2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物集群能量高效利用机制研究综述

吴晓阳 邹尧 付强 贺威

杨旭升, 吴江宇, 胡佛, 张文安. 基于渐进高斯滤波融合的多视角人体姿态估计. 自动化学报, 2024, 50(3): 607−616 doi: 10.16383/j.aas.c230316
引用本文: 吴晓阳, 邹尧, 付强, 贺威. 生物集群能量高效利用机制研究综述. 自动化学报, 2024, 50(3): 431−449 doi: 10.16383/j.aas.c230161
Yang Xu-Sheng, Wu Jiang-Yu, Hu Fo, Zhang Wen-An. Multi-view human pose estimation based on progressive Gaussian filtering fusion. Acta Automatica Sinica, 2024, 50(3): 607−616 doi: 10.16383/j.aas.c230316
Citation: Wu Xiao-Yang, Zou Yao, Fu Qiang, He Wei. An overview of energy efficient utilization mechanism of biological colonies. Acta Automatica Sinica, 2024, 50(3): 431−449 doi: 10.16383/j.aas.c230161

生物集群能量高效利用机制研究综述

doi: 10.16383/j.aas.c230161
基金项目: 国家自然科学基金(62225304, 61933001, 62073028, 62173031), 中央高校基本科研业务费专项资金(FRF-TP-22-003C2) 资助
详细信息
    作者简介:

    吴晓阳:北京科技大学智能科学与技术学院博士研究生. 2017年获得河北工业大学学士学位. 2020年获得北京科技大学硕士学位. 主要研究方向为扑翼飞行机器人和飞行器控制. E-mail: wxy1995_jz@163.com

    邹尧:北京科技大学智能科学与技术学院教授. 2010年获得大连理工大学学士学位, 2016年获得北京航空航天大学博士学位. 主要研究方向为飞行器控制, 多智能体系统. E-mail: zouyao@ustb.edu.cn

    付强:北京科技大学智能科学与技术学院副教授. 2009年获得北京交通大学学士学位, 2016年获得北京航空航天大学博士学位. 主要研究方向为视觉导航, 视觉伺服和扑翼飞行机器人. 本文通信作者. E-mail: fuqiang@ustb.edu.cn

    贺威:北京科技大学智能科学与技术学院教授. 2006年获得华南理工大学自动化学院学士学位, 2011年获得新加坡国立大学电气工程与计算机科学系博士学位. 主要研究方向为仿生扑翼飞行机器人, 智能无人系统和智能控制. E-mail: weihe@ieee.org

An Overview of Energy Efficient Utilization Mechanism of Biological Colonies

Funds: Supported by National Natural Science Foundation of China (62225304, 61933001, 62073028, 62173031) and Fundamental Research Funds for the Central Universities (FRF-TP-22-003C2)
More Information
    Author Bio:

    WU Xiao-Yang Ph.D. candidate at the School of Intelligence Science and Technology, University of Science and Technology Beijing. He received his bachelor degree from Hebei University of Technology in 2017, and his master degree from University of Science and Technology Beijing in 2020. His research interest covers flapping-wing aerial vehicles and control of air vehicles

    ZOU Yao Professor at the School of Intelligence Science and Technology, University of Science and Technology Beijing. He received his bachelor degree from Dalian University of Technology in 2010, and his Ph.D. degree from Beihang University in 2016. His research interest covers control of air vehicles and multi-agent system

    FU Qiang Associate professor at the School of Intelligence Science and Technology, University of Science and Technology Beijing. He received his bachelor degree from Beijing Jiaotong University in 2009, and his Ph.D. degree from Beihang University in 2016. His research interest covers vision-based navigation, visual servoing, and flapping-wing aerial vehicles. Corresponding author of this paper

    HE Wei Professor at the School of Intelligence Science and Technology, University of Science and Technology Beijing. He received his bachelor degree from College of Automation Science and Engineering, South China University of Technology (SCUT) in 2006, and his Ph.D. degree from Department of Electrical and Computer Engineering, National University of Singapore (NUS), Singapore in 2011. His research interest covers flapping-wing aerial vehicles, intelligent unmanned system, and intelligent control

  • 摘要: 近年来, 智能体集群的能量高效利用(Energy efficient utilization, EEU)机制已经成为多智能体系统领域的热点问题, 如何使用有限的能量资源实现系统性能最优是该问题的核心研究内容. 考虑到智能体集群与生物族群的相似性, 探究生物族群的能量高效利用机制对提升智能体集群节能性能有着重要的研究价值. 为此, 首先介绍不同生物族群中蕴含的能量利用机制, 并根据节能方式的差异分成3类, 流体优势利用机制、流体阻碍克服机制和热量交换与扩散机制; 然后对这些机制进行总结与分析, 并提出一种具有一般性的能量高效利用模型; 最后, 探讨能量高效利用机制在多智能体系统应用中面临的挑战和发展趋势.
  • 随着人工智能和传感器技术的发展, 人体姿态估计(Human pose estimation, HPE)逐渐应用于各种不同的领域, 如人机交互、运动捕捉[1-2]、虚拟替身、康复训练[3]、自动驾驶、视频监控和运动表现分析等[4-6]. 然而, 受视觉遮挡等因素影响[7], 这将增加视觉人体姿态估计中腕、肘等人体部件误识别的风险, 从而导致量测不确定性的存在, 而多视觉融合方法是处理视觉遮挡下HPE的主流方法之一[8-11].

    针对多视觉融合估计问题, 文献[8]提出一种面向人体关节点位置信息的可靠性判别方法, 通过调节加权观测融合中的量测融合权重, 以提高HPE的鲁棒性. 而在文献[12]中, 将多视觉下的融合估计问题转换为优化问题, 利用骨骼长度作为约束条件, 并基于关节点位置信息的可靠性, 来调整优化过程中的权重大小, 从而减小视觉遮挡时的人体骨架抖动. 然而, 在求目标函数的过程中, 该方法易受初始数据的影响. 针对基于多视角融合的HPE问题, 文献[9]首次提出信息加权一致性滤波器(Information weighted consensus filter, IWCF), 通过平均一致性(Average consensus)[13]来获得邻近节点的信息. 同时, 使用Metropolis权重来提高IWCF的收敛速度, 实验证明融合后的人体姿态信息可获得更高的动作识别精度. 之后, 针对多视觉HPE中各传感器节点估计误差引起的关节点波动问题, 文献[10]将IWCF与交互式多模型(Interacting multiple model-based, IMM)相结合, 获得混合恒定速度(Constant velocity, CV)、恒定加速度(Constant acceleration, CA)和Singer运动等多模型下的姿态估计, 从而减小视觉遮挡的影响以及提高估计的精度.

    另一方面, 针对人体姿态量测存在的噪声问题, 卡尔曼滤波(Kalman filtering, KF)[14]是一种有效的去噪方法. 其不仅在目标跟踪领域应用广泛[15-17], 而且在人体姿态估计领域也发挥重要的作用[18-20]. 例如, 文献[19]利用卡尔曼滤波器提高人体姿态估计的准确性. 针对人体姿态量测噪声统计特性的难以精确描述问题, 文献[20]提出一种基于鲁棒卡尔曼滤波的HPE方法, 利用假设检验对视觉遮挡下的复杂噪声进行识别, 并引入自适应因子来对量测噪声协方差进行调整, 从而减小量测不确定性对滤波器性能的影响. 此外, 针对量测信息缺失的目标跟踪问题, 文献[21]同样利用假设检验对量测信息进行有效筛选, 并利用渐进滤波方法来处理量测信息缺失造成的误差增大问题, 从而提高滤波器的鲁棒性. 针对渐进滤波对量测不确定性补偿的问题, 文献[22-23]提出带自适应量测更新的渐进高斯滤波方法, 给出渐进量测更新的终止条件. 这不仅有利于计算效率, 而且提高了对量测不确定性的自适应能力. 然而, 针对视觉遮挡造成量测噪声的复杂性, 现有估计方法并未充分考虑到局部量测不确定性的差异. 同时, 基于假设检验的方法局限于单一维度对量测进行筛选, 没有充分考虑到先验信息和局部量测以及不同局部量测之间的相容性问题.

    为此, 本文构建分布式的渐进贝叶斯滤波融合框架, 提出基于渐进高斯滤波融合的人体姿态估计方法. 针对量测信息包含的复杂噪声, 设计分层性能评估方法, 从空间维度到时间维度对量测进行分类处理. 为解决量测不确定性下的融合估计问题, 设计一种分层分类的融合估计方法. 特别地, 针对量测统计特性变化问题, 引入渐进滤波方法, 利用局部估计间的交互信息来引导渐进量测更新, 从而隐式地补偿量测不确定性. 最后, 仿真与实验结果表明, 相比于现有的方法, 提高了人体姿态估计的准确性和鲁棒性.

    图1所示, 考虑一类多视觉融合环境下的人体姿态估计系统, 其中, 视觉传感器为深度相机, 用于采集人体目标的深度信息. 本文将人体目标视为由头、躯干、臂、手、腿、足等部件相互连接构成的多刚体系统. 这样, 人体姿态估计问题可看作人体各关节点位置估计问题. 首先, 利用卷积神经网络(Convolutional neural network, CNN) 的方法[24]从图像中识别出人体各部件, 并计算出人体各关节点在各个相机坐标系下的3D位置; 其次, 通过棋盘格标定法可获得相机坐标系相对于世界坐标系(即, 棋盘格)的旋转矩阵$ {R^{{c_i}2w}} $和平移向量$ {\boldsymbol{t}}^{{c_i}2w} $, 从而将在不同相机坐标系下检测的3D关节点统一到世界坐标系. 同时, 对人体运动建模如下:

    $$ {{\boldsymbol{x}}_k} = {F_k}{{\boldsymbol{x}}_{k - 1}} + {{\boldsymbol{w}}_k} $$ (1)

    其中, $k=1, 2,\cdots$ 表示离散时间序列, ${{\boldsymbol{x}}_k} = [{{( {{{\boldsymbol{x}}_{k,1}}} )}^\text{T}} \;\; \cdots\;\; {{{( {{{\boldsymbol{x}}_{k,L}}} )}{}^{\rm{T}}}} ]{}^{\rm{T}}$表示$ {k} $时刻人体姿态的状态, $ {{\boldsymbol{x}}_{k,l}} $表示关节点$ l $状态, $ l = 1, \cdots , L $, $ {L} $为选取的人体关节数量; $ {F_k} = {\rm{diag}}\{ {{F_{k,1}}}\;\; \cdots \;\; {{F_{k,L}}}\} $表示状态转移矩阵; 过程噪声${{\boldsymbol{w}}_k} = {[ {{{( {{{\boldsymbol{w}}_{k,1}}} )}^\text{T}}}\;\; \cdots \;\; {{{( {{{\boldsymbol{w}}_{k,L}}} )}{}^\text{T}}} ]{}^\text{T}}$服从零均值高斯分布, 其方差为$ {\mathop{\rm{cov}}} ( {{{\boldsymbol{w}}_k}} ) = {Q_k} $. 最后, 在此基础上, 将融合运动模型和单视觉量测信息形成人体姿态的局部估计, 进而融合各局部估计形成人体姿态的全局估计. 注意到视觉遮挡程度的不同, 将给人体关节点的检测与测量带来不同程度的影响, 从而导致复杂的量测噪声.

    图 1  多视觉人体姿态估计示意图
    Fig. 1  Schematic diagram of multi-vision human pose estimation

    因此, 对人体姿态量测建模如下:

    $$ {\boldsymbol{z}}_k^i = H_k^i{{\boldsymbol{x}}_k} + {\boldsymbol{v}}_k^i + {\boldsymbol{\xi}}_k^i $$ (2)

    其中, ${\boldsymbol{z}}_k^i = {[ {{{( {{\boldsymbol{z}}_{k,1}^i} )}{}^\text{T}} \;\cdots\; {{( {{\boldsymbol{z}}_{k,L}^i} )}{}^\text{T}}} ]^\text{T}}$表示传感器$ i $的量测值, $ i = 1, \cdots , N $, $ {N} $为传感器总数, ${\boldsymbol{z}}_{k,l}^i = [ {z_{x,l}^i} \;\;{z_{y,l}^i}\;\;{z_{z,l}^i} ]^\text{T}$ 表示关节点的位置量测信息, $z_{x,l}^i, z_{y,l}^i, z_{z,l}^i$分别为关节点$ l $在$ {x} $、$ {y} $和$ {z} $轴上的量测值. $H_k^i = [ {{{( {H_{k,1}^i} )}^\text{T}}} \;\; \cdots \;\;{{{( {H_{k,L}^i} )}{}^\text{T}}} ]{}^\text{T}$为量测矩阵; 量测噪声${\boldsymbol{v}}_k^i = {[ {{{( {{\boldsymbol{v}}_{k,1}^i} )}^\text{T}}}\;\; \cdots \;\;{{{( {{\boldsymbol{v}}_{k,L}^i} )}{}^\text{T}}} ]{}^\text{T}}$服从零均值高斯分布, 且其协方差为$ {\mathop{\rm{cov}}} ( {{\boldsymbol{v}}_k^i} ) = R_k^i $. $ {\boldsymbol{\xi}}_k^i = U_k^i {\boldsymbol{\alpha}}_k^i + b{\boldsymbol{\beta}}_k^i $用来描述不同遮挡程度影响下引起的量测噪声. 其中, $ U_k^i = \text{diag}\{{{\boldsymbol{u}}_{k,1}^i}\;\; \cdots \;\;{{\boldsymbol{u}}_{k,L}^i} \} $, $ {\boldsymbol{u}}_{k,l}^i $服从零均值且协方差为$ R_{k, + }^i $的高斯分布; $ b $为幅值较大的数值, $ {\boldsymbol{\alpha}}_k^i $和$ {\boldsymbol{\beta}}_k^i $为随机变量且分别服从参数为$ {y_1}\;( {0 < {y_1} < 1} ) $和$ {y_2}\;( {0 < {y_2} < 1} ) $的伯努利分布.

