Remaining Useful Life Estimation of Facilities Based on Reasoning Over Temporal Graphs
-
摘要: 剩余使用寿命(Remaining useful life, RUL)预测是大型设备故障预测与健康管理(Prognostics and health management, PHM)的重要环节, 对于降低设备维修成本和避免灾难性故障具有重要意义. 针对RUL预测, 首次提出一种基于多变量分析的时序图推理模型(Multivariate similarity temporal knowledge graph, MSTKG), 通过捕捉设备各部件的运行状态耦合关系及其变化趋势, 挖掘其中蕴含的设备性能退化信息, 为寿命预测提供有效依据. 首先, 设计时序图结构, 形式化表达各部件不同工作周期的关联关系. 其次, 提出联合图卷积神经网络(Convolutional neural network, CNN)和门控循环单元 (Gated recurrent unit, GRU)的深度推理网络, 建模并学习设备各部件工作状态的时空演化过程, 并结合回归分析, 得到剩余使用寿命预测结果. 最后, 与现有预测方法相比, 所提方法能够显式建模并利用设备部件耦合关系的变化信息, 仿真实验结果验证了该方法的优越性.Abstract: Remaining useful life (RUL) estimation is an important component of the prognostics and health management (PHM) of large-scale equipment, which is of great significance for equipment maintenance and avoiding catastrophic failures. In this paper, a multivariate similarity temporal knowledge graph model (MSTKG) is proposed for remaining useful life evaluation. The model can capture the dynamic information such as time-evolving changes in the coupling relationship and stability of the various components of the equipment, and mine the equipment performance degradation information accordingly. Firstly, a temporal and sequential graph structure is designed to capture the relationships among multiple sensors in adjacent time period, and to formally represent the evolving correlations among different components in continuous working cycle. Secondly, we propose a deep inference network which integrates relation-aware convolutional neural network (CNN) and gated recurrent unit (GRU). The inference network explicitly learns the spatial and temporal evolution of the state of each component of the equipment. The results of remaining useful life estimation are obtained by integrating regression analysis. Finally, compared with existing estimation methods, the proposed method is able to explicitly model and utilize the changing information of equipment component coupling relationships. Extensive evaluation results on benchmark show that the proposed model outperforms previous solutions on RUL estimation.
-
表 1 CMAPSS传感器数据描述
Table 1 The description of CMAPSS sensor data
传感器编号 简称 描述 1 T2 风扇进口温度 2 T24 低压压气机出口温度 3 T30 高压压气机出口温度 4 T50 低压涡轮出口温度 5 P2 风扇出口压力 6 P15 涵道压力 7 P30 高压压气机出口压力 8 Nf 物理风扇转速 9 Nc 核心转速 10 Epr 发动机增压比 11 Ps30 高压压气机出口静压 12 phi 燃料流量比 13 NRf 校正后风扇转速 14 NRc 校正后核心转速 15 BPR 涵道比 16 farB 燃烧空气比 17 htBleed 排气焓 18 Nf_dmd 要求风扇转速 19 PCNfR_dmd 要求风扇校正转速 20 W31 高压涡轮冷却液流速 21 W32 低压涡轮冷却液流失 表 2 CMAPSS数据集中4个子集的细节信息
Table 2 Detailed information of four subsets of CMAPSS dataset
运行状态数 故障模式数 传感器
个数训练单元
个数测试单元
个数FD001 1 1 21 100 100 FD002 6 1 21 260 259 FD003 1 2 21 100 100 FD004 6 2 21 249 248 表 3 CMAPSS数据集实验性能对比
Table 3 Comparison of experimental performance on the CMAPSS dataset
对比方法 FD001 FD002 FD003 FD004 平均 RMSE Score RMSE Score RMSE Score RMSE Score RMSE Score CNN (2016)[18] 18.45 — 30.29 — 19.82 — 29.16 — 26.74 — LSTM-FNN[22] 16.14 338.00 24.49 4450.00 16.18 852.00 28.17 5550.00 23.42 3745.33 CNN-FNN[19] 12.61 274.00 22.36 10412.00 12.64 284.00 22.43 12466.00 19.63 8266.02 Autoencoder[34] 14.74 273.00 22.07 3099.00 17.48 574.00 23.49 3202.00 20.88 2378.27 RBM-LSTM-FNN[30] 12.56 231.00 22.73 3366.00 12.10 251.00 22.66 2840.00 19.76 2297.47 DCNN-FNN[33] 12.61 — 28.51 — 12.62 — 30.73 — 24.79 — MODBNE[35] 15.04 334.00 25.05 5585.00 12.51 422.00 28.66 6558.00 23.13 4453.32 DBN[36] 15.04 334.00 25.05 5585.00 12.51 421.00 28.66 6557.00 23.13 4452.83 RULCLIPPER[37] 13.27 216.00 22.89 2796.00 17.48 574.00 23.49 3202.00 20.97 2259.21 Autoencoder[21] 13.58 228.00 19.59 2650.00 19.16 1727.00 22.15 2901.00 19.58 2264.92 GCU-Transformer[29] 11.27 — 22.81 — 11.42 — 24.86 — 20.29 — 本文提出的方法 16.69 497.49 18.70 1605.91 17.48 651.70 20.86 2384.60 19.00 1587.31 表 4 阶段性RUL预测均方根误差
