仿真参数

    Table  1  The parameters of simulation

    参数数值参数数值
    $d_{des} \;({\rm{m} })$5.00$k_{p}$1.7391
    $l \;({\rm{s} })$1.00$k_{v}$3.3422
    $\tau_{i}\;({\rm{s}})$0.54$k_{a}$2.8996
    $\gamma$1.50c1.5200
    下载: 导出CSV

    表  2  不同强度的DoS攻击实验

    Table  2  Experiments of DoS attacks with different intensities

    组别攻击
    总时长(s)
    未受攻击
    拓扑率$\theta_{1}\;(\%)$
    本文
    方法
    文献[6]
    方法
    文献[9]
    方法
    实验11482.5$\surd$$\surd$$\surd$
    实验21877.5$\surd$$\times$$\surd$
    实验32272.5$\surd$$\times$$\times$
    实验42667.5$\times$$\times$$\times$
    下载: 导出CSV
  • [1] 朱永薪, 李永福, 朱浩, 于树友. 通信延时环境下基于观测器的智能网联车辆队列分层协同纵向控制. 自动化学报, 2023, 49(8): 1785-1798 doi: 10.16383/j.aas.c210311

    Zhu Yong-Xin, Li Yong-Fu, Zhu Hao, Yu Shu-You. Observer-based longitudinal control for connected and automated vehicles platoon subject to communication delay. Acta Automatica Sinica, 2023, 49(8): 1785-1798 doi: 10.16383/j.aas.c210311
    [2] 陈滏媛, 董振江, 董建阔, 徐敏杰. 车联网安全防护技术综述. 电信科学, 2023, 39(3): 1-15 doi: 10.11959/j.issn.1000-0801.2023046

    Chen Fu-Yuan, Dong Zhen-Jiang, Dong Jian-Kuo, Xu Min-Jie. A review of security protection technology for internet of vehicles. Telecommunications Science, 2023, 39(3): 1-15 doi: 10.11959/j.issn.1000-0801.2023046
    [3] 杨飞生, 汪璟, 潘泉, 康沛沛. 网络攻击下信息物理融合电力系统的弹性事件触发控制. 自动化学报, 2019, 45(1): 110-119 doi: 10.16383/j.aas.c180388

    Yang Fei-Sheng, Wang Jing, Pan Quan, Kang Pei-Pei. Resilient event-triggered control of grid cyber-physical systems against cyber Attack. Acta Automatica Sinica, 2019, 45(1): 110-119 doi: 10.16383/j.aas.c180388
    [4] Petit J, Shladover SE. Potential cyberattacks on automated vehicles. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 546-556
    [5] Xiao S Y, Ge X H, Han Q L, Zhang Y J. Secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks under denial-of-service attacks. IEEE Transactions on Cybernetics, 2022, 52(11): 12003-12015 doi: 10.1109/TCYB.2021.3074318
    [6] Zhang D, Shen Y P, Zhou S Q, Dong X W, Yu L. Distributed secure platoon control of connected vehicles subject to DoS attack: theory and application. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(11): 7269-7278 doi: 10.1109/TSMC.2020.2968606
    [7] Chen J C, Zhang H, Yin G D. Distributed dynamic event-triggered secure model predictive control of vehicle platoon against DoS attacks. IEEE Transactions on Vehicular Technology, 2023, 72(3): 2863-2877 doi: 10.1109/TVT.2022.3215966
    [8] Zhao H, Li W D, Li Z C. Resilient event-triggered control for vehicular networked systems under markovian jump DoS jamming attacks. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4182-4195 doi: 10.1109/TVT.2022.3197192
    [9] Zhao Y, Liu Z C, Wong W S. Resilient platoon control of vehicular cyber physical systems under DoS attacks and multiple disturbances. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10945-10956 doi: 10.1109/TITS.2021.3097356
    [10] Liu Y H. Secure control of networked switched systems with random DoS attacks via event-triggered approach. In: Proceedings of the 40th Chinese Control Conference. Shanghai, China: 2021. 1399−1404
    [11] Sun Y G, Wang L. Consensus of multi-agent systems in directed networks with nonuniform time-varying delays. IEEE Transactions on Automatic Control, 2009, 54(7): 1607-1613 doi: 10.1109/TAC.2009.2017963
    [12] Ploeg J, P.Shukla D, Wouw N, Nijmeijer H. Controller synthesis for string stability of vehicle platoons. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 854-865 doi: 10.1109/TITS.2013.2291493
    [13] Zhou J S, Tian D X, Sheng Z G, Duan X T, Qu G X, Zhao D Z, et al. Robust min-max model predictive vehicle platooning with causal disturbance feedback. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15878-15897 doi: 10.1109/TITS.2022.3146149
    [14] Liu Y G, Gao H L, Xu B G, Liu G Y, Cheng H. Autonomous coordinated control of a platoon of vehicles with multiple disturbances. IET Control Theory Appl, 2014, 8(18): 2325-2335 doi: 10.1049/iet-cta.2014.0172
    [15] Kwon J W, Chwa D. Adaptive bidirectional platoon control using a coupled sliding mode control method. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2040-2048 doi: 10.1109/TITS.2014.2308535
    [16] Wang P W, Deng H, Zhang J, Wang L, Zhang M F, Li Y F. Model predictive control for connected vehicle platoon under switching communication topology. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7817-7830 doi: 10.1109/TITS.2021.3073012
    [17] Huang C, Coskun S, Wang J, Mei P, Shi Q. Robust H∞ dynamic output-feedback control for CACC with ROSSs subject to RODAs. IEEE Transactions on Vehicular Technology, 2022, 71(1): 137-147 doi: 10.1109/TVT.2021.3128635
    [18] Ge X H, Han Q L, Wu Q, Zhang X M. Resilient and safe platooning control of connected automated vehicles against intermittent Denial-of-Service attacks. IEEE/ CAA Journal of Automatica Sinica, 2023, 10(5): 1234-1251 doi: 10.1109/JAS.2022.105845
    [19] Petrillo A, Pescapé A, Santini S. A secure adaptive control for cooperative driving of autonomous conn-ected vehicles in the presence of heterogeneous co-mmunication delays and cyberattacks. IEEE Transac-tions on Cybernetics, 2021, 51(3): 1134-1149 doi: 10.1109/TCYB.2019.2962601
    [20] Li Z Y, Zhou B, Lam J. Lyapunov-Krasovskii functionals for predictor feedback control of linear systems with multiple input delays. In: Proceedings of the 33rd Chinese Control Conference. Nanjing, China: 2014. 6136−6141
    [21] Wen S X, Guo G. Sampled-Data Control for Connected vehicles with markovian switching topologies and communication delay. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 2930-2942 doi: 10.1109/TITS.2019.2921781
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  271
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-02
  • 录用日期:  2023-11-09
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2024-02-26

目录

    /

    返回文章
    返回