2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能电网虚假数据注入攻击弹性防御策略的拓扑优化

罗小元 何俊楠 王新宇 李宏波 关新平

罗小元, 何俊楠, 王新宇, 李宏波, 关新平. 智能电网虚假数据注入攻击弹性防御策略的拓扑优化. 自动化学报, 2023, 49(6): 1326−1338 doi: 10.16383/j.aas.c230020
引用本文: 罗小元, 何俊楠, 王新宇, 李宏波, 关新平. 智能电网虚假数据注入攻击弹性防御策略的拓扑优化. 自动化学报, 2023, 49(6): 1326−1338 doi: 10.16383/j.aas.c230020
Luo Xiao-Yuan, He Jun-Nan, Wang Xin-Yu, Li Hong-Bo, Guan Xin-Ping. Research on topology optimization of resilient defense strategy against false data injection attack in smart grid. Acta Automatica Sinica, 2023, 49(6): 1326−1338 doi: 10.16383/j.aas.c230020
Citation: Luo Xiao-Yuan, He Jun-Nan, Wang Xin-Yu, Li Hong-Bo, Guan Xin-Ping. Research on topology optimization of resilient defense strategy against false data injection attack in smart grid. Acta Automatica Sinica, 2023, 49(6): 1326−1338 doi: 10.16383/j.aas.c230020

智能电网虚假数据注入攻击弹性防御策略的拓扑优化

doi: 10.16383/j.aas.c230020
基金项目: 国家自然科学基金(61873228, 62103357), 河北省教育厅青年基金 (QN2021139), 河北省自然科学基金 (F2021203043), 江苏省配电网智能技术与装备协同创新中心开放基金项目(XTCX202203)资助
详细信息
    作者简介:

    罗小元:燕山大学自动化系教授. 2005年获得燕山大学控制科学与工程学科博士学位. 主要研究方向为CPS网络攻击检测, 网络控制系统. E-mail: xyluo@ysu.edu.cn

    何俊楠:燕山大学控制科学与工程专业硕士研究生. 主要研究方向为智能电网攻击防御. E-mail: 17854221989@163.com

    王新宇:燕山大学电气工程学院讲师. 2020年获得燕山大学控制科学与工程学科博士学位. 主要研究方向为智能电网攻击检测与防御. 本文通信作者. E-mail: wxyzmya@ysu.edu.cn

    李宏波:燕山大学控制科学与工程专业硕士研究生. 主要研究方向为智能电网攻击防御. E-mail: lhb@stumail.ysu.edu.cn

    关新平:上海交通大学电子信息与电气工程学院教授. 1999年获得哈尔滨工业大学控制科学与工程学科博士学位. 主要研究方向为无线网络系统, CPS网络攻击检测. E-mail: xpguan@sjtu.edu.cn

Research on Topology Optimization of Resilient Defense Strategy Against False Data Injection Attack in Smart Grid

Funds: Supported by National Natural Science Foundation of China (61873228, 62103357), Science and Technology Youth Foundation of Hebei Education Department (QN2021139), Natural Science Foundation of Hebei Province (F2021203043), and the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing Institute of Technology (XTCX202203)
More Information
    Author Bio:

    LUO Xiao-Yuan Professor at the School of Electrical Engineering, Yanshan University. He received his Ph.D. degree in control science and engineering from Yanshan University in 2005. His research interest covers detection of cyber attack of CPS and networked control systems

    HE Jun-Nan Master student of control science and engineering, Yanshan University. Her main research interest is smart grid attack defense

    WANG Xin-Yu Lecturer at the School of Electrical Engineering, Yanshan University. He received his Ph.D. degree in control science and engineering from Yanshan University in 2020. His research interest covers attack detection and defense in smart grid. Corresponding author of this paper

    LI Hong-Bo Master student of control science and engineering, Yanshan University. His main research interest is smart grid attack defense

    GUAN Xin-Ping Professor at the School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University. He received his Ph.D. degree in control science and engineering from Harbin Institute of Technology in 1999. His research interest covers wireless networked systems and detection of cyber attack in CPS

  • 摘要: 基于虚拟隐含网络的虚假数据注入攻击(False data injection attack, FDIA)防御控制策略, 本文提出了一种基于图论的拓扑优化算法来提高其防御性能. 首先, 提出了一种图的等效变换方法 — 权值分配法, 实现二分图连接拓扑与二分图拉普拉斯矩阵的一一对应; 进而基于网络拓扑的连通度以及连通图的可去边理论, 给出了虚拟隐含网络和二分图连接网络的拓扑选择依据; 在考虑拓扑权值的基础上, 给出了权值拓扑优化的指标评价函数; 通过求解指标评价函数的最小化代价实现拓扑优化选择, 从而改善基于虚拟隐含网络的虚假数据注入攻击防御方法的性能. 最后, 通过在IEEE-14总线电网系统上的仿真验证了所提算法的有效性.
  • 图  1  智能电网攻击示意图