    相应地, 针对量测信息包含的复杂噪声, 将对量测进行检测和分类处理, 从而剔除高程度视觉遮挡下的量测野值, 同时通过渐进滤波隐式地补偿低程度视觉遮挡下的量测.

    注1. 针对视觉遮挡程度的不同, 本文将量测主要分为两类. 即: 1)低程度视觉遮挡下的量测, 例如, 人体双臂交叉引起的腕、肘等关节小面积视觉遮挡, 用$ U_k^i {\boldsymbol{\alpha}}_k^i $来描述该情形下的量测不确定性; 2)高程度视觉遮挡下的量测, 例如, 人体侧身时腕、肘等关节受背部大面积视觉遮挡, 用$ b{\boldsymbol{\beta}}_k^i $来描述这种情况下的量测野值.

    不同程度的视觉遮挡将造成量测统计特性变化, 进而导致局部滤波器性能下降并最终影响融合结果. 因此, 分两步从空间维度和时间维度上分别对量测进行相容性检测来实现量测筛选和分类处理.

    考虑多视觉传感器的坐标位置和感知范围不同, 可能导致量测具有不同的噪声特性与误差模型. 如图2所示, 首先, 在空间维度上检测不同量测间马氏距离的平方, 即

    $$ \begin{split} \gamma \left( {{\boldsymbol{z}}_k^i, {\boldsymbol{z}}_k^j} \right) = {\left( {{\boldsymbol{z}}_k^i - {\boldsymbol{z}}_k^j} \right)^\text{T}}\Sigma _{zz}^{ - 1}\left( {{\boldsymbol{z}}_k^i - {\boldsymbol{z}}_k^j} \right) \end{split} $$ (3)
    图 2  量测相容性分析
    Fig. 2  Measurement compatibility analysis

    其中, $ \Sigma _{zz}^{ - 1} $表示$( {\boldsymbol{z}}_k^i - {\boldsymbol{z}}_k^j ) $的协方差矩阵. 若$ \gamma ({\boldsymbol{z}}_k^i,{\boldsymbol{z}}_k^j) $落在置信区间内, 即$ \gamma ({\boldsymbol{z}}_k^i,{\boldsymbol{z}}_k^j) < {\chi _n} $, 则表示量测相容, 即视为正常量测, 否则认为其中可能存在异常量测, 需进一步在时间维度上分析相容性, 即检测预测值与量测的马氏距离平方:

    $$ \begin{split} \gamma ({\boldsymbol{z}}_k^j, H_k^f\hat {{\boldsymbol{x}}}_{k|k - 1}^f) = \, & {\left( {{\boldsymbol{z}}_k^j - H_k^f\hat {{\boldsymbol{x}}}_{k|k - 1}^f} \right)^\text{T}}\Sigma _{zx}^{ - 1} \;\times \\ &\left( {{\boldsymbol{z}}_k^j - H_k^f\hat {{\boldsymbol{x}}}_{k|k - 1}^f} \right) \end{split} $$ (4)

    其中, $ \Sigma _{zx}^{ - 1} $表示$ ( {{\boldsymbol{z}}_k^j - H_k^f\hat {{\boldsymbol{x}}}_{k|k - 1}^f} ) $的协方差矩阵. 若$ \gamma ({\boldsymbol{z}}_k^j, H_k^f\hat {{\boldsymbol{x}}}_{k|k - 1}^f) $ 落在置信区间内, 即

    $$\gamma ({\boldsymbol{z}}_k^j, H_k^f\hat {{\boldsymbol{x}}}_{k|k - 1}^f) < {\chi _a} $$

    则表示量测中存在额外干扰, 否则视为野值.

    根据量测相容性的检测结果, 将量测${Z_k} = \{ {\boldsymbol{z}}_k^1, \cdots , {\boldsymbol{z}}_k^N \}$分为$ G_k^n $, $ G_k^a $, $ G_k^d $等3组. 正常量测集合表示为

    $$ \begin{split} G_k^n = &\left\{{{\boldsymbol{z}}_k^j|\gamma ({\boldsymbol{z}}_k^j,{\boldsymbol{z}}_k^i) < {\chi _n},{\boldsymbol{z}}_k^j,{\boldsymbol{z}}_k^i \in {Z_k},}\right.\\ & \left.{{\boldsymbol{z}}_k^j \ne {\boldsymbol{z}}_k^i,j = 1,2, \cdots}\right\} \end{split} $$ (5)

    低程度视觉遮挡下的量测集合表示为

    $$ \begin{split} G_k^a =\, & \left\{ {{\boldsymbol{z}}_k^j|\gamma ({\boldsymbol{z}}_k^j,H_k^f\hat {{\boldsymbol{x}}}_{k|k - 1}^f) < {\chi _a},\gamma \left( {{\boldsymbol{z}}_k^j,{\boldsymbol{z}}_k^i} \right) \ge } \right. \\ &\left.{{\chi _n},{\boldsymbol{z}}_k^j,{\boldsymbol{z}}_k^i \in {Z_k},{\boldsymbol{z}}_k^j \ne {\boldsymbol{z}}_k^i,j = 1,2, \cdots} \right\} \end{split} $$ (6)

    集合$ G_k^d = {Z_k} - G_k^n - G_k^a $表示高程度视觉遮挡下的量测野值. $ {\chi_n} $, $ {\chi_a} $为置信区间, $ \hat {{\boldsymbol{x}}}_{k|k - 1}^f $为全局状态预测. 量测分组后, 得到不同视觉遮挡下的量测$ {\boldsymbol{z}}_k^{{n_j}} $, $ {\boldsymbol{z}}_k^{{a_j}} $, $ {\boldsymbol{z}}_k^{{d_j}} $, 其中${\boldsymbol{z}}_k^{{n_j}} \in G_k^n,{\boldsymbol{z}}_k^{{a_j}} \in G_k^a,{\boldsymbol{z}}_k^{{d_j}} \in G_k^d$.

    本文方法框图如图3所示, 首先, 通过分层性能评估对量测进行分层和分类; 其次, 在局部估计中, 将拒绝量测野值$ {\boldsymbol{z}}_k^{{d_j}} $, 以避免量测野值对系统滤波性能造成较大的负面影响. 特别地, 在量测$ {\boldsymbol{z}}_k^{{a_j}} $更新过程中, 将渐进地引入量测信息对当前局部状态进行补偿, 即通过多次量测迭代得到相应补偿下的后验状态, 并通过局部估计间的交互信息来引导渐进量测更新. 最后, 融合人体姿态的各局部估计形成全局估计. 为此, 构建分布式渐进贝叶斯滤波融合框架如下.

    图 3  方法框图
    Fig. 3  Method block diagram

    1)人体姿态全局估计

    $$ p({{\boldsymbol{x}}_k}|{Z_{1:k - 1}}) = \int {p({{\boldsymbol{x}}_k}|{{\boldsymbol{x}}_{k - 1}})p({{\boldsymbol{x}}_{k - 1}}|{Z_{1:k - 1}})\text{d}{{\boldsymbol{x}}_{k - 1}}} $$ (7)
    $$ \begin{split} & p({{\boldsymbol{x}}_k}|{Z_{1:k}}) = p({{\boldsymbol{x}}_k}|{Z_{1:k - 1}})\;\times\\ & \quad \frac{{\prod\limits_{{\boldsymbol{z}}_k^{{n_j}} \in G_k^n} {p\left( {{{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k}^{{n_j}}} \right)} \prod\limits_{{\boldsymbol{z}}_k^{{a_j}} \in G_k^a} {p\left( {{{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k}^{{a_j}}} \right)} }}{{\prod\limits_{{\boldsymbol{z}}_k^{{n_j}} \in G_k^n} {p\left( {{{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k - 1}^{{n_j}}} \right)} \prod\limits_{{\boldsymbol{z}}_k^{{a_j}} \in G_k^a} {p\left( {{{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k - 1}^{{a_j}}} \right)} }} \end{split}$$ (8)

    2)人体姿态局部估计

    $$ p({{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k - 1}^i) = \int {p({{\boldsymbol{x}}_k}|{{\boldsymbol{x}}_{k - 1}})p({{\boldsymbol{x}}_{k - 1}}|{\boldsymbol{z}}_{1:k - 1}^i)\text{d}{{\boldsymbol{x}}_{k - 1}}} $$ (9)
    $$ p({{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k}^i) = \frac{{p({{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k - 1}^i)p({\boldsymbol{z}}_k^i|{{\boldsymbol{x}}_k})}}{{p({\boldsymbol{z}}_k^i|{\boldsymbol{z}}_{1:k - 1}^i)}} $$ (10)

    对于量测$ {\boldsymbol{z}}_k^{{n_j}} \in G_k^n $, 采用卡尔曼滤波方法得到人体姿态局部估计; 而对$ {\boldsymbol{z}}_k^{{a_j}} \in G_k^a $, 则采用渐进高斯滤波(Progressive Gaussian filtering, PGF)方法对量测不确定性进行隐式补偿. 可将量测分解为多个伪量测的集成, 即

    $$ \begin{align} &R_k^{{a_j}} = {\left[ {\sum\limits_{m = 1}^M {{{\left( {R_{k, {\lambda _m}}^{{a_j}}} \right)}^{ - 1}}} } \right]^{ - 1}} \end{align} $$ (11)
    $$ \begin{align} &{\boldsymbol{z}}_k^{{a_j}} = {\left[ {\sum\limits_{m = 1}^M {{{\left( {R_{k, {\lambda _m}}^{{a_j}}} \right)}^{ - 1}}} } \right]^{ - 1}}\sum\limits_{m = 1}^M {\left[ {{{\left( {R_{k, {\lambda _m}}^{{a_j}}} \right)}^{ - 1}}{\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}}} \right]} \end{align} $$ (12)

    利用量测迭代更新, 渐进地引入量测信息. 其中$ {\lambda _m} $表示伪时间, 且满足

    $$\left\{ \begin{aligned} &{\Delta _m} = {\lambda _m} - {\lambda _{m - 1}}\\ &{\Delta _m} > 0 \\ & \sum\limits_{m = 1}^M {{\Delta _m} = 1} \end{aligned}\right. $$ (13)

    其中, $ {\lambda _0} = 0 $, $ m = 1, \cdots , M $, $ M $为总渐进步数, $ {\Delta _m} $表示渐进步长, ${\boldsymbol{z}}_{k, {\lambda _1}:{\lambda _M}}^{{a_j}} = \{ {{\boldsymbol{z}}_{k, {\lambda _1}}^{{a_j}}, \cdots, {\boldsymbol{z}}_{k, {\lambda _M}}^{{a_j}}} \}$表示整个渐进过程中的伪量测, $ {\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}} $表示第$ m $步的伪量测. 在不考虑视觉遮挡所引起的量测不确定性时, $ p\left( {{\boldsymbol{z}}_k^{{a_j}}|{{\boldsymbol{x}}_k}} \right) $可以表示为

    $$ \begin{split} & p\left( {{\boldsymbol{z}}_k^{{a_j}}|{{\boldsymbol{x}}_k}} \right) =\\ &\;\;\; \frac{1}{{\sqrt {2\pi \left| {R_k^{{a_j}}} \right|} }}\exp \Bigg[ { - \frac{1}{2}{{\left( {{\boldsymbol{z}}_k^{{a_j}} - H_k^{{a_j}}{{\boldsymbol{x}}_k}} \right)}^\text{T}}} \;\times \\ &\;\;\; {{{\left( {R_k^{{a_j}}} \right)}^{ - 1}}\left( {{\boldsymbol{z}}_k^{{a_j}} - H_k^{{a_j}}{{\boldsymbol{x}}_k}} \right)} \Bigg]= \\ &\;\;\; \frac{1}{{\sqrt {2\pi \left| {R_k^{{a_j}}} \right|} }}\prod\limits_{m = 1}^M {\frac{1}{{{{\left( {\sqrt {2\pi \left| {\frac{{R_k^{{a_j}}}}{{{\Delta _m}}}} \right|} } \right)}^{ - 1}}}}\frac{1}{{\sqrt {2\pi \left| {\frac{{R_k^{{a_j}}}}{{{\Delta _m}}}} \right|} }}} \;\times \\ &\;\;\; \exp \Bigg[ - \frac{1}{2}{\left( {{\boldsymbol{z}}_k^{{a_j}} - H_k^{{a_j}}{{\boldsymbol{x}}_k}} \right)^\text{T}}\times\Bigg. \\ &\;\;\; \Bigg.{\left( {\frac{{R_k^{{a_j}}}}{{{\Delta _m}}}} \right)^{ - 1}}\left( {{\boldsymbol{z}}_k^{{a_j}} - H_k^{{a_j}}{{\boldsymbol{x}}_k}} \right)\Bigg]\\[-15pt] \end{split} $$ (14)

