Syntheses and Analyses of Control Structure for Coal-fired Power Plants Oriented to Renewable Energy Accommodation
-
摘要: 增加可再生能源在电网中的占比, 使能源结构更合理, 是加快能源转型实现低碳可持续发展的有效途径. 电网中占主导地位的火电, 辅助消纳可再生能源的能力, 对提高可再生能源在电网中的占比起到重要作用. 为了提高火电机组辅助可再生能源的消纳能力, 本文根据当前系统控制方案, 分析了影响机组灵活性与调峰深度的因素, 包括机炉协调、局部反馈策略下的锅炉控制、系统稳态工作点的规划等. 基于补偿方案的协调策略限制了机组对具有随机性和间歇性的可再生能源的补偿能力; 局部反馈策略下的锅炉控制只是实现了等效热效应的反馈; 非额定工况下的稳态工作点关系到辅助可再生能源消纳的能耗和排放指标. 根据以上分析分别给出了进一步的研究内容.Abstract: In order to optimize the energy structure to realize sustainable development, increasing the proportion of renewable energy in power grid is inevitable. The cooperative capability of coal-fired units, which are primary of national grid, is the issue. For the sake of improving this capability, this paper analysed factors which affect flexibility and depth of peak-shaving, based on control scheme. The factors include coordinating turbine and furnace, fuel control based on local feedback, programming steady operating point. Coordinating scheme which was based on compensating networks, restricts the ability of constraining renewable energy which is random and intermittent. It was thermal effect of the fired coal compared with standard coal that the furnace burning was fed back regardless of other burning characters. Steady operating points of the system were related to energy cost and emission when the system did not work in rated condition.The paper proposed further research based on these conclusions.
-
表 1 性能参数对比
Table 1 Comparision of performance parameters
参数 我国 欧洲 单位 负荷变动速率 2/1.5 6/4 %/min 硬煤/褐煤 最小出力 35/50 20/40 % 硬煤/褐煤 冷态启动时间 8/12 4/6 h 硬煤/褐煤 热态启动时间 4 2 h -
[1] 李星梅, 钟志鸣, 阎洁. 大规模风电接入下的火电机组灵活性改造规划. 电力系统自动化, 2019, 43(3): 51-57 doi: 10.7500/AEPS20180213007Li Xing-Mei, Zhong Zhi-Ming, Yan Jie. Flexibility reformation planning of thermal power units with large-scale integration of wind power. Automation of Electric Power Systems, 2019, 43(3): 51-57 doi: 10.7500/AEPS20180213007 [2] 李人厚, 邵福庆. 大系统的递阶与分散控制. 西安: 西安交通大学出版社, 1986.Li Ren-hou, Shao Fu-qing. Hierarchical and Decentralized Control of Large Systems. Xi'an: Xi'an Jiaotong University Press, 1986. [3] 刘吉臻. 协调控制与给水全程控制. 北京: 水利电力出版社, 1995.Liu Ji-zhen. Coordinated control and full process control of water supply. Beijing: Water Resources and Electric Power Publishing House, 1995. [4] 涂序彦. 大系统控制论. 北京: 国防工业出版社, 1994.Tu Xu-yan. Large System Control Theory. Beijing: National Defense Industry Press, 1994. [5] Sandell N, Varaiya P, Athans M, Safonov M. Survey of decentralized control methods for large scale systems. IEEE Transactions on Automatic Control, 1978, 23(2): 108-128 doi: 10.1109/TAC.1978.1101704 [6] Roberts P D. Hierarchical control and decomposition of a chemical plant. International Journal of Systems Science, 1979, 10(2): 207-223 doi: 10.1080/00207727908941576 [7] Arkun Y, Stephanopoulos G. Studies in the synthesis of control structures for chemical processes. Part V: Design of steady-state optimizing control structures for integrated chemical plants. AIChE Journal, 1981, 27(5): 779-793 doi: 10.1002/aic.690270512 [8] Bailey F N, Malinowski K B. Problems in the design of multilayer, multiechelon control structures. IFAC Proceedings Volumes, 1977, 10(6): 31-38 doi: 10.1016/B978-0-08-022010-9.50009-8 [9] Li X N, Zhang L Q. Research based on the mid-point enthalpy of supercritical unit feed-water control circuit. Advanced Materials Research, 2011, 354-355: 344-349 doi: 10.4028/www.scientific.net/AMR.354-355.344 [10] Qiu S L, Song R F, Wang Z, Wang X T, Zhu B Y, Qi Z Y, et al. Research and application of Automatic Procedure Start up and shut down of ultra supercritical thermal power unit based on enthalpy control. In: Proceedings of the 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China: IEEE, 2020. 