    Fig.  1  Schematic diagram of smart grid attack

    图  2  互联网络结构: ${{{\Sigma}}_{{1}}}$为电力系统拓扑, ${{{\Sigma}}_{{2}}}$为虚拟隐含网络拓扑, ${{{\Sigma}}_{\rm{eng}}}$为二分图连接拓扑

    Fig.  2  Connection network structure: ${{{\Sigma}}_{{1}}}$ is the power system topology, ${{{\Sigma}}_{{2}}}$ is the virtual network topology, and ${{{\Sigma}}_{\rm{eng}}}$ is the connection topology of bipartite graph

    图  3  权值分配法原理示意

    Fig.  3  Schematic diagram of weight allocation method

    图  4  非连通图下的权值分配法无法消去横路径情形

    Fig.  4  The weight allocation method under disconnected graph cannot eliminate the transverse path case

    图  5  非连通图下存在连通分支时的权值分配法

    Fig.  5  Weight allocation method for connected branches in disconnected graphs

    图  6  非连通图下多条横路径消去的权值分配法

    Fig.  6  Weight allocation method for elimination of multiple transverse paths in disconnected graphs

    图  7  权值分配法流程图

    Fig.  7  Flow chart of weight allocation method

    图  8  等效变换原理仿真分析

    Fig.  8  Simulation analysis of equivalent transformation principle

    图  9  随机拓扑图及权值分配法化简后的拓扑图

    Fig.  9  Random topology and topology simplified by weight allocation method

    图  10  随机拓扑图及权值分配法化简后的拓扑图

    Fig.  10  Random topology and topology simplified by weight allocation method

    图  11  IEEE-14节点系统转子角仿真图

    Fig.  11  Rotor angle simulation diagram of IEEE-14 system

    图  12  IEEE-14节点系统角频率仿真图

    Fig.  12  Rotor angular frequency simulation diagram of IEEE-14 system

    表  1  优化前后拓扑的指标函数值

    Table  1  Index function values of the topology before and after optimization

    $ \Sigma_{2}$和$\Sigma_{{\rm{eng}}}$优化前优化后
    图9(a)、图9(b)0.018753.7803
    图9(c)、图9(d)0.025738.7909
    图9(e)、图9(f)0.019850.6919
    图10(a)、图10(b)0.037726.6923
    图10(c)、图10(d)0.040124.7731
    图10(e)、图10(f)0.060716.7136
    下载: 导出CSV
  • [1] Mustafa A, Modares H. Attack analysis and resilient control design for discrete-time distributed multi-agent systems. IEEE Robotics and Automation Letters, 2020, 5(2): 369-376 doi: 10.1109/LRA.2019.2959726
    [2] Amin M, El-Sousy F F M, Aziz G A A, Gaber K, Mohammed O A. CPS attacks mitigation approaches on power electronic systems with security challenges for smart grid applications: A review. IEEE Access, 2021, 9: 38571-38601 doi: 10.1109/ACCESS.2021.3063229
    [3] Alguliyev R, Imamverdiyev Y, Sukhostat L. Cyber-physical systems and their security issues. Computers in Industry, 2018, 100: 212-223 doi: 10.1016/j.compind.2018.04.017
    [4] Dibaji S M, Pirani M, Flamholz D B, Annaswamy A M, Johansson K H, Chakrabortty A. A systems and control perspective of CPS security. Annual Reviews in Control, 2019, 47: 394-411 doi: 10.1016/j.arcontrol.2019.04.011
    [5] Nozari E, Tallapragada P, Cortés J. Differentially private average consensus: Obstructions, trade-offs, and optimal algorithm design. Automatica, 2017, 81: 221-231 doi: 10.1016/j.automatica.2017.03.016
    [6] Jafarnia-Jahromi A, Broumandan A, Nielsen J, Lachapelle G. GPS vulnerability to spoofing threats and a review of antispoofing techniques. International Journal of Navigation and Observation, 2012, 2012: Article No. 127072
    [7] Deng R L, Xiao G X, Lu R X, Liang H, Vasilakos A V. False data injection on state estimation in power systems-attacks, impacts, and defense: A survey. IEEE Transactions on Industrial Informatics, 2017, 13(2): 411-423 doi: 10.1109/TII.2016.2614396
    [8] De Persis C, Tesi P. Input-to-state stabilizing control under denial-of-service. IEEE Transactions on Automatic Control, 2015, 60(11): 2930-2944 doi: 10.1109/TAC.2015.2416924
    [9] Liu Y, Ning P, Reiter M K. False data injection attacks against state estimation in electric power grids. ACM Transactions on Information and System Security, 2011, 14(1): Article No. 13
    [10] 孙凯祺, 邱伟, 李可军, 姚文轩, 刘奕路. 面向快速频率响应系统的网络攻击防御控制策略. 中国电机工程学报, 2021, 41(16): 5476-5485 doi: 10.13334/J.0258-8013.PCSEE.210038