    因此, $p( {{\boldsymbol{z}}_k^{{a_j}}|{{\boldsymbol{x}}_k}} ) = c_k^{{a_j}}\prod\nolimits_{m = 1}^M {p( {{\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}}|{{\boldsymbol{x}}_k}} )},$ 其中,

    $$ \begin{split} &p({\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}}|{{\boldsymbol{x}}_k}) = {\left(\sqrt {2\pi \left| {R_{k, {\lambda _m}}^{{a_j}}} \right|} \right)^{ - 1}}\;\times\\ & \qquad\exp \Bigg[ - \frac{1}{2}{({\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}} - H_k^{{a_j}}{{\boldsymbol{x}}_k})^\text{T}}\;\times \Bigg. \\ & \qquad \Bigg.{(R_{k, {\lambda _m}}^{{a_j}})^{ - 1}}({\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}} - H_k^{{a_j}}{{\boldsymbol{x}}_k})\Bigg] \end{split} $$ (15)

    $R_{k, {\lambda _m}}^{{a_j}} = \frac{{R_k^{{a_j}}}}{{{\Delta _m}}}$, $ {\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}} = {\boldsymbol{z}}_k^{{a_j}} $, 归一化因子为

    $$ \begin{split} c_k^{{a_j}} = {\left( {\sqrt {2\pi \left| {R_k^{{a_j}}} \right|} } \right)^{ - 1}}\prod\limits_{m = 1}^M {\sqrt {2\pi \left| {\frac{{R_k^{{a_j}}}}{{{\Delta _m}}}} \right|} } \end{split} $$ (16)

    对于$ G_k^a $中的量测, 其局部后验分布可进一步描述为

    $$ \begin{split} p({{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k}^{{a_j}}) = \frac{{p({{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k - 1}^{{a_j}})\prod\limits_{m = 1}^M {p\left( {{\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}}|{{\boldsymbol{x}}_k}} \right)} }}{{{{\left( {c_k^{{a_j}}} \right)}^{ - 1}}p({\boldsymbol{z}}_k^{{a_j}}|{\boldsymbol{z}}_{1:k - 1}^{{a_j}})}} \end{split} $$ (17)

    同时, 在其渐进量测更新过程中, 引入$ G_k^n $中量测作为参照量来引导其渐进迭代, 令

    $$ \begin{split} {\varphi _{{\lambda _m}}} =\, & \gamma \left( {{\boldsymbol{z}}_k^{{n_j}},H_k^{{a_j}}\hat {{\boldsymbol{x}}}_{k|k, {\lambda _m}}^{{a_j}}} \right)-\\ &\gamma \left( {{\boldsymbol{z}}_k^{{n_j}},H_k^{{a_j}}\hat {{\boldsymbol{x}}}_{k|k, {\lambda _{m - 1}}}^{{a_j}}} \right) \end{split} $$ (18)

    $ {\varphi _{{\lambda _m}}} $表示在渐进量测更新前后的估计值与参照量间马氏距离的差值, 当$ {\varphi _{{\lambda _m}}} \ge 0 $时停止$ p({{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k}^{{a_j}}) $中的渐进量测更新, 从而对量测不确定性隐式地补偿, 即通过$ {\varphi _{{\lambda _m}}} $值来判断是否继续引入伪量测$ {\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}} $来渐进迭代和逐步修正状态估计, 而无需显式地将不确定性(如协方差矩阵)作为输入. 结合式(17)和式(18), 量测渐进更新过程中的后验概率密度函数(Probability density function, PDF)可以表示为

    $$ \begin{split} &p\left({{\boldsymbol{x}}_k}, {\lambda _m}|{\boldsymbol{z}}_{1:k - 1}^{{a_j}}, {\boldsymbol{z}}_{k, {\lambda _1}:{\lambda _m}}^{{a_j}}\right) = \\ & \qquad {\eta _{k, {\lambda _m}}}p\left({{\boldsymbol{x}}_k}, {\lambda _1}|{\boldsymbol{z}}_{1:k - 1}^{{a_j}}, {\boldsymbol{z}}_{k, {\lambda _1}}^{{a_j}}\right)\times \\ & \qquad\prod\limits_{m = 2}^{{\varphi _{{\lambda _m}}} < 0} {p\left({\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}}|{{\boldsymbol{x}}_k}\right)} \end{split} $$ (19)

    其中, $ {\eta _{k, {\lambda _m}}} $表示归一化因子.

    注2. 在量测渐进更新过程中, $ {\varphi _{{\lambda _m}}} < 0 $表示估计值与参照量之间马氏距离的趋势减小, 即所修正的状态估计有效; 由式(14)可知, 渐进量测集成的等效协方差$ \bar R_k^{{a_j}} = {( {\Delta _1}+{\sum\nolimits_{m = 2}^{{\varphi _{{\lambda _m}}} < 0} {{\Delta _m}} } )^{ - 1}}R_k^{{a_j}} $, $ m = 2 $表示至少渐进一步(将简化为$ {\sum\nolimits_{m = 1}^{{\varphi _{{\lambda _m}}} < 0}} $). 通过控制量测渐进更新的步长从而自适应调整其协方差, 将量测不确定性的补偿问题转换为对量测渐进更新的步长控制问题.

    令$ k-1 $时刻的局部估计和全局估计均为高斯分布, 即$p({{\boldsymbol{x}}_{k - 1}}|{\boldsymbol{z}}_{1:k - 1}^i) = \text{N}( {{{\boldsymbol{x}}_{k - 1}};\hat {{\boldsymbol{x}}}_{k - 1|k - 1}^i, P_{k-1|k-1}^i} ),$ $ p({{\boldsymbol{x}}_{k - 1}}|{Z_{1:k - 1}}) = \text{N}( {{{\boldsymbol{x}}_{k - 1}};\hat {{\boldsymbol{x}}}_{k - 1|k - 1}^f, P_{k-1|k-1}^f} ) $, 由状态方程(1)可得$ p({{\boldsymbol{x}}_k}|{{\boldsymbol{x}}_{k - 1}}) $ = $\text{N}( {{{\boldsymbol{x}}_k};{F_k}{{\boldsymbol{x}}_{k - 1}}, {Q_k}} ),$ 则由$ k $时刻的状态预测分布易知

    $$ \begin{split} p\left( {{{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k - 1}^i} \right) = \text{N}\left( {{{\boldsymbol{x}}_k};\hat {{\boldsymbol{x}}}_{k|k - 1}^i, P_{k|k - 1}^i} \right) \end{split} $$ (20)
    $$ \begin{split} p\left( {{{\boldsymbol{x}}_k}|{Z_{1:k - 1}}} \right) = \text{N}\left( {{{\boldsymbol{x}}_k};\hat {{\boldsymbol{x}}}_{k|k - 1}^f, P_{k|k - 1}^f} \right) \end{split} $$ (21)

    其中,

    $$ \begin{split} \hat {{\boldsymbol{x}}}_{k|k - 1}^i = {F_k}\hat {{\boldsymbol{x}}}_{k - 1|k - 1}^i \end{split} $$ (22)
    $$ \begin{split} P_{k|k - 1}^i = {F_k}P_{k - 1|k - 1}^iF_k^\text{T} + {Q_k} \end{split} $$ (23)
    $$ \begin{split} \hat {{\boldsymbol{x}}}_{k|k - 1}^f = {F_k}\hat {{\boldsymbol{x}}}_{k - 1|k - 1}^f \end{split} $$ (24)
    $$ \begin{split} P_{k|k - 1}^f = {F_k}P_{k - 1|k - 1}^fF_k^\text{T} + {Q_k} \end{split} $$ (25)

    定理1. 考虑系统(1)和(2)中, 当$ G_k^n \ne \emptyset $, $ G_k^a \ne \emptyset $, 若先验概率密度函数给出如式(20)和式(21), 则可得到全局状态滤波融合估计, 即

    $$ \begin{split} &{\left( {P_{k|k}^f} \right)^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k}^f = {\left( {P_{k|k - 1}^f} \right)^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k - 1}^f\; + \\ &\;\;\sum\limits_{{\boldsymbol{z}}_k^{{n_j}} \in G_k^n} {\left[ {{{\left( {P_{k|k}^{{n_j}}} \right)}^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k}^{{n_j}} - {{\left( {P_{k|k - 1}^{{n_j}}} \right)}^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k - 1}^{{n_j}}} \right]}\;+\\ &\;\;\sum\limits_{{\boldsymbol{z}}_k^{{a_j}} \in G_k^a} {\left[ {{{\left( {P_{k|k, {\lambda _m}}^{{a_j}}} \right)}^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k, {\lambda _m}}^{{a_j}} - {{\left( {P_{k|k - 1}^{{a_j}}} \right)}^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k - 1}^{{a_j}}} \right]} \end{split} $$ (26)
    $$ \begin{split} {\left( {P_{k|k}^f} \right)^{ - 1}} =\;& {\left( {P_{k|k - 1}^f} \right)^{ - 1}}\;+\\ & \sum\limits_{{\boldsymbol{z}}_k^{{n_j}} \in G_k^n} {\left[ {{{\left( {P_{k|k}^{{n_j}}} \right)}^{ - 1}} - {{\left( {P_{k|k - 1}^{{n_j}}} \right)}^{ - 1}}} \right]}\;+\\ & \sum\limits_{{\boldsymbol{z}}_k^{{a_j}} \in G_k^a} {\left[ {{{\left( {P_{k|k, {\lambda _m}}^{{a_j}}} \right)}^{ - 1}} - {{\left( {P_{k|k - 1}^{{a_j}}} \right)}^{ - 1}}} \right]} \end{split} $$ (27)

    其中,

    $$ \begin{split} \hat {{\boldsymbol{x}}}_{k|k}^{{n_j}} = \hat {{\boldsymbol{x}}}_{k|k - 1}^{{n_j}} + K_k^{{n_j}}\left( {{\boldsymbol{z}}_k^{{n_j}} - H_k^{{n_j}}\hat {{\boldsymbol{x}}}_{k|k - 1}^{{n_j}}} \right) \end{split} $$ (28)
    $$ \begin{split} P_{k|k}^{{n_j}} = \left( {{{I}} - K_k^{{n_j}}H_k^{{n_j}}} \right)P_{k|k - 1}^{{n_j}} \end{split} $$ (29)
    $$ \begin{split} K_k^{{n_j}} = P_{k|k}^{{n_j}}{\left( {H_k^{{n_j}}} \right)^\text{T}}{\left( {R_k^{{n_j}}} \right)^{ - 1}} \end{split} $$ (30)
    $$ \begin{split} &{\left( {P_{k|k,{\lambda _m}}^{{a_j}}} \right)^{ - 1}}\hat {\boldsymbol{x}}_{k|k,{\lambda _m}}^{{a_j}} = {\left( {P_{k|k - 1}^{{a_j}}} \right)^{ - 1}}\hat {\boldsymbol{x}}_{k|k - 1}^{{a_j}} \;+\\ &\qquad\;\;\sum\limits_{m = 1}^{{\varphi _{{\lambda _m}}} < 0} {\left[ {{{\left( {H_k^{{a_j}}} \right)}^\text{T}}{{\left( {R_{k,{\lambda _m}}^{{a_j}}} \right)}^{ - 1}}{\boldsymbol{z}}_{k,{\lambda _m}}^{{a_j}}} \right]} \end{split} $$ (31)
    $$ \begin{split} &{\left( {P_{k|k, {\lambda _m}}^{{a_j}}} \right)^{ - 1}} = {\left( {P_{k|k - 1}^{{a_j}}} \right)^{ - 1}}\;+\\ &\qquad \;\;\sum\limits_{m = 1}^{{\varphi _{{\lambda _m}}} < 0} {\left[ {{{\left( {H_k^{{a_j}}} \right)}^\text{T}}{{\left( {R_{k, {\lambda _m}}^{{a_j}}} \right)}^{ - 1}}H_k^{{a_j}}} \right]} \end{split} $$ (32)

    式中, ${{I}}$表示单位矩阵.

    证明. 见附录A.

    最后, 带量测分类处理的渐进高斯滤波融合算法(Progressive Gaussian filtering fusion with classification, PGFFwC)给出如下:

      算法1. PGFFwC算法

    1) 初始化;

    2) while

    3)  由式(21)得$\hat {\boldsymbol{x}}_{k{{|}}k - 1}^f, P_{k|k - 1}^f$;

    4)  for $i = 1:N$ do

    5)   基于式(3)和式(4), 对量测$ {\boldsymbol{z}}_k^{i}$分层分类处理得$ {\boldsymbol{z}}_k^{j}$;

    6)   if $ {\boldsymbol{z}}_k^{j} \in G_k^n$

    7)    由式(28)和式(29)得到局部估计$\hat {\boldsymbol{x}}_{k|k}^{{n_j}}, P_{k|k}^{{n_j}}\,;$

    8)   end if

    9)   if $ {\boldsymbol{z}}_k^{j} \in G_k^a$

    10)    渐进量测更新;

    11)    while${\varphi _{{\lambda _m}}} < 0$ and $m<M$

    12)     由式(31)和式(32), 渐进量测更新得$\hat {\boldsymbol{x}}_{k|k, {\lambda _m}}^{{a_j}},$ $ P_{k|k, {\lambda _m}}^{{a_j}} $;

    13)    end while

    14) end if

    15)  if $ {\boldsymbol{z}}_k^{j} \in G_k^d$

    16)    剔除该量测野值;

    17)  end if

    18) end for

    19)  由式(26)和式(27)状态融合, 得到$\hat {\boldsymbol{x}}_{k|k}^f, P_{k|k}^f\,;$

    20) end while

    如定理1所示, 人体姿态估计性能改善表现在两方面: 1)通过量测分层性能评估, 对量测进行分类处理; 2)利用局部估计间的交互信息来引导渐进量测更新, 从而隐式地补偿量测不确定性. 此外, 当渐进滤波中截止条件尚未触发时, 定理1将等价于集中式融合. 特别地, 当量测信息均为同一种情形下时, 则具有如下的等价形式:

    推论1. 当$ G_k^n = \emptyset $, $ G_k^a \ne \emptyset $时, 式(26)和式(27)可以表示为

    $$ \begin{split} &{\left( {P_{k|k}^f} \right)^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k}^f = {\left( {P_{k|k - 1}^f} \right)^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k - 1}^f\;{\rm{ + }}\\ &\qquad\sum\limits_{i = 1}^N {\sum\limits_{m = 1}^{{\varphi _{{\lambda _m}}} < 0} {\left[ {{{\left( {H_k^i} \right)}^\text{T}}{{\left( {R_{k, {\lambda _m}}^i} \right)}^{ - 1}} {\boldsymbol{z}}_{k, {\lambda _m}}^i} \right]} } \end{split} $$ (33)
    $$ \begin{split} &{\left( {P_{k|k}^f} \right)^{ - 1}} = {\left( {P_{k|k - 1}^f} \right)^{ - 1}}\;+\\ &\qquad \sum\limits_{i = 1}^N {\sum\limits_{m = 1}^{{\varphi _{{\lambda _m}}} < 0} {\left[ {{{\left( {H_k^i} \right)}^\text{T}}{{\left( {R_{k, {\lambda _m}}^i} \right)}^{ - 1}}H_k^i} \right]} } \end{split} $$ (34)

    证明从略.

    为验证本文方法的合理性与有效性, 设计由多个视觉传感器组成环境下的人体姿态估计仿真. 考虑存在不同程度视觉遮挡等因素, 采用式(2)的观测模型, 并假设人体关节目标的运动学模型如式(1), 状态转移矩阵参照文献[9, 19], 设置为${F_k} = {\rm{diag}}\left\{ {{F_0}}\;\;\cdots \;\;{{F_0}}\right\} ,$ 其中, ${F_0} = {\rm{diag}}\left\{ {{F_b}}\;\;{{F_b}}\;\;{{F_b}}\right\}$, ${F_b} = \left[ {\begin{aligned} & 1\;\;{\Delta t}\\& 0\;\;\;1 \end{aligned}} \right] ,$ 量测矩阵$ H_k^i = {\rm{diag}}\left\{ {H_0}\;\cdots \;{H_0}\right\} , $ 其中

    $$ \begin{split} {H_0} = \left[ {\begin{array}{*{20}{l}} 1&0&0&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&0&1&0 \end{array}} \right] \end{split} $$ (35)

    $ {{\boldsymbol{x}}_{k,l}}={\left[{{x_{x,l}}}\;\;{{{\dot x}_{x,l}}}\;\;{{x_{y,l}}}\;\;{{{\dot x}_{y,l}}}\;\;{{x_{z,l}}}\;\;{{{\dot x}_{z,l}}} \right]^\text{T}} $, $ {x_{x,l}} $, $ {x_{y,l}} $, $ {x_{z,l}} $和$ {\dot {x}_{x,l}} $, $ {\dot {x}_{y,l}} $, $ {\dot {x}_{z,l}} $分别为人体关节点在$ x $, $ y $和$ z $轴上的位置和速度, 人体关节的总数量取为$ L $ = 17, 系统的采样时间$\Delta t =$ 0.03 s, 过程噪声$ {{\boldsymbol{w}}_k} $的协方差为$ {Q_k} = {\rm{diag}}\left\{{{Q_0}}\;\; \cdots\;\;{{Q_0}} \right\}$, 其中

    $$ \begin{split} Q_0=\; &{\rm{diag}} \{0.09\;{\rm{cm}}^2, \;0.005\;{\rm{cm}}^2/{\rm{s}}^2, 0.09\;{\rm{cm}}^2,\;\\& 0.005 \;{\rm{cm}}^2/{\rm{s}}^2,\; 0.09\;{\rm{cm}}^2,\; 0.005 \;{\rm{cm}}^2/{\rm{s}}^2\} \end{split} $$

    人体骨架量测噪声$ {\boldsymbol{v}}_k^i $的协方差矩阵为$R_k^i =$${\rm{diag}}\left\{ {R_0} \cdots {R_0} \right\}$, 其中$R_0 =$ $ 5.0{I_{3 \times 3}} $$ {\rm{c}}{{\rm{m}}^{\rm{2}}} $, $ {I_{3 \times 3}} $表示3 × 3的单位阵. 设置不确定噪声$ {\boldsymbol{\xi}}_k^i $中低程度视觉遮挡干扰的协方差矩阵$ R_{k, + }^i $ = 5.0$ {I_{3 \times 3}} $$ {\rm{c}}{{\rm{m}}^{\rm{2}}} $, 出现的概率为$ {y_1} $ = 0.4; 高程度视觉遮挡下的野值设为幅值大小为40 cm的噪声, 即$ b= $40 cm, 出现的概率为$ {y_2}= $0.05. 以人体右臂腕关节点为例进行分析, 假设初始真实状态向量$ {{\boldsymbol{x}}_0} =$ [ 0 cm, 2.4 cm/s, 0 cm, 2.4 cm/s, 0 cm, 2.4 cm/s ]T, 关节点初始状态估计误差协方差为${P_0}= {I_{3 \times 3}}$, 状态估计初始值$ {\hat {{\boldsymbol{x}}}_{0|0}} $由高斯分布$ \text{N}\left( {{{\boldsymbol{x}}_0}, {P_0}} \right) $随机生成. PGF中渐进过程的总步数$ M $设为10步, 渐进步长$ \Delta _m $= 0.1, 量测评估机制中$ {\chi _n}= $ 15 cm, $ {\chi _a}= $ 30 cm.

    便于仿真结果分析与比较, 定义位置误差指标为均方根误差(Root mean square error, RMSE), 其计算式为

    $$ \begin{split}F_ {\rm{RMSE}} = \sqrt {\frac{1}{S}\sum\limits_{s = 1}^S {{{\left( {{H_k}{{\boldsymbol{x}}_k} - {H_k}{{\hat {{\boldsymbol{x}}}}_{k|k}}} \right)}^2}} } \end{split} $$ (36)

    其中, $F_{\rm{RMSE}} $表示均方根误差, $ s = 1, \cdots , S $为仿真实验的序号, $ S $为蒙特卡罗仿真总次数, $ {\hat {{\boldsymbol{x}}}_{k|k}} $表示$ k $时刻的状态估计值, $ {{\boldsymbol{x}}_k} $表示$ k $时刻的状态真实值. 在局部滤波中采用带量测分类处理的渐进高斯滤波(PGF with classification, PGFwC) (即, PGFFwC中局部的滤波结果)、卡尔曼滤波、粒子滤波(Particle filtering, PF)、 鲁棒卡尔曼滤波(Robust Kalman filtering, RKF)[20]. 同时为进一步验证量测分层分类处理的作用, 加入不带量测分类处理的渐进高斯滤波方法(PGF without classification, PGFwoC) (即, 采用PGF方法无差别地处理量测数据)进行对比. 另外, 为验证PGFFwC的性能, 在融合算法中对比了集中式融合(Centralized fusion, CF)、协方差交叉(Covariance intersection, CI)融合、基于观测融合的自适应卡尔曼滤波(Adaptive measurement fusion-based Kalman filter, AMFKF)[25], 以及IWCF[9]的方法, 蒙特卡罗仿真结果如图4所示. 通过仿真结果可知, 无论在局部滤波还是在全局状态融合中, 本文所提方法的性能都更好. 同时, 通过图4可知, 带有量测分类处理的方法(PGFwC, PGFFwC)比未带量测分类处理的方法(PGFwoC, PGFFwoC)误差更小. 特别地, 包含量测分类处理的分布式状态融合方法(PGFFwC)提升的精度明显高于其他方法, 说明通过对量测进行分类处理后, 滤波器对量测不确定性的描述更准确, 从而在状态融合的过程中获得更高的精度.

    图 4  不同滤波融合方法下的位置误差
    Fig. 4  Position error under different filtering fusion methods

    为进一步验证所提方法的有效性, 设计多视觉人体姿态估计实验, 实验平台如图5所示, 由两台微软公司的Azure Kinect DK相机[26-27], 一台Windows10操作系统的电脑和一个人体姿态估计对象组成. Azure Kinect DK视觉传感器包括彩色摄像头和深度摄像头, 采集到的彩色图像分辨率为1 920$ \times $1 080像素, 深度图像分辨率为512$ \times $512像素, 拍摄速度为30帧/s, 使用同步线缆硬件触发对两台相机进行同步数据采集, 并通过张正友相机标定法, 计算出从相机到主相机的旋转矩阵与平移向量, 以主相机坐标系作为世界坐标系. 在计算机上, 编写基于Visual Studio 2017的开发环境, 利用CNN的方法得到在深度相机空间下人体骨骼关节点的空间位置信息.

    图 5  人体姿态估计实验平台
    Fig. 5  Human pose estimation experimental platform

    实验场景设置如下: 实验环境位于室内, 两台Azure Kinect DK呈约$ {45^ \circ } $角摆放, 人体目标位于两台相机前方1.5 m左右的位置进行挥臂运动, 用Azure Kinect DK来完成对人体关节点的捕捉, 整个过程会引入自遮挡以及由手持物遮挡造成的误识别. 这里需要补充说明的是, 人体关节点对应的实际人体位置并不明确, 即人体关节点的物理意义是不明确的. 故以高精度动作捕捉系统OptiTrack System[28] (精度0.5 mm) 来获取人体关节点的真实轨迹, 如图5所示, 该定位系统由12个Prime 13相机组成, 能够实时捕捉运动目标的位姿, 以追踪到的光学标记点的位置为真值, 即视为真实人体关节点位置进行对比.

    在实验中, 采用的对比方法与仿真一致, 局部滤波分别采用PF, KF, RKF, PGFwC和PGFwoC的方法对比, 全局融合分别采用CF, CI, AMFKF, IWCF, PGFFwC和PGFFwoC的方法对比. 捕捉对象为人体右臂, 其中包括肩关节、肘关节和腕关节. 以人体右臂腕关节点为例分析, 滤波参数与仿真设置的一致, 图6表示该关节点在运动过程中, 不同方法处理下的累积位置误差分析图. 进一步, 表1所示为腕关节点、肘关节点以及肩关节点的位置误差均值, 从中可看出, PGFFwC方法下得到的误差更低. 由此说明该方法能有效提高人体姿态估计的精度和鲁棒性. 另外, 从3组关节点误差均值的整体对比中, 可看出腕关节点的误差相对更大, 肩关节点的误差相对更小, 表明机动性更强的关节点存在的误差也更大.

    图 6  不同滤波融合方法下的累积位置误差
    Fig. 6  Cumulative position error under different filtering fusion methods
    表 1  累积误差均值统计(mm)
    Table 1  Cumulative error mean statistics (mm)
    实验方法腕关节肘关节肩关节
    观测融合166.44124.4496.56
    CF157.55118.0095.00
    AMFKF147.81113.8593.08
    CI127.63117.8599.62
    IWCF153.12113.2192.53
    PGFFwoC151.77114.1292.83
    PGFFwC119.47108.9884.11
    下载: 导出CSV 
    | 显示表格

    为处理视觉遮挡下人体姿态估计性能下降问题, 提出基于渐进高斯滤波融合的姿态估计方法. 首先, 采用CNN的方法从深度图像中识别并得出人体各关节点在相机坐标系下的3D位置, 并将其转换到世界坐标系下; 其次, 在多视觉骨架数据融合中, 构建分布式的渐进贝叶斯滤波融合框架并提出基于渐进高斯滤波融合的人体姿态估计方法. 针对量测信息中包含的复杂噪声, 分别从空间、时间维度对量测进行相容性分析与分类处理. 同时, 引入渐进量测更新与引导机制, 隐式地补偿量测不确定性.