280−284 [11] Huang Y X, Yao R W, Liu X C, Lin S Y, Zhang W D. A reinforcement learning method for intermediate point enthalpy control in super-critical power unit. In: Proceedings of the Chinese Automation Congress (CAC). Xi'an, China: IEEE, 2018. 651−654 [12] Pan F P, Zhu Y Q, Zhang X. Full process control strategy of fuel based on water-coal ratio of ultra supercritical units. In: Proceedings of the International Conference on Electronics, Communications and Control (ICECC). Ningbo, China: IEEE, 2011. 3750−3753 [13] 王玉清, 董传敏, 郑亚光, 张海萍, 苗广祥. 基于中间点焓值校正的超临界机组给水全程控制. 锅炉技术, 2010, 41(3): 11-15 doi: 10.3969/j.issn.1672-4763.2010.03.004Wang Yu-Qing, Dong Chuan-Min, Zheng Ya-Guang, Zhang Hai-Ping, Miao Guang-Xiang. Supercritical unit full range feedwater control system based on intermediate point enthalpy correction. Boiler Technology, 2010, 41(3): 11-15 doi: 10.3969/j.issn.1672-4763.2010.03.004 [14] 王丕洲, 谷俊杰, 秦达飞, 曹晓威. 600 MW超临界直流锅炉两种给水控制系统分析. 电力科学与工程, 2013, 29(4): 64-69 doi: 10.3969/j.issn.1672-0792.2013.04.013Wang Pi-Zhou, Gu Jun-Jie, Qin Da-Fei, Cao Xiao-Wei. Analysis of the two feed water control system of 600 mw supercritical once-through boiler. Electric Power Science and Engineering, 2013, 29(4): 64-69 doi: 10.3969/j.issn.1672-0792.2013.04.013 [15] 谷俊杰, 秦达飞, 曹晓威, 王丕洲, 李伟, 陈顺青. 超临界锅炉中间点温度增益切换控制方法. 中国电机工程学报, 2014, 34(14): 2274-2280 doi: 10.13334/j.0258-8013.pcsee.2014.14.008Gu Jun-Jie, Qin Da-Fei, Cao Xiao-Wei, Wang Pi-Zhou, Li Wei, Chen Shun-Qing. A control method based on gain-switching for intermediate point temperature of supercritical pressure boiler. Proceedings of the CSEE, 2014, 34(14): 2274-2280 doi: 10.13334/j.0258-8013.pcsee.2014.14.008 [16] 秦志明, 张栾英, 谷俊杰. 直流锅炉单元机组协调控制系统的研究与设计. 动力工程学报, 2016, 36(1): 16-21, 29 doi: 10.3969/j.issn.1674-7607.2016.01.003Qin Zhi-Ming, Zhang Luan-Ying, Gu Jun-Jie. Research and design on the coordinate control system of a once-through boiler unit. Journal of Chinese Society of Power Engineering, 2016, 36(1): 16-21, 29 doi: 10.3969/j.issn.1674-7607.2016.01.003 [17] 张秋生, 梁华, 胡晓花, 李生光, 刘潇. 超超临界机组的两种典型协调控制方案. 中国电力, 2011, 44(10): 74-79 doi: 10.3969/j.issn.1004-9649.2011.10.017Zhang Qiu-Sheng, Liang Hua, Hu Xiao-Hua, Li Sheng-Guang, Liu Xiao. Two kinds of typical coordinated control systems in ultra-supercritical units. Electric Power, 2011, 44(10): 74-79 doi: 10.3969/j.issn.1004-9649.2011.10.017 [18] 刘吉臻, 王耀函, 曾德良, 陈彦桥. 基于凝结水节流的火电机组AGC控制优化方法. 中国电机工程学报, 2017, 37(23): 6918-6925 doi: 10.13334/J.0258-8013.PCSEE.161979Liu Ji-Zhen, Wang Yao-Han, Zeng De-Liang, Chen Yan-Qiao. An AGC control method of thermal unit based on condensate throttling. Proceedings of the CSEE, 2017, 37(23): 6918-6925 doi: 10.13334/J.0258-8013.PCSEE.161979 [19] 王玮, 孙阳, 刘吉臻, 井思桐. 适应电网快速调频的热电联产机组新型变负荷控制策略. 电力系统自动化, 2018, 42(21): 63-69 doi: 10.7500/AEPS20180102008Wang Wei, Sun Yang, Liu Ji-Zhen, Jing Si-Tong. Load-change control strategy for combined heat and power units adapted to rapid frequency regulation of power grid. Automation of Electric Power Systems, 2018, 42(21): 63-69 doi: 10.7500/AEPS20180102008 [20] Buche D, Stoll P, Dornberger R, Koumoutsakos P. Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2002, 32(4): 460-473 doi: 10.1109/TSMCB.2002.804372 [21] Song Z, Kusiak A. Constraint-based control of boiler efficiency: A data-mining approach. IEEE Transactions on Industrial Informatics, 2007, 3(1): 73-83 doi: 10.1109/TII.2006.890530 [22] Ito F, Fujimoto K, Kurihara N, Nishimura A, Kobayashi K, Sema T. A combustion monitoring and evaluation system for large utility boilers. IEEE Power Engineering Review, 1984, PER-4(5): 25-26 doi: 10.1109/MPER.1984.5526023 [23] Li K, Thompson S. A cascaded neural network and its application to modelling power plant pollutant emission. In: Proceedings of the 3rd World Congress on Intelligent Control and Automation (WCICA). Hefei, China: IEEE, 2000. 