    Sun Kai-Qi, Qiu Wei, Li Ke-Jun, Yao Wen-Xuan, Liu Yi-Lu. Cyber attack defense control for fast frequency response system. Proceedings of the CSEE, 2021, 41(16): 5476-5485 doi: 10.13334/J.0258-8013.PCSEE.210038
    [11] 刘鑫蕊, 吴泽群. 面向智能电网的空间隐蔽型恶性数据注入攻击在线防御研究. 中国电机工程学报, 2020, 40(8): 2546-2558 doi: 10.13334/J.0258-8013.PCSEE.190089

    Liu Xin-Rui, Wu Ze-Qun. Research on online defense against spatial covert malicious data injection attacks for smart grids. Proceedings of the CSEE, 2020, 40(8): 2546-2558 doi: 10.13334/J.0258-8013.PCSEE.190089
    [12] Nguyen T N, Liu B H, Nguyen N P, Dumba B, Chou J T. Smart grid vulnerability and defense analysis under cascading failure attacks. IEEE Transactions on Power Delivery, 2021, 36(4): 2264-2273 doi: 10.1109/TPWRD.2021.3061358
    [13] Zhang Z Y, Tian Y L, Deng R L, Ma J F. A double-benefit moving target defense against cyber-physical attacks in smart grid. IEEE Internet of Things Journal, 2022, 9(18): 17912-17925 doi: 10.1109/JIOT.2022.3161790
    [14] Tian J, Tan R, Guan X H, Liu T. Enhanced hidden moving target defense in smart grids. IEEE Transactions on Smart Grid, 2019, 10(2): 2208-2223 doi: 10.1109/TSG.2018.2791512
    [15] Xu Z, Ma Q, Lin L, Nie Q G, Liu X, Yang D F, et al. A resilient defense strategy against false data injection attack in smart grid. In: Proceedings of the 40th Chinese Control Conference (CCC). Shanghai, China: IEEE, 2021. 4726−4731
    [16] Hou L J, Luo X Y, Wang X Y, Guan X P. An adaptive control defense scheme of false data injection attacks in smart grids. In: Proceedings of the 3rd International Symposium on Autonomous Systems (ISAS). Shanghai, China: IEEE, 2019. 522−527
    [17] Luo X Y, He J N, Wang X Y, Zhang Y Y, Guan X P. Resilient defense of false data injection attacks in smart grids via virtual hidden networks. IEEE Internet of Things Journal, 2023, 10(7): 6474-6490 doi: 10.1109/JIOT.2022.3227059
    [18] Esmalifalak M, Liu L C, Nguyen N, Zheng R, Han Z. Detecting stealthy false data injection using machine learning in smart grid. IEEE Systems Journal, 2017, 11(3): 1644-1652 doi: 10.1109/JSYST.2014.2341597
    [19] Zhang Y, Wang J H, Chen B. Detecting false data injection attacks in smart grids: A semi-supervised deep learning approach. IEEE Transactions on Smart Grid, 2021, 12(1): 623-634 doi: 10.1109/TSG.2020.3010510
    [20] 陈锦涛, 李鸿一, 任鸿儒, 鲁仁全. 基于RRT森林算法的高层消防无人机室内协同路径规划. 自动化学报, DOI: 10.16383/j.aas.c210368

    Chen Jin-Tao, Li Hong-Yi, Ren Hong-Ru, Lu Ren-Quan. Cooperative indoor path planning of multi-UAVs for high-rise fire fighting based on RRT-forest algorithm. Acta Automatica Sinica, DOI: 10.16383/j.aas.c210368
    [21] 李鸿一, 陈锦涛, 任鸿儒, 鲁仁全. 基于随机采样的高层消防无人机协同搜索规划. 中国科学: 信息科学, 2022, 52(9): 1610-1626 doi: 10.1360/SSI-2022-0038

    Li Hong-Yi, Chen Jin-Tao, Ren Hong-Ru, Lu Ren-Quan. Random-sampling-based multi-UAV cooperative search planning for high-rise firefighting. Scientia Sinica: Informationis, 2022, 52(9): 1610-1626 doi: 10.1360/SSI-2022-0038
    [22] Sun Y, Li F X. Algebraic connectivity and disjoint vertex subsets of graphs. Mathematical Problems in Engineering, 2020, 2020: Article No. 5763218
    [23] Cherukuri A, Gharesifard B, Cortés J. Saddle-point dynamics: Conditions for asymptotic stability of saddle points. SIAM Journal on Control and Optimization, 2017, 55(1): 486-511 doi: 10.1137/15M1026924
    [24] Burke J V, Overton M L. Stable perturbations of nonsymmetric matrices. Linear Algebra and its Applications, 1992, 171: 249-273 doi: 10.1016/0024-3795(92)90263-A
    [25] 尹建华. 4连通图的可去边与4连通图的构造. 系统科学与数学, 1999, 19(4): 434-438

    Yin J H. Removable edges in 4-connected graphs and a structure of 4-connected graphs. Journal of Systems Science and Mathematical Sciences, 1999, 19(4): 434-438
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1303
  • HTML全文浏览量:  376
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-13
  • 录用日期:  2023-04-04
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回