    证明. 因为$ p({\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}}|{{\boldsymbol{x}}_k}) $, $ p({{\boldsymbol{x}}_k}|{\boldsymbol{z}}_{1:k{\rm{ - }}1}^{{a_j}}) $为高斯分布, 易知$ p({{\boldsymbol{x}}_k}, {\lambda _m}|{\boldsymbol{z}}_{1:k - 1}^{{a_j}}, {\boldsymbol{z}}_{k, {\lambda _1}:{\lambda _m}}^{{a_j}}) $, $ p({{\boldsymbol{x}}_k}|{Z_{1:k}}) $也为高斯分布. 令

    $$ \begin{split} &o({\boldsymbol{x}}_k) = \\ &\quad-\frac{1}{2}{\left( {{{\boldsymbol{x}}_k} - \hat {{\boldsymbol{x}}}_{k|k - 1}^f} \right)^\text{T}}{\left( {P_{k|k - 1}^f} \right)^{ - 1}}\left( {{{\boldsymbol{x}}_k} - \hat {{\boldsymbol{x}}}_{k|k - 1}^f} \right)-\\ &\quad\frac{1}{2}\sum\limits_{{\boldsymbol{z}}_k^{{n_j}} \in G_k^n} {\left[ {{{\left( {{{\boldsymbol{x}}_k} - \hat {{\boldsymbol{x}}}_{k|k}^{{n_j}}} \right)}^\text{T}}{{\left( {P_{k|k}^{{n_j}}} \right)}^{ - 1}}\left( {{{\boldsymbol{x}}_k} - \hat {{\boldsymbol{x}}}_{k|k}^{{n_j}}} \right)} \right]}\;- \\ &\quad\frac{1}{2}\sum\limits_{{\boldsymbol{z}}_k^{{a_j}} \in G_k^a} {\left[ {{{\left( {{{\boldsymbol{x}}_k} - \hat {{\boldsymbol{x}}}_{k|k,{\lambda _m}}^{{a_j}}} \right)}^\text{T}}{{\left( {P_{k|k,{\lambda _m}}^{{a_j}}} \right)}^{ - 1}}\left( {{{\boldsymbol{x}}_k} \;- } \right.} \right.} \\ &\;\;\left. {\left. {\hat {{\boldsymbol{x}}}_{k|k,{\lambda _m}}^{{a_j}}} \right)} \right] + \frac{1}{2}\sum\limits_{{\boldsymbol{z}}_k^{{n_j}} \in G_k^n} {\left[ {{{\left( {{{\boldsymbol{x}}_k} - \hat {{\boldsymbol{x}}}_{k|k - 1}^{{n_j}}} \right)}^\text{T}}{{\left( {P_{k|k}^{{n_j}}} \right)}^{ - 1}}} \right.} \times \\ \end{split} $$
    $$\begin{split}&\quad\left. {\left( {{{\boldsymbol{x}}_k} - \hat {{\boldsymbol{x}}}_{k|k - 1}^{{n_j}}} \right)} \right] + \frac{1}{2}\sum\limits_{{\boldsymbol{z}}_k^{{a_j}} \in G_k^a} {\left[ {{{\left( {{{\boldsymbol{x}}_k} - \hat {{\boldsymbol{x}}}_{k|k - 1}^{{a_j}}} \right)}^\text{T}}} \right.} \times\\&\quad \left. {{{\left( {P_{k|k,{\lambda _m}}^{{a_j}}} \right)}^{ - 1}}\left( {{{\boldsymbol{x}}_k} - \hat {{\boldsymbol{x}}}_{k|k - 1}^{{a_j}}} \right)} \right]\end{split} \tag{A1} $$

    根据后验概率密度函数(8), 可得最大后验估计为

    $$ \begin{split} \hat {{\boldsymbol{x}}}_{k|k}^f = &\arg \max p({{\boldsymbol{x}}_k}|{Z_{1:k}}) = \\ &\arg \mathop {\max }\limits_{{{\boldsymbol{x}}_k}} o\left( {{{\boldsymbol{x}}_k}} \right) \end{split} \tag{A2}$$

    求解$ \frac{{\partial o\left( {{{\boldsymbol{x}}_k}} \right)}}{{\partial {{\boldsymbol{x}}_k}}} = 0 $, 得全局状态估计为

    $$ \begin{split} &{\left( {P_{k|k}^f} \right)^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k}^f = {\left( {P_{k|k - 1}^f} \right)^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k - 1}^f\;+ \\ &\qquad\sum\limits_{{\boldsymbol{z}}_k^{{n_j}} \in G_k^n} {\left[ {{{\left( {P_{k|k}^{{n_j}}} \right)}^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k}^{{n_j}} - {{\left( {P_{k|k - 1}^{{n_j}}} \right)}^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k - 1}^{{n_j}}} \right]} \;+ \\ &\qquad\sum\limits_{{\boldsymbol{z}}_k^{{a_j}} \in G_k^a} {\left[ {{{\left( {P_{k|k,{\lambda _m}}^{{a_j}}} \right)}^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k,{\lambda _m}}^{{a_j}}} \right.}\; - \\ &\qquad\left. { {{\left( {P_{k|k - 1}^{{a_j}}} \right)}^{ - 1}}\hat {{\boldsymbol{x}}}_{k|k - 1}^{{a_j}}} \right] \end{split}\tag{A3} $$
    $$ \begin{split} &{\left( {P_{k|k}^f} \right)^{ - 1}} = {\left( {P_{k|k - 1}^f} \right)^{ - 1}}\; +\\ & \qquad\sum\limits_{{\boldsymbol{z}}_k^{{n_j}} \in G_k^n} {\left[ {{{\left( {P_{k|k}^{{n_j}}} \right)}^{ - 1}}} \right.} \left. { - \;{{\left( {P_{k|k - 1}^{{n_j}}} \right)}^{ - 1}}} \right] +\\ &\qquad\sum\limits_{{\boldsymbol{z}}_k^{{a_j}} \in G_k^a} {\left[ {{{\left( {P_{k|k, {\lambda _m}}^{{a_j}}} \right)}^{ - 1}} - {{\left( {P_{k|k - 1}^{{a_j}}} \right)}^{ - 1}}} \right]} \end{split} \tag{A4}$$

    其中, 由于量测$ {\boldsymbol{z}}_k^{{n_j}} \in G_k^n $中不含额外噪声干扰与野值, 局部状态估计$ \hat {{\boldsymbol{x}}}_{k|k}^{{n_j}} $即可用卡尔曼滤波得到

    $$ {\hat{\boldsymbol{x}}_{k|k}^{{n_j}}} = \hat {{\boldsymbol{x}}}_{k|k - 1}^{{n_j}} + K_k^{{n_j}}\left( {{\boldsymbol{z}}_k^{{n_j}} - H_k^{{n_j}}\hat {{\boldsymbol{x}}}_{k|k - 1}^{{n_j}}} \right) \tag{A5}$$
    $$ P_{k|k}^{{n_j}} = \left( {I - K_k^{{n_j}}H_k^{{n_j}}} \right)P_{k|k - 1}^{{n_j}} \tag{A6}$$
    $$ K_k^{{n_j}} = P_{k|k}^{{n_j}}{\left( {H_k^{{n_j}}} \right)^\text{T}}{\left( {R_k^{{n_j}}} \right)^{ - 1}}\tag{A7} $$

    对于${\boldsymbol{z}}_k^{{a_j}} \in G_k^a\, ,$ 在其局部状态更新中, 通过PDF式(19), 可求得最大后验状态估计

    $$ \begin{split} \hat {{\boldsymbol{x}}}_{k|k}^{{a_j}} = \arg \max p({{\boldsymbol{x}}_k}, {\lambda _m}|{\boldsymbol{z}}_{1:k - 1}^{{a_j}}, {\boldsymbol{z}}_{k, {\lambda _1}:{\lambda _m}}^{{a_j}}) \end{split} $$

    根据高斯分布的连乘性质, $p({{\boldsymbol{x}}_k}, {\lambda _m}|{\boldsymbol{z}}_{1:k - 1}^{{a_j}}, {\boldsymbol{z}}_{k, {\lambda _1}:{\lambda _m}}^{{a_j}} )$也为高斯分布, 求得

    $$ \begin{split} &\hat {{\boldsymbol{x}}}_{k|k, {\lambda _m}}^{{a_j}} = \arg \mathop { \max }\limits_{{{\boldsymbol{x}}_k}} p({{\boldsymbol{x}}_k}, {\lambda _m}|{\boldsymbol{z}}_{1:k - 1}^{{a_j}}, {\boldsymbol{z}}_{k, {\lambda _1}:{\lambda _m}}^{{a_j}}) = \\ &\quad\arg \mathop {\max }\limits_{{{\boldsymbol{x}}_k}} \exp \left\{ - \frac{1}{2}{\left( {{{\boldsymbol{x}}_k} - \hat {{\boldsymbol{x}}}_{k|k - 1}^{{a_j}}} \right)^\text{T}}{\left( {P_{k|k - 1}^{{a_j}}} \right)^{ - 1}}\;\times\right. \end{split} $$
    $$ \begin{split} & \quad\left( {{{\boldsymbol{x}}_k} - \hat {{\boldsymbol{x}}}_{k|k - 1}^{{a_j}}} \right) - \frac{1}{2}\sum\limits_{m = 1}^{{\varphi _{{\lambda _m}}} < 0} \left[{{\left( {{\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}} - H_k^{{a_j}}{{\boldsymbol{x}}_k}} \right)}^\text{T}} \;\times \right.\\ &\left.\left.\quad{\left( {R_{k, {\lambda _m}}^{{a_j}}} \right)^{ - 1}}\left( {{\boldsymbol{z}}_{k, {\lambda _m}}^{{a_j}} - H_k^{{a_j}}{{\boldsymbol{x}}_k}} \right)\right]\right\} \end{split}\tag{A8} $$

    解法与式(A1) ~ (A4)类似, 得

    $$ \begin{split} &{\left( {P_{k|k,{\lambda _m}}^{{a_j}}} \right)^{ - 1}}\hat {\boldsymbol{x}}_{k|k,{\lambda _m}}^{{a_j}} = {\left( {P_{k|k - 1}^{{a_j}}} \right)^{ - 1}}\hat {\boldsymbol{x}}_{k|k - 1}^{{a_j}} \;+\\ & \qquad\sum\limits_{m = 1}^{{\varphi _{{\lambda _m}}} < 0} {\left[ {{{\left( {H_k^{{a_j}}} \right)}^\text{T}}{{\left( {R_{k,{\lambda _m}}^{{a_j}}} \right)}^{ - 1}}{\boldsymbol{z}}_{k,{\lambda _m}}^{{a_j}}} \right]} \end{split}\tag{A9} $$
    $$ \begin{split} &{\left( {P_{k|k, {\lambda _m}}^{{a_j}}} \right)^{ - 1}} = {\left( {P_{k|k - 1}^{{a_j}}} \right)^{ - 1}}\;+\\ &\qquad\sum\limits_{m = 1}^{{\varphi _{{\lambda _m}}} < 0} {\left[ {{{\left( {H_k^{{a_j}}} \right)}^\text{T}}{{\left( {R_{k, {\lambda _m}}^{{a_j}}} \right)}^{ - 1}}H_k^{{a_j}}} \right]} \end{split}\tag{A10}$$


  • 11 本文中流体是指生物族群长期生存的液体(海水)和气体(空气).
  • 图  1  迁徙鸟群的线性编队方式

    Fig.  1  Line formation of migratory birds

    图  2  鸟群编队的诱导阻力比率[27]

    Fig.  2  Induced power ratio of different formation flight[27]

    图  3  相邻鸟类间的“翼尖间距”、“深度”和“扑翼相位差”定义

    Fig.  3  Definitions of “wing tip spacing”, “depth” and “flapping wing phase difference”

    图  4  鸟群“V型”编队示意图

    Fig.  4  Bird flock with V-configuration formation

    图  5  鸟群能量利用机制与集群规模$ n $和翼尖间距$ s $的关系

    Fig.  5  Relationship between EEU of bird flock and the size $ n $ and wing tip spacing $ s $

    图  6  有鳍鱼类的“菱形”编队

    Fig.  6  Diamond formation of finfishs

    图  7  鱼群节能区域及节能效果图

    Fig.  7  Energy saving zone and energy saving effect of fish school

    图  8  “菱形”编队参数示意图

    Fig.  8  Schematic diagram of diamond formation parameters

    图  9  鳗鱼游动方式和有鳍鱼类游动方式[28]

    Fig.  9  Swimming method of eel and finfishs[28]

    图  10  “菱形”编队示意图

    Fig.  10  Diamond formation of diagram

    图  11  EEU实验结果

    Fig.  11  Results of EEU experiment

    图  12  南极磷虾集群 ((a)不同规模生物群体在聚集和分散情况下的能耗情况[104]; (b)磷虾运动时流体扰动的影响[108]; (c)磷虾群中不同的编队方式[109])

    Fig.  12  Krill swarm ((a) Energy consumption of different group in non-swarming and swarming condition[104]; (b) Hydrodynamic disturbance from the motion of krill[108]; (c) Different formation method of krill swarm (Focal krill, FK)[109])

    图  13  不同规模的棘刺龙虾队列[120]

    Fig.  13  Different sizes of migrating lobsters[120]

    图  14  三叶虫集群((a)首尾相连的三叶虫队列[128]; (b)线性的三叶虫队列130]; (c)非线性的三叶虫集群[130])

    Fig.  14  Trilobite clusters ((a) Queue with most individuals oriented head-under-tail[128]; (b) Linear autochthonous trilobite clusters[130]; (c) Nonlinear trilobite clusters[130])

    图  15  帝企鹅群的温度分布[116]

    Fig.  15  Temperature distribution of penguins[116]

    图  16  拥挤团体EEU随团体半径$ r $的变化趋势

    Fig.  16  Relationship between EEU of huddling and radius $ r $

    表  1  多圆柱体阻力表

    Table  1  Drag coefficients of multi circle cylinders

    位置序号 阻力系数
    1 1.2158
    2 0.4212
    3 0.2191
    4 0.1069
    5 0.0861
    6 0.0991
    下载: 导出CSV

    表  2  多种生物族群的能量高效利用机制总结

    Table  2  Summary of energy efficient utilization mechanism in multiple biological clusters

    族群种类能量高效利用机制实验数据集群规模EEU模型估计节能效果参考文献
    加拿大鹅流体优势利用机制能耗降低36.0%559.4% ~ 45.3% (根据编队参数的差异)[57]
    粉红足雁流体优势利用机制能耗降低14.0%549.4% ~ 47.4% (根据编队参数的差异)[59]
    白鹈鹕流体优势利用机制能耗降低11.4% ~ 14.0%87.4% ~ 28.9% (根据编队参数的差异)[62]
    鲭鱼流体优势利用机制摆动频率15.0% ~ 29.0%14.4% ~ 23.0% (根据编队间距的差异)[82]
    海鲈鱼流体优势利用机制摆动频率9.0% ~ 14.0%914.4% ~ 23.0% (根据编队间距的差异)[83]
    欧洲拟鲤流体优势利用机制摆动频率7.3% ~ 11.6%814.4% ~ 23.0% (根据编队间距的差异)[54]
    鲻鱼流体优势利用机制摆动频率10.5% ~ 27.0%814.4% ~ 23.0% (根据编队间距的差异)[87]
    鳗鱼流体优势利用机制耗氧量30.0%714.4% ~ 23.0% (根据编队间距的差异)[96]
    南极磷虾流体优势利用机制耗氧量小7.2倍[104]
    棘刺龙虾流体阻碍克服机制65.0%阻力减免1970.6% (6只组成的队列)[117]
    三叶虫流体阻碍克服机制330.6% (2只组成的队列)[129]
    帝企鹅热量交换与扩散机制能耗降低51.0%最大节能效率不超过55.0%[138]
    啮齿类动物幼崽热量交换与扩散机制100最大节能效率不超过55.0%[148149]
    下载: 导出CSV
  • [1] Saad W, Bennis M, Mozaffari M, Lin X Q. Wireless Communications and Networking for Unmanned Aerial Vehicles. Cambridge: Cambridge University Press, 2020.
    [2] Ding J P, Mei H Y, Chih-Lin I, Zhang H, Liu W W. Frontier progress of unmanned aerial vehicles optical wireless technologies. Sensors, 2020, 20(19): Article No. 5476 doi: 10.3390/s20195476
    [3] Baltaci A, Dinc E, Ozger M, Alabbasi A, Cavdar C, Schupke D. A survey of wireless networks for future aerial communications (FACOM). IEEE Communications Surveys & Tutorials, 2021, 23(4): 2833-2884
    [4] Cai C W, Wu S, Jiang L Y, Zhang Z P, Yang S Y. A 500-W wireless charging system with lightweight pick-up for unmanned aerial vehicles. IEEE Transactions on Power Electronics, 2020, 35(8): 7721-7724 doi: 10.1109/TPEL.2020.2964023
    [5] 李敏, 包富瑜, 王恒. 无人机使能的无线传感网总能耗优化方法. 自动化学报, DOI: 10.16383/j.aas.c220914

    Li Min, Bao Fu-Yu, Wang Heng. Optimization of total energy consumption for unmanned aerial vehicle-enabled wireless sensor networks. Acta Automatica Sinica, DOI: 10.16383/j.aas.c220914
    [6] 罗小元, 杨帆, 李绍宝, 关新平. 多智能体系统的最优持久编队生成策略. 自动化学报, 2014, 40(7): 1311-1319

    Luo Xiao-Yuan, Yang Fan, Li Shao-Bao, Guan Xin-Ping. Generation of optimally persistent formation for multi-agent systems. Acta Automatica Sinica, 2014, 40(7): 1311-1319
    [7] Shao L Y, Karci A E H, Tavernini D, Sorniotti A, Cheng M. Design approaches and control strategies for energy-efficient electric machines for electric vehicles—A review. IEEE Access, 2020, 8: 116900-116913 doi: 10.1109/ACCESS.2020.2993235
    [8] Jiang B, Huang G S, Wang T, Gui J S, Zhu X Y. Trust based energy efficient data collection with unmanned aerial vehicle in edge network. Transactions on Emerging Telecommunications Technologies, 2022, 33(6): Article No. e3942 doi: 10.1002/ett.3942
    [9] Boursianis A D, Papadopoulou M S, Diamantoulakis P, Liopa-Tsakalidi A, Barouchas P, Salahas G, et al. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things, 2022, 18: Article No. 100187 doi: 10.1016/j.iot.2020.100187
    [10] Liu Y L, Dai H N, Wang Q B J, Shukla M K, Imran M. Unmanned aerial vehicle for internet of everything: Opportunities and challenges. Computer Communications, 2020, 155: 66-83 doi: 10.1016/j.comcom.2020.03.017
    [11] Khan M T R, Muhammad Saad M, Ru Y, Seo J, Kim D. Aspects of unmanned aerial vehicles path planning: Overview and applications. International Journal of Communication Systems, 2021, 34(10): Article No. e4827 doi: 10.1002/dac.4827
    [12] Chen J C, Ling F Y, Zhang Y, You T, Liu Y F, Du X Y. Coverage path planning of heterogeneous unmanned aerial vehicles based on ant colony system. Swarm and Evolutionary Computation, 2022, 69: Article No. 101005 doi: 10.1016/j.swevo.2021.101005
    [13] Cho S W, Park H J, Lee H, Shim D H, Kim S Y. Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations. Computers & Industrial Engineering, 2021, 161: Article No. 107612
    [14] Ahmed F, Mohanta J C, Keshari A, Yadav P S. Recent advances in unmanned aerial vehicles: A review. Arabian Journal for Science and Engineering, 2022, 47(7): 7963-7984 doi: 10.1007/s13369-022-06738-0
    [15] Bouguettaya A, Zarzour H, Taberkit A M, Kechida A. A review on early wildfire detection from unmanned aerial vehicles using deep learning-based computer vision algorithms. Signal Processing, 2022, 190: Article No. 108309 doi: 10.1016/j.sigpro.2021.108309
    [16] Saikin D A, Baca T, Gurtner M, Saska M. Wildfire fighting by unmanned aerial system exploiting its time-varying mass. IEEE Robotics and Automation Letters, 2020, 5(2): 2674-2681 doi: 10.1109/LRA.2020.2972827
    [17] Neupane K, Baysal-Gurel F. Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review. Remote Sensing, 2021, 13(19): Article No. 3841 doi: 10.3390/rs13193841
    [18] Hu H M, Kaizu Y, Huang J J, Furuhashi K, Zhang H D, Li M, et al. Research on methods decreasing pesticide waste based on plant protection unmanned aerial vehicles: A review. Frontiers in Plant Science, 2022, 13: Article No. 811256 doi: 10.3389/fpls.2022.811256
    [19] Jang G, Kim J, Yu J K, Kim H J, Kim Y, Kim D W, et al. Review: Cost-effective unmanned aerial vehicle (UAV) platform for field plant breeding application. Remote Sensing, 2020, 12(6): Article No. 998 doi: 10.3390/rs12060998
    [20] McNelly B P, Whitcomb L L, Brusseau J P, Carr S S. Evaluating integration of autonomous underwater vehicles into port protection. In: Proceedings of the OCEANS, Hampton Roads. Hampton Roads, USA: IEEE, 2022. 1−8
    [21] Al Abkal S, Talas R, Shaw S, Ellis T. The application of unmanned aerial vehicles in managing port and border security in the US and Kuwait: Reflections on best practice for the UK. International Journal of Maritime Crime & Security (IJMCS), 2020, 1(1): 26-33
    [22] Gorodetsky V, Skobelev P, Marik V. System engineering view on multi-agent technology for industrial applications: Barriers and prospects. Cybernetics and Physics, 2020, 9(1): 13-30
    [23] 杜永浩, 邢立宁, 蔡昭权. 无人飞行器集群智能调度技术综述. 自动化学报, 2020, 46(2): 222-241

    Du Yong-Hao, Xing Li-Ning, Cai Zhao-Quan. Survey on intelligent scheduling technologies for unmanned flying craft clusters. Acta Automatica Sinica, 2020, 46(2): 222-241
    [24] Calegari R, Ciatto G, Mascardi V, Omicini A. Logic-based technologies for multi-agent systems: A systematic literature review. Autonomous Agents and Multi-Agent Systems, 2021, 35(1): Article No. 1 doi: 10.1007/s10458-020-09478-3
    [25] Wieselsberger C. Beitrag zur Erklarung des Winkelfluges eineger Zugvogel. Motorluftschiffahrt, 1914, 3(5): 225-229
    [26] Gould L L, Heppner F. The vee formation of Canada geese. The Auk, 1974, 165(11): 494-506
    [27] Lissaman P B S, Shollenberger C A. Formation flight of birds. Science, 1970, 168(3934): 1003-1005 doi: 10.1126/science.168.3934.1003
    [28] Weihs D. Hydromechanics of fish schooling. Nature, 1973, 241(5387): 290-291 doi: 10.1038/241290a0
    [29] Belyayev V V. Zuyev G V. Hydrodynamic hypothesis of school formation in fishes. Problems of Ichthyology, 1969, 9(27): 578-584
    [30] Fish F E. Energetics of swimming and flying in formation. Comments on Theoretical Biology, 1999, 5(35): 283-304
    [31] Le Maho Y. The Emperor Penguin: A Strategy to Live and Breed in the Cold: Morphology, physiology, ecology, and behavior distinguish the polar emperor penguin from other penguin species, particularly from its close relative, the king penguin. American Scientist, 1977, 65(6): 680-693
    [32] Ancel A, Visser H, Handrich Y, Masman D, Le Maho Y. Energy saving in huddling penguins. Nature, 1997, 385(6614): 304-305 doi: 10.1038/385304a0
    [33] Herrnkind W. Queuing behavior of spiny lobsters. Science, 1969, 164(3886): 1425-1427 doi: 10.1126/science.164.3886.1425
    [34] Chatterton B D E, Fortey R A. Linear clusters of articulated trilobites from Lower Ordovician (Arenig) strata at Bini Tinzoulin, North of Zagora, southern Morocco. Advances in Trilobite Research. Cuadernos del Museo Geominero, 2008, 24(9): 73-77
    [35] Li W, Wang G G, Gandomi A H. A survey of learning-based intelligent optimization algorithms. Archives of Computational Methods in Engineering, 2021, 28(5): 3781-3799 doi: 10.1007/s11831-021-09562-1
    [36] 刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法. 自动化学报, 2023, 49(11): 2360−2373

    Liu Cheng-Han, He Qing. Golden sine chimp optimization algorithm integrating multiple strategies. ACTA AUTOMATICA SINICA, 2023, 49(11): 2360−2373
    [37] 李雅丽, 王淑琴, 陈倩茹, 王小钢. 若干新型群智能优化算法的对比研究. 计算机工程与应用, 2020, 56(22): 1-12

    Li Ya-Li, Wang Shu-Qin, Chen Qian-Ru, Wang Xiao-Gang. Comparative study of several new swarm intelligence optimization algorithms. Computer Engineering and Applications, 2020, 56(22): 1-12
    [38] 杨旭, 王锐, 张涛. 面向无人机集群路径规划的智能优化算法综述. 控制理论与应用, 2020, 37(11): 2291-2302