Table 4 Phased RUL prediction RMSE
阶段 FD001 FD002 FD003 FD004 平均 总体 16.69 18.71 17.48 20.86 18.44 前30% 19.57 23.11 19.85 23.86 21.60 后70% 15.30 16.48 16.37 19.44 16.90 表 5 FD002数据子集上对不同结构的消融研究
Table 5 Experimental ablation study on different structures on FD002
模型结构 RMSE 性能降低 Ours 20.86 — Ours w/o relation evolution 23.40 −2.54 Ours w/o relation 23.04 −2.18 Ours w/o origin input 21.85 −0.99 表 6 不同参数设置的模型预测性能
Table 6 Model prediction performance with different parameter settings
时间窗口长度 时间窗口跨度 时间窗口个数 RMSE 5 1 1 24.34 5 1 5 21.37 5 1 7 20.85 5 1 10 22.06 5 3 7 22.81 -
[1] Zhong M Y, Ding S X, Zhou D H, He X. An Hi/H∞ optimization approach to event-triggered fault detection for linear discrete time systems. IEEE Transactions on Automatic Control, 2020, 65(10): 4464-4471 doi: 10.1109/TAC.2020.3006811 [2] Sun Y J, Wang J, Wang X H. Fault diagnosis of mechanical equipment in high energy consumption industries in China: A review. Mechanical Systems and Signal Processing, 2023, 186: Article No. 109833. doi: 10.1016/j.ymssp.2022.109833 [3] 裴洪, 胡昌华, 司小胜, 张正新, 杜党波. 不完美维护下基于剩余寿命预测信息的设备维护决策模型. 自动化学报, 2018, 44(4): 719-729Pei Hong, Hu Chang-Hua, Si Xiao-Sheng, Zhang Zheng-Xin, Du Dang-Bo. Remaining life prediction information-based maintenance decision model for equipment under imperfect maintenance. Acta Automatica Sinica, 2018, 44(4): 719-729 [4] Camci F, Chinnam R B. Health-state estimation and prognostics in machining processes. IEEE Transactions on Automation Science and Engineering, 2010, 7(3): 581-597 doi: 10.1109/TASE.2009.2038170 [5] Liao L, Kottig F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Transactions on Reliability, 2014, 63(1): 191-207 doi: 10.1109/TR.2014.2299152 [6] 陆宁云, 陈闯, 姜斌, 邢尹. 复杂系统维护策略最新研究进展: 从视情维护到预测性维护. 自动化学报, 2021, 47(1): 1-17Lu Ning-Yun, Chen Chuang, Jiang Bin, Xing Yin. Latest progress on maintenance strategy of complex system: From condition-based maintenance to predictive maintenance. Acta Automatica Sinica, 2021, 47(1): 1-17 [7] Souza A D R D, Efimov D, Raissi T, Ping X B. Robust output feedback model predictive control for constrained linear systems via interval observers. Automatica, 2022, 135: Article No.109951 doi: 10.1016/j.automatica.2021.109951 [8] Wang B, Lei Y G, Li N P, Li N B. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings. IEEE Transactions on Reliability, 2020, 69(1): 401-412 doi: 10.1109/TR.2018.2882682 [9] 袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状. 自动化学报, 2020, 46(10): 2013-2030Yuan Ye, Zhang Yong, Ding Han. Research on key technology of industrial artificial intelligence and its application in predictive maintenance. Acta Automatica Sinica, 2020, 46(10): 2013-2030 [10] 董青, 郑建飞, 胡昌华, 李冰, 牟含笑. 基于两阶段自适应Wiener过程的剩余寿命预测方法. 自动化学报, 2022, 48(2): 539-553Dong Qing, Zheng Jian-Fei, Hu Chang-Hua, Li Bing, Mu Han-Xiao. Remaining useful life prognostic method based on two-stage adaptive wiener process. Acta Automatica Sinica, 2022, 48(2): 539-553 [11] Wang W L, Gong C H, Wang D. Optimizing sensor activation in a Language domain for fault diagnosis. IEEE Transactions on Automatic Control, