Research on Topology Optimization of Resilient Defense Strategy Against False Data Injection Attack in Smart Grid
-
摘要: 基于虚拟隐含网络的虚假数据注入攻击(False data injection attack, FDIA)防御控制策略, 本文提出了一种基于图论的拓扑优化算法来提高其防御性能. 首先, 提出了一种图的等效变换方法 — 权值分配法, 实现二分图连接拓扑与二分图拉普拉斯矩阵的一一对应; 进而基于网络拓扑的连通度以及连通图的可去边理论, 给出了虚拟隐含网络和二分图连接网络的拓扑选择依据; 在考虑拓扑权值的基础上, 给出了权值拓扑优化的指标评价函数; 通过求解指标评价函数的最小化代价实现拓扑优化选择, 从而改善基于虚拟隐含网络的虚假数据注入攻击防御方法的性能. 最后, 通过在IEEE-14总线电网系统上的仿真验证了所提算法的有效性.Abstract: Based on the defense control strategy of virtual hidden network, this paper proposes a topology optimization algorithm based on graph theory to improve the defense performance of power system against false data injection attacks. Firstly, an equivalent transformation method of graph-weight distribution method is proposed to realize the one-to-one correspondence between the connection topology of bipartite graph and the Laplace matrix of bipartite graph; Then, based on the connectivity of network topology and the theory of removable edges of connected graphs, the topological selection basis of virtual hidden networks and bipartite graph connected networks is given; Based on the consideration of topological weights, the index evaluation function of topological optimization of weights is given; By minimizing the cost of index evaluation function, topology optimization is realized, and then the performance of false data injection attack defense method based on virtual hidden network is improved. Finally, the effectiveness of the proposed algorithm is verified by simulation on IEEE-14 bus power grid system.
-
图 2 互联网络结构: ${{{\Sigma}}_{{1}}}$为电力系统拓扑, ${{{\Sigma}}_{{2}}}$为虚拟隐含网络拓扑, ${{{\Sigma}}_{\rm{eng}}}$为二分图连接拓扑
Fig. 2 Connection network structure: ${{{\Sigma}}_{{1}}}$ is the power system topology, ${{{\Sigma}}_{{2}}}$ is the virtual network topology, and ${{{\Sigma}}_{\rm{eng}}}$ is the connection topology of bipartite graph
-
[1] Mustafa A, Modares H. Attack analysis and resilient control design for discrete-time distributed multi-agent systems. IEEE Robotics and Automation Letters, 2020, 5(2): 369-376 doi: 10.1109/LRA.2019.2959726 [2] Amin M, El-Sousy F F M, Aziz G A A, Gaber K, Mohammed O A. CPS attacks mitigation approaches on power electronic systems with security challenges for smart grid applications: A review. IEEE Access, 2021, 9: 38571-38601 doi: 10.1109/ACCESS.2021.3063229 [3] Alguliyev R, Imamverdiyev Y, Sukhostat L. Cyber-physical systems and their security issues. Computers in Industry, 2018, 100: 212-223 doi: 10.1016/j.compind.2018.04.017 [4] Dibaji S M, Pirani M, Flamholz D B, Annaswamy A M, Johansson K H, Chakrabortty A. A systems and control perspective of CPS security. Annual Reviews in Control, 2019, 47: 394-411 doi: 10.1016/j.arcontrol.2019.04.011 [5] Nozari E, Tallapragada P, Cortés J. Differentially private average consensus: Obstructions, trade-offs, and optimal algorithm design. Automatica, 2017, 81: 221-231 doi: 10.1016/j.automatica.2017.03.016 [6] Jafarnia-Jahromi A, Broumandan A, Nielsen J, Lachapelle G. GPS vulnerability to spoofing threats and a review of antispoofing techniques. International Journal of Navigation and Observation, 2012, 2012: Article No. 127072 [7] Deng R L, Xiao G X, Lu R X, Liang H, Vasilakos A V. False data injection on state estimation in power systems-attacks, impacts, and defense: A survey. IEEE Transactions on Industrial Informatics, 2017, 13(2): 411-423 doi: 10.1109/TII.2016.2614396 [8] De Persis C, Tesi P. Input-to-state stabilizing control under denial-of-service. IEEE Transactions on Automatic Control, 2015, 60(11): 2930-2944 doi: 10.1109/TAC.2015.2416924 [9] Liu Y, Ning P, Reiter M K. False data injection attacks against state estimation in electric power grids. ACM Transactions on Information and System Security, 2011, 14(1): Article No. 13 [10] 孙凯祺, 邱伟, 李可军, 姚文轩, 刘奕路. 