992−997 [24] Zhao S N, Fang Q Y, Yin C G, Wei T S, Wang H J, Zhang C, et al. New fuel air control strategy for reducing NOx emissions from corner-fired utility boilers at medium–low loads. Energy & Fuels, 2017, 31(7): 6689-6699 [25] 张鑫, 陈隆. 高速煤粉燃烧器内燃烧特性数值模拟及结构优化. 洁净煤技术, 2020, 26(2): 66-72 doi: 10.13226/j.issn.1006-6772.20011005Zhang Xin, Chen Long. Numerical simulation of burning characteristics and structural optimization design of the high speed combustor of pulverized coal. Clean Coal Technology, 2020, 26(2): 66-72 doi: 10.13226/j.issn.1006-6772.20011005 [26] 王东风, 刘千, 韩璞, 赵文杰. 基于大数据驱动案例匹配的电站锅炉燃烧优化. 仪器仪表学报, 2016, 37(2): 420-428 doi: 10.3969/j.issn.0254-3087.2016.02.024Wang Dong-Feng, Liu Qian, Han Pu, Zhao Wen-Jie. Combustion optimization in power station based on big data-driven case-matching. Chinese Journal of Scientific Instrument, 2016, 37(2): 420-428 doi: 10.3969/j.issn.0254-3087.2016.02.024 [27] Booth R C, Roland W B. Neural network-based combustion optimization reduces NOx emissions while improving performance. In: Proceedings of the IEEE Industry Applications on Dynamic Modeling Control Applications for Industry Workshop. Vancouver, Canada: IEEE, 1998. 1−6 [28] Gu Y P, Zhao W J, Wu Z S. Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems. Journal of Process Control, 2011, 21(7): 1040-1048 doi: 10.1016/j.jprocont.2011.06.001 [29] Ding J L, Liu C X, Wen M, Chai T Y. Case-based decision making model for supervisory control of ore roasting process. In: Proceedings of the 5th International Composium on Neural Networks. Beijing, China: Springer, 2008. 148−157 [30] Ding J L, Chen Q, Chai T Y, Wang H, Su C Y. Data mining based feedback regulation in operation of hematite ore mineral processing plant. In: Proceedings of the American Control Conference. St. Louis, USA: IEEE, 2009. 907−912 [31] Kuang M, Li Z Q, Wang Z H, Jing X J, Liu C L, Zhu Q Y, et al. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MW_e down-fired pulverized-coal furnace under deep-air-staging conditions. Environmental Science & Technology, 2014, 48(1): 837-844 [32] Zhou H, Mo G Y, Si D B, Cen K F. Numerical simulation of the NOx emissions in a 1000 MW tangentially fired pulverized-coal boiler: Influence of the multi-group arrangement of the separated over fire air. Energy & Fuels, 2011, 25(5): 2004-2012 [33] Park H Y, Faulkner M, Turrell M D, Stopford P J, Kang D S. Coupled fluid dynamics and whole plant simulation of coal combustion in a tangentially-fired boiler. Fuel, 2010, 89(8): 2001-2010 doi: 10.1016/j.fuel.2010.01.036 [34] Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 1989, 15(4): 287-338 doi: 10.1016/0360-1285(89)90017-8 [35] Szecowka L, Poskart M. Techniques to limit NOX emissions. Advanced Combustion and Aerothermal Technologies: Environmental Protection and Pollution Reductions. Dordrecht: Springer, 2007. 47−54 [36] Hill S C, Smoot L D. Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science, 2000, 26(4-6): 417-458 doi: 10.1016/S0360-1285(00)00011-3 [37] De Soete G G. Overall reaction rates of NO and N_2 formation from fuel nitrogen. Symposium (International) on Combustion, 1975, 15(1): 1093-1102 doi: 10.1016/S0082-0784(75)80374-2 [38] Shi Y, Li C, Song L Z, Zhu C P, Fu Y L, He Y Q. Peak shaving auxiliary service market model with multi-type power participation. In: Proceedings of the International Conference on Power System Technology (POWERCON). Haikou, China: IEEE, 2021. 684−689
计量
- 文章访问数: 177
- HTML全文浏览量: 119
- 被引次数: 0