    Yang Xu, Wang Rui, Zhang Tao. Review of unmanned aerial vehicle swarm path planning based on intelligent optimization. Control Theory & Applications, 2020, 37(11): 2291-2302
    [39] Qiu H X, Duan H B. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Information Sciences, 2020, 509: 515-529 doi: 10.1016/j.ins.2018.06.061
    [40] Li L, Nagy M, Graving J M, Bak-Coleman J, Xie G M, Couzin I D. Vortex phase matching as a strategy for schooling in robots and in fish. Nature Communications, 2020, 11(1): Article No. 5408 doi: 10.1038/s41467-020-19086-0
    [41] Wu X Y, He W, Wang Q, Meng T T, He X Y, Fu Q. A long-endurance flapping-wing robot based on mass distribution and energy consumption method. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8215-8224 doi: 10.1109/TIE.2022.3213905
    [42] Fu Q, Wang X Q, Zou Y, He W. A miniature video stabilization system for flapping-wing aerial vehicles. Guidance, Navigation and Control, 2022, 2(1): Article No. 2250001 doi: 10.1142/S2737480722500017
    [43] Huang H F, He W, Fu Q, He X Y, Sun C Y. A bio-inspired flapping-wing robot with cambered wings and its application in autonomous airdrop. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2138-2150 doi: 10.1109/JAS.2022.106040
    [44] Huang H F, He W, Wang J B, Zhang L, Fu Q. An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5484-5494
    [45] He W, Mu X X, Zhang L, Zou Y. Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA Journal of Automatica Sinica, 2021, 8(1): 148-156 doi: 10.1109/JAS.2020.1003417
    [46] Pennycuick C J, Alerstam T, Hedenström A. A new low-turbulence wind tunnel for bird flight experiments at Lund University, Sweden. Journal of Experimental Biology, 1997, 200(10): 1441-1449 doi: 10.1242/jeb.200.10.1441
    [47] Sachs G, Moelyadi M A. Effect of slotted wing tips on yawing moment characteristics. Journal of Theoretical Biology, 2006, 239(1): 93-100 doi: 10.1016/j.jtbi.2005.07.016
    [48] Kawaguchi S, King R, Meijers R, Osborn J E, Swadling K M, Ritz D A, et al. An experimental aquarium for observing the schooling behaviour of Antarctic krill (Euphausia superba). Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(7-8): 683-692 doi: 10.1016/j.dsr2.2009.10.017
    [49] Hamner W M, Hamner P P. Behavior of Antarctic krill (Euphausia superba): Schooling, foraging, and antipredatory behavior. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(S3): 192-202 doi: 10.1139/f00-195
    [50] Catton K B, Webster D R, Kawaguchi S, Yen J. The hydrodynamic disturbances of two species of krill: Implications for aggregation structure. Journal of Experimental Biology, 2011, 214(11): 1845-1856 doi: 10.1242/jeb.050997
    [51] Lopez U, Gautrais J, Couzin I D, Theraulaz G. From behavioural analyses to models of collective motion in fish schools. Interface Focus, 2012, 2(6): 693-707 doi: 10.1098/rsfs.2012.0033
    [52] Viscido S V, Parrish J K, Grünbaum D. Individual behavior and emergent properties of fish schools: A comparison of observation and theory. Marine Ecology Progress Series, 2004, 273: 239-249 doi: 10.3354/meps273239
    [53] Tian G Z, Zhang Y S, Feng X M, Hu Y S. Focus on bioinspired textured surfaces toward fluid drag reduction: Recent progresses and challenges. Advanced Engineering Materials, 2022, 24(1): Article No. 2100696 doi: 10.1002/adem.202100696
    [54] Svendsen J C, Skov J, Bildsoe M, Steffensen J F. Intra-school positional preference and reduced tail beat frequency in trailing positions in schooling roach under experimental conditions. Journal of Fish Biology, 2003, 62(4): 834-846 doi: 10.1046/j.1095-8649.2003.00068.x
    [55] Wiese K, Ebina Y. The propulsion jet of Euphausia superba (Antarctic Krill) as a potential communication signal among conspecifics. Journal of the Marine Biological Association of the United Kingdom, 1995, 75(1): 43-54 doi: 10.1017/S0025315400015186
    [56] Berger M. Formationsflug ohne Phasenbeziehung der Flügelschläge. Journal für Ornithologie, 1972, 113(2): 161-169
    [57] Hainsworth F R. Precision and dynamics of positioning by Canada geese flying in formation. Journal of Experimental Biology, 1987, 128(1): 445-462 doi: 10.1242/jeb.128.1.445
    [58] Bajec I L, Heppner F H. Organized flight in birds. Animal Behaviour, 2009, 78(4): 777−789
    [59] Cutts C J, Speakman J R. Energy savings in formation flight of pink-footed geese. Journal of Experimental Biology, 1994, 189(1): 251-261 doi: 10.1242/jeb.189.1.251
    [60] Badgerow J P, Hainsworth F R. Energy savings through formation flight? A re-examination of the vee formation. Journal of Theoretical Biology, 1981, 93(1): 41-52 doi: 10.1016/0022-5193(81)90055-2
    [61] Ward S, Bishop C M, Woakes A J, Butler P J. Heart rate and the rate of oxygen consumption of flying and walking barnacle geese (Branta leucopsis) and bar-headed geese (Anser indicus). Journal of Experimental Biology, 2002, 205(21): 3347-3356 doi: 10.1242/jeb.205.21.3347
    [62] Weimerskirch H, Martin J, Clerquin Y, Alexandre P, Jiraskova S. Energy saving in flight formation. Nature, 2001, 413(6857): 697-698 doi: 10.1038/35099670
    [63] Bairlein F, Fritz J, Scope A, Schwendenwein I, Stanclova G, van Dijk G, et al. Energy expenditure and metabolic changes of free-flying migrating northern bald ibis. PLoS One, 2015, 10(9): Article No. e0134433 doi: 10.1371/journal.pone.0134433
    [64] Nathan R, Spiegel O, Fortmann-Roe S, Harel R, Wikelski M, Getz W M. Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: General concepts and tools illustrated for griffon vultures. Journal of Experimental Biology, 2012, 215(6): 986-996 doi: 10.1242/jeb.058602
    [65] Späni D, Arras M, König B, Rülicke T. Higher heart rate of laboratory mice housed individually vs in pairs. Laboratory Animals, 2003, 37(1): 54-62 doi: 10.1258/002367703762226692
    [66] Maeng J S, Park J H, Jang S M, Han S Y. A modeling approach to energy savings of flying Canada geese using computational fluid dynamics. Journal of Theoretical Biology, 2013, 320: 76-85 doi: 10.1016/j.jtbi.2012.11.032
    [67] Kshatriya M, Blake R W. Theoretical model of the optimum flock size of birds flying in formation. Journal of Theoretical Biology, 1992, 157(2): 135-174 doi: 10.1016/S0022-5193(05)80618-6
    [68] Mirzaeinia A, Hassanalian M, Lee K, Mirzaeinia M. Energy conservation of V-shaped swarming fixed-wing drones through position reconfiguration. Aerospace Science and Technology, 2019, 94: Article No. 105398 doi: 10.1016/j.ast.2019.105398
    [69] Nudds R L, Rayner J M V. Scaling of body frontal area and body width in birds. Journal of Morphology, 2006, 267(3): 341-346 doi: 10.1002/jmor.10409
    [70] Pennycuick C J, Fast P L F, Ballerstädt N, Rattenborg N. The effect of an external transmitter on the drag coefficient of a bird’s body, and hence on migration range, and energy reserves after migration. Journal of Ornithology, 2012, 153(3): 633-644 doi: 10.1007/s10336-011-0781-3
    [71] Cutts C J, Metcalfe N B, Taylor A C. Aggression and growth depression in juvenile atlantic salmon: The consequences of individual variation in standard metabolic rate. Journal of Fish Biology, 1998, 52(5): 1026-1037
    [72] Andersson M, Wallander J. Kin selection and reciprocity in flight formation?. Behavioral Ecology, 2004, 15(1): 158-162 doi: 10.1093/beheco/arg109
    [73] Higdon J J L, Corrsin S. Induced drag of a bird flock. The American Naturalist, 1978, 112(986): 727-744 doi: 10.1086/283314
    [74] Usherwood J R, Stavrou M, Lowe J C, Roskilly K, Wilson A M. Flying in a flock comes at a cost in pigeons. Nature, 2011, 474(7352): 494-497 doi: 10.1038/nature10164
    [75] 张天栋, 王睿, 程龙, 王宇, 王硕. 鱼集群游动的节能机理研究综述. 自动化学报, 2021, 47(3): 475-488

    Zhang Tian-Dong, Wang Rui, Cheng Long, Wang Yu, Wang Shuo. Research on energy-saving mechanism of fish schooling: A review. Acta Automatica Sinica, 2021, 47(3): 475-488
    [76] Spedding G. The cost of flight in flocks. Nature, 2011, 474(7352): 458-459 doi: 10.1038/474458a
    [77] Breder C M. Ortices and fish schools. Zoologica New York, 1965, 50(16): 97-114
    [78] Weihs D. Some hydrodynamical aspects of fish schooling. Swimming and Flying in Nature. New York: Springer, 1975. 703−718
    [79] Partridge B L, Pitcher T J. Evidence against a hydrodynamic function for fish schools. Nature, 1979, 279(5712): 418-419 doi: 10.1038/279418a0
    [80] Blake R W. Fish Locomotion. Cambridge: Cambridge University Press, 1983.
    [81] Abrahams M V, Colgan P W. Fish schools and their hydrodynamic function: A reanalysis. Environmental Biology of Fishes, 1987, 20(1): 79-80 doi: 10.1007/BF00002028
    [82] Zuyev G V. Belyayev V V. An experimental study of the swimming of fish in groups as examplified by the horsemackerel[Trachurus mediterraneus ponticus Aleev]. Journal of Ichthyology, 1970, 10(21): 545-549
    [83] Herskin J, Steffensen J F. Energy savings in sea bass swimming in a school: Measurements of tail beat frequency and oxygen consumption at different swimming speeds. Journal of Fish Biology, 1998, 53(2): 366-376 doi: 10.1111/j.1095-8649.1998.tb00986.x
    [84] Gerstner C L. Use of substratum ripples for flow refuging by Atlantic cod, Gadus morhua. Environmental Biology of Fishes, 1998, 51(4): 455-460 doi: 10.1023/A:1007449630601
    [85] Webb P W. The effect of solid and porous channel walls on steady swimming of steelhead trout Oncorhynchus mykiss. Journal of Experimental Biology, 1993, 178(1): 97-108 doi: 10.1242/jeb.178.1.97
    [86] Liao J C. A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1487): 1973-1993 doi: 10.1098/rstb.2007.2082
    [87] Marras S, Killen S S, Lindström J, McKenzie D J, Steffensen J F, Domenici P. Fish swimming in schools save energy regardless of their spatial position. Behavioral Ecology and Sociobiology, 2015, 69(2): 219-226 doi: 10.1007/s00265-014-1834-4
    [88] Hemelrijk C, Reid D, Hildenbrandt H, Padding J. The increased efficiency of fish swimming in a school. Fish and Fisheries, 2015, 16(3): 511-521 doi: 10.1111/faf.12072
    [89] Dai L Z, He G W, Zhang X, Zhang X. Stable formations of self-propelled fish-like swimmers induced by hydrodynamic interactions. Journal of the Royal Society Interface, 2018, 15(147): Article No. 20180490 doi: 10.1098/rsif.2018.0490
    [90] Chen S Y, Fei Y H J, Chen Y C, Chi K J, Yang J T. The swimming patterns and energy-saving mechanism revealed from three fish in a school. Ocean Engineering, 2016, 122: 22-31 doi: 10.1016/j.oceaneng.2016.06.018
    [91] Tesch F W, Thorpe J E. The Eel. Oxford: Blackwell Science Ltd, 2003.
    [92] Burgerhout E, Manabe R, Brittijn S A, Aoyama J, Tsukamoto K, van den Thillart G E E J M. Dramatic effect of pop-up satellite tags on eel swimming. Naturwissenschaften, 2011, 98(7): 631-634 doi: 10.1007/s00114-011-0805-0
    [93] Palstra A, van Ginneken V, van den Thillart G. Cost of transport and optimal swimming speed in farmed and wild European silver eels (Anguilla anguilla). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2008, 151(1): 37-44
    [94] Sébert P, Scaion D, Belhomme M. High hydrostatic pressure improves the swimming efficiency of European migrating silver eel. Respiratory Physiology & Neurobiology, 2009, 165(1): 112-114
    [95] van Ginneken V, Antonissen E, Müller U K, Booms R, Eding E, Verreth J, et al. Eel migration to the Sargasso: Remarkably high swimming efficiency and low energy costs. Journal of Experimental Biology, 2005, 208(7): 1329-1335 doi: 10.1242/jeb.01524
    [96] Burgerhout E, Tudorache C, Brittijn S A, Palstra A P, Dirks R P, van den Thillart G E E J M. Schooling reduces energy consumption in swimming male European eels, Anguilla anguilla L. Journal of Experimental Marine Biology and Ecology, 2013, 448: 66-71 doi: 10.1016/j.jembe.2013.05.015
    [97] 周梦园, 吴君钦, 夏乐, 黄敏. 智能仿生鱼系统的设计与实现. 计算机工程与设计, 2022, 43(5): 1467-1476

    Zhou Meng-Yuan, Wu Jun-Qin, Xia Le, Huang Min. Design and implementation of intelligent bionic fish system. Computer Engineering and Design, 2022, 43(5): 1467-1476
    [98] 秦伟伟, 张建, 左新龙, 唐文献, 王子航. 基于锦鲤BCF摆动推进特性分析. 科学技术与工程, 2023, 23(8): 3200-3206

    Qin Wei-Wei, Zhang Jian, Zuo Xin-Long, Tang Wen-Xian, Wang Zi-Hang. Based on the analysis of the oscillating propulsion characteristics of koi BCF. Science Technology and Engineering, 2023, 23(8): 3200-3206
    [99] 李广浩, 冯娜, 刘贵杰. 基于仿生鱼体结构的平板减阻方法. 水下无人系统学报, 2021, 29(1): 80-87

    Li Guang-Hao, Feng Na, Liu Gui-Jie. Flat drag reduction method based on biomimetic fish-body structure. Journal of Unmanned Undersea Systems, 2021, 29(1): 80-87
    [100] 郝天泽, 肖华平, 刘书海, 张超, 马豪. 集成化智能软体机器人研究进展. 浙江大学学报(工学版), 2021, 55(2): 229-243

    Hao Tian-Ze, Xiao Hua-Ping, Liu Shu-Hai, Zhang Chao, Ma Hao. Research status of integrated intelligent soft robots. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 229-243
    [101] 教柳, 张保成, 张开升, 赵波. 两关节压力驱动柔性仿生机器鱼的设计与仿真. 力学学报, 2020, 52(3): 817-827