面向快速频率响应系统的网络攻击防御控制策略. 中国电机工程学报, 2021, 41(16): 5476-5485 doi: 10.13334/J.0258-8013.PCSEE.210038Sun Kai-Qi, Qiu Wei, Li Ke-Jun, Yao Wen-Xuan, Liu Yi-Lu. Cyber attack defense control for fast frequency response system. Proceedings of the CSEE, 2021, 41(16): 5476-5485 doi: 10.13334/J.0258-8013.PCSEE.210038 [11] 刘鑫蕊, 吴泽群. 面向智能电网的空间隐蔽型恶性数据注入攻击在线防御研究. 中国电机工程学报, 2020, 40(8): 2546-2558 doi: 10.13334/J.0258-8013.PCSEE.190089Liu Xin-Rui, Wu Ze-Qun. Research on online defense against spatial covert malicious data injection attacks for smart grids. Proceedings of the CSEE, 2020, 40(8): 2546-2558 doi: 10.13334/J.0258-8013.PCSEE.190089 [12] Nguyen T N, Liu B H, Nguyen N P, Dumba B, Chou J T. Smart grid vulnerability and defense analysis under cascading failure attacks. IEEE Transactions on Power Delivery, 2021, 36(4): 2264-2273 doi: 10.1109/TPWRD.2021.3061358 [13] Zhang Z Y, Tian Y L, Deng R L, Ma J F. A double-benefit moving target defense against cyber-physical attacks in smart grid. IEEE Internet of Things Journal, 2022, 9(18): 17912-17925 doi: 10.1109/JIOT.2022.3161790 [14] Tian J, Tan R, Guan X H, Liu T. Enhanced hidden moving target defense in smart grids. IEEE Transactions on Smart Grid, 2019, 10(2): 2208-2223 doi: 10.1109/TSG.2018.2791512 [15] Xu Z, Ma Q, Lin L, Nie Q G, Liu X, Yang D F, et al. A resilient defense strategy against false data injection attack in smart grid. In: Proceedings of the 40th Chinese Control Conference (CCC). Shanghai, China: IEEE, 2021. 4726−4731 [16] Hou L J, Luo X Y, Wang X Y, Guan X P. An adaptive control defense scheme of false data injection attacks in smart grids. In: Proceedings of the 3rd International Symposium on Autonomous Systems (ISAS). Shanghai, China: IEEE, 2019. 522−527 [17] Luo X Y, He J N, Wang X Y, Zhang Y Y, Guan X P. Resilient defense of false data injection attacks in smart grids via virtual hidden networks. IEEE Internet of Things Journal, 2023, 10(7): 6474-6490 doi: 10.1109/JIOT.2022.3227059 [18] Esmalifalak M, Liu L C, Nguyen N, Zheng R, Han Z. Detecting stealthy false data injection using machine learning in smart grid. IEEE Systems Journal, 2017, 11(3): 1644-1652 doi: 10.1109/JSYST.2014.2341597 [19] Zhang Y, Wang J H, Chen B. Detecting false data injection attacks in smart grids: A semi-supervised deep learning approach. IEEE Transactions on Smart Grid, 2021, 12(1): 623-634 doi: 10.1109/TSG.2020.3010510 [20] 陈锦涛, 李鸿一, 任鸿儒, 鲁仁全. 基于RRT森林算法的高层消防无人机室内协同路径规划. 自动化学报, DOI: 10.16383/j.aas.c210368Chen Jin-Tao, Li Hong-Yi, Ren Hong-Ru, Lu Ren-Quan. Cooperative indoor path planning of multi-UAVs for high-rise fire fighting based on RRT-forest algorithm. Acta Automatica Sinica, DOI: 10.16383/j.aas.c210368 [21] 李鸿一, 陈锦涛, 任鸿儒, 鲁仁全. 基于随机采样的高层消防无人机协同搜索规划. 中国科学: 信息科学, 2022, 52(9): 1610-1626 doi: 10.1360/SSI-2022-0038Li Hong-Yi, Chen Jin-Tao, Ren Hong-Ru, Lu Ren-Quan. Random-sampling-based multi-UAV cooperative search planning for high-rise firefighting. Scientia Sinica: Informationis, 2022, 52(9): 1610-1626 doi: 10.1360/SSI-2022-0038 [22] Sun Y, Li F X. Algebraic connectivity and disjoint vertex subsets of graphs. Mathematical Problems in Engineering, 2020, 2020: Article No. 5763218 [23] Cherukuri A, Gharesifard B, Cortés J. Saddle-point dynamics: Conditions for asymptotic stability of saddle points. SIAM Journal on Control and Optimization, 2017, 55(1): 486-511 doi: 10.1137/15M1026924 [24] Burke J V, Overton M L. Stable perturbations of nonsymmetric matrices. Linear Algebra and its Applications, 1992, 171: 249-273 doi: 10.1016/0024-3795(92)90263-A [25] 尹建华. 4连通图的可去边与4连通图的构造. 系统科学与数学, 1999, 19(4): 434-438Yin J H. Removable edges in 4-connected graphs and a structure of 4-connected graphs. Journal of Systems Science and Mathematical Sciences, 1999, 19(4): 434-438