    Jiao Liu, Zhang Bao-Cheng, Zhang Kai-Sheng, Zhao Bo. Design and simulation of two-joint pressure-driven soft bionic fish. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 817-827
    [102] Borazjani I, Sotiropoulos F. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. Journal of Experimental Biology, 2008, 211(10): 1541-1558 doi: 10.1242/jeb.015644
    [103] Gonçalves R T, Hirabayashi S, Suzuki H. Experimental study on flow around an array of four circular cylinders. In: Proceedings of the Techno-Ocean (Techno-Ocean). Kobe, Japan: IEEE, 2016. 660−667
    [104] Ritz D A. Is social aggregation in aquatic crustaceans a strategy to conserve energy? Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(S3): 59-67 doi: 10.1139/f00-170
    [105] Patria M P, Wiese K. Swimming in formation in krill (Euphausiacea), a hypothesis: Dynamics of the flow field, properties of antennular sensor systems and a sensory-motor link. Journal of Plankton Research, 2004, 26(11): 1315-1325 doi: 10.1093/plankt/fbh122
    [106] Hamner W M. Aspects of schooling in Euphausia superba. Journal of Crustacean Biology, 1984, 4(5): 67-74 doi: 10.1163/1937240X84X00507
    [107] Kanda K, Takagi K, Seki Y. Movement of the larger swarms of Antarctic krill Euphausia superba population off enderby land during 1976-1977 season. Journal of the Tokyo University of Fisheries, 1982, 68(1-2): 25-45
    [108] Yen J, Brown J, Webster D R. Analysis of the flow field of the krill, Euphausia pacifica. Marine and Freshwater Behaviour and Physiology, 2003, 36(4): 307-319 doi: 10.1080/10236240310001614439
    [109] Murphy D W, Olsen D, Kanagawa M, King R, Kawaguchi S, Osborn J, et al. The three dimensional spatial structure of Antarctic krill schools in the laboratory. Scientific Reports, 2019, 9(1): Article No. 381 doi: 10.1038/s41598-018-37379-9
    [110] Burns A L, Schaerf T M, Lizier J, Kawaguchi S, Cox M, King R, et al. Self-organization and information transfer in Antarctic krill swarms. Proceedings of the Royal Society B: Biological Sciences, 2022, 289(1969): Article No. 20212361 doi: 10.1098/rspb.2021.2361
    [111] Tarling G A, Fielding S. Swarming and behaviour in Antarctic krill. Biology and Ecology of Antarctic Krill. Cham: Springer, 2016. 279−319
    [112] Terushkin M, Fridman E. Network-based deployment of nonlinear multi agents over open curves: A PDE approach. Automatica, 2021, 129: Article No. 109697 doi: 10.1016/j.automatica.2021.109697
    [113] Khan M W, Wang J. Multi-agents based optimal energy scheduling technique for electric vehicles aggregator in microgrids. International Journal of Electrical Power & Energy Systems, 2022, 134: Article No. 107346
    [114] Herrnkind W F, Childress M J, Lavalli K L. Cooperative defence and other benefits among exposed spiny lobsters: Inferences from group size and behaviour. Marine and Freshwater Research, 2001, 52(8): 1113-1124 doi: 10.1071/MF01044
    [115] Heeremans O, Rubie E, King M, Oviedo-Trespalacios O. Group cycling safety behaviours: A systematic review. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 91: 26-44 doi: 10.1016/j.trf.2022.09.013
    [116] Pérez-Zuriaga A M, Moll S, López G, García A. Driver behavior when overtaking cyclists riding in different group configurations on two-lane rural roads. International Journal of Environmental Research and Public Health, 2021, 18(23): Article No. 12797 doi: 10.3390/ijerph182312797
    [117] Bill R G, Herrnkind W F. Drag reduction by formation movement in spiny lobsters. Science, 1976, 193(4258): 1146-1148 doi: 10.1126/science.193.4258.1146
    [118] Kanciruk P, Herrnkind W. Mass migration of spiny lobster, Panulirus argus (Crustacea: Palinuridae): Behavior and environmental correlates. Bulletin of Marine Science, 1978, 28(4): 601-623
    [119] Herrnkind W F. Evolution and mechanisms of mass single-file migration in spiny lobster: Synopsis. Contributions in Marine Science, 1985, 27(S1): 197-211
    [120] Herrnkind W F. Spiny lobsters: Patterns of movement. Biology and management of lobsters. Physiology and behavior, 1980, 1(12): 349-407
    [121] Briceño F A, Polymeropoulos E T, Fitzgibbon Q P, Dambacher J M, Pecl G T. Changes in metabolic rate of spiny lobster under predation risk. Marine Ecology Progress Series, 2018, 598: 71-84 doi: 10.3354/meps12644
    [122] Voelkl B, Portugal S J, Unsöld M, Usherwood J R, Wilson A M, Fritz J. Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 2115-2120
    [123] Waters A, Blanchette F, Kim A D. Modeling huddling penguins. PLoS One, 2012, 7(11): Article No. e50277 doi: 10.1371/journal.pone.0050277
    [124] Corrales-García A, Esteve J, Zhao Y L, Yang X L. Synchronized moulting behaviour in trilobites from the Cambrian Series 2 of South China. Scientific Reports, 2020, 10(1): Article No. 14099 doi: 10.1038/s41598-020-70883-5
    [125] Mángano M G, Buatois L A, Waisfeld B G, Muñoz D F, Vaccari N E, Astini R A. Were all trilobites fully marine? Trilobite expansion into brackish water during the early Palaeozoic. Proceedings of the Royal Society B: Biological Sciences, 2021, 288(1944): Article No. 20202263 doi: 10.1098/rspb.2020.2263
    [126] Bicknell R D C, Holmes J D, García-Bellido D C, Paterson J R. Malformed individuals of the trilobite Estaingia bilobata from the Cambrian Emu Bay Shale and their palaeobiological implications. Geological Magazine, 2023, 160(4): 803-812 doi: 10.1017/S0016756822001261
    [127] Hou X G, Siveter D J, Aldridge R J, Siveter D J. Collective behavior in an early Cambrian arthropod. Science, 2008, 322(5899): 224-224 doi: 10.1126/science.1162794
    [128] Radwański A, Kin A, Radwańska U. Queues of blind phacopid trilobites trimerocephalus: A case of frozen behaviour of early Famennian age from the Holy Cross Mountains, Central Poland. Acta Geologica Polonica, 2009, 59(4): 459-481
    [129] Kin A, Błażejowski B. A new Trimerocephalus species (Trilobita, Phacopidae) from the late Devonian (early Famennian) of Poland. Zootaxa, 2013, 3626(3): 345-355 doi: 10.11646/zootaxa.3626.3.3
    [130] Gutiérrez-Marco J C, Sá A A, García-Bellido D C, Rábano I, Valério M. Giant trilobites and trilobite clusters from the Ordovician of Portugal. Geology, 2009, 37(5): 443-446 doi: 10.1130/G25513A.1
    [131] Fornarelli F, Oresta P, Lippolis A. Flow patterns and heat transfer around six in-line circular cylinders at low Reynolds number. JP Journal of Heat and Mass Transfer, 2015, 11(1): 1-28 doi: 10.17654/JPHMTFeb2015_001_028
    [132] Gilbert C, Blanc S, Le Maho Y, Ancel A. Energy saving processes in huddling emperor penguins: From experiments to theory. Journal of Experimental Biology, 2008, 211(1): 1-8 doi: 10.1242/jeb.005785
    [133] Gilbert C, Le Maho Y, Perret M, Ancel A. Body temperature changes induced by huddling in breeding male emperor penguins. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2007, 292(1): R176-R185 doi: 10.1152/ajpregu.00912.2005
    [134] Ancel A, Gilbert C, Poulin N, Beaulieu M, Thierry B. New insights into the huddling dynamics of emperor penguins. Animal Behaviour, 2015, 110: 91-98 doi: 10.1016/j.anbehav.2015.09.019
    [135] Alberts J R. Huddling by rat pups: Group behavioral mechanisms of temperature regulation and energy conservation. Journal of Comparative and Physiological Psychology, 1978, 92(2): 231-245 doi: 10.1037/h0077459
    [136] Hayes J P, Speakman J R, Racey P A. The contributions of local heating and reducing exposed surface area to the energetic benefits of huddling by short-tailed field voles (Microtus agrestis). Physiological Zoology, 1992, 65(4): 742-762 doi: 10.1086/physzool.65.4.30158537
    [137] Haim A, Van Aarde R J, Skinner J D. Burrowing and huddling in newborn porcupine: The effect on thermoregulation. Physiology & Behavior, 1992, 52(2): 247-250
    [138] Gilbert C, McCafferty D, Le Maho Y, Martrette J M, Giroud S, Blanc S, et al. One for all and all for one: The energetic benefits of huddling in endotherms. Biological Reviews, 2010, 85(3): 545-569 doi: 10.1111/j.1469-185X.2009.00115.x
    [139] Gilbert C, Robertson G, Le Maho Y, Naito Y, Ancel A. Huddling behavior in emperor penguins: Dynamics of huddling. Physiology & Behavior, 2006, 88(4-5): 479-488
    [140] Gilbert C, Robertson G, Le Maho Y, Ancel A. How do weather conditions affect the huddling behaviour of emperor penguins? Polar Biology, 2008, 31(2): 163-169
    [141] Ancel A, Beaulieu M, Le Maho Y, Gilbert C. Emperor penguin mates: Keeping together in the crowd. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1665): 2163-2169 doi: 10.1098/rspb.2009.0140
    [142] Zitterbart D P, Wienecke B, Butler J P, Fabry B. Coordinated movements prevent jamming in an emperor penguin huddle. PLoS One, 2011, 6(6): Article No. e20260 doi: 10.1371/journal.pone.0020260
    [143] Alberts J R. Huddling by rat pups: Multisensory control of contact behavior. Journal of Comparative and Physiological Psychology, 1978, 92(2): 220-230 doi: 10.1037/h0077458
    [144] Canals M, Bozinovic F. Huddling behavior as critical phase transition triggered by low temperatures. Complexity, 2011, 17(1): 35-43 doi: 10.1002/cplx.20370
    [145] Conklin P, Heggeness F W. Maturation of tempeature homeostasis in the rat. American Journal of Physiology-Legacy Content, 1971, 220(2): 333-336 doi: 10.1152/ajplegacy.1971.220.2.333
    [146] Malik S S, Fewell J E. Thermoregulation in rats during early postnatal maturation: Importance of nitric oxide. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2003, 285(6): R1366-R1372 doi: 10.1152/ajpregu.00280.2003
    [147] Richter C P. Animal behavior and internal drives. The Quarterly Review of Biology, 1927, 2(3): 307-343 doi: 10.1086/394279
    [148] Sealander Jr J A. The relationship of nest protection and huddling to survival of Peromyscus at low temperature. Ecology, 1952, 33(1): 63-71 doi: 10.2307/1931252
    [149] Glancy J, Groß R, Stone J V, Wilson S P. A self-organising model of thermoregulatory huddling. PLoS Computational Biology, 2015, 11(9): Article No. e1004283 doi: 10.1371/journal.pcbi.1004283
    [150] Glancy J, Groß R, Wilson S P. A minimal model of the phase transition into thermoregulatory huddling. In: Proceedings of the 2nd International Conference on Biomimetic and Biohybrid Systems. London, UK: Springer, 2013. 381−383
    [151] 贺威, 丁施强, 孙长银. 扑翼飞行器的建模与控制研究进展. 自动化学报, 2017, 43(5): 685-696

    He Wei, Ding Shi-Qiang, Sun Chang-Yin. Research progress on modeling and control of flapping-wing air vehicles. Acta Automatica Sinica, 2017, 43(5): 685-696
    [152] 尹曌, 贺威, 邹尧, 穆新星, 孙长银. 基于“雁阵效应”的扑翼飞行机器人高效集群编队研究. 自动化学报, 2021, 47(6): 1355-1367

    Yin Zhao, He Wei, Zou Yao, Mu Xin-Xing, Sun Chang-Yin. Efficient formation of flapping-wing aerial vehicles based on wild geese queue effect. Acta Automatica Sinica, 2021, 47(6): 1355-1367
    [153] 付强, 张祥, 赵民, 张春华, 贺威. 仿生扑翼飞行器风洞实验研究进展. 工程科学学报, 2022, 44(4): 767-779

    Fu Qiang, Zhang Xiang, Zhao Min, Zhang Chun-Hua, He Wei. Research progress on the wind tunnel experiment of a bionic flapping-wing aerial vehicle. Chinese Journal of Engineering, 2022, 44(4): 767-779
    [154] 汪婷婷, 何修宇, 邹尧, 付强, 贺威. 面向扑翼飞行机器人的飞行控制研究进展综述. 工程科学学报, 2023, 45(10): 1630-1640

    Wang Ting-Ting, He Xiu-Yu, Zou Yao, Fu Qiang, He Wei. Research progress on the flight control of flapping-wing aerial vehicles. Chinese Journal of Engineering, 2023, 45(10): 1630-1640
    [155] 钱辰, 方勇纯, 李友朋. 面向扑翼飞行控制的建模与奇异摄动分析. 自动化学报, 2022, 48(2): 434-443

    Qian Chen, Fang Yong-Chun, Li You-Peng. Control oriented modeling and singular perturbation analysis in flapping-wing flight. Acta Automatica Sinica, 2022, 48(2): 434-443
  • 期刊类型引用(0)

    其他类型引用(1)

  • 加载中
  • 图(16) / 表(2)
    计量
    • 文章访问数:  657
    • HTML全文浏览量:  369
    • PDF下载量:  267
    • 被引次数: 1
    出版历程
    • 收稿日期:  2023-03-28
    • 录用日期:  2023-07-27
    • 网络出版日期:  2023-12-28
    • 刊出日期:  2024-03-29

    目录

    /

    返回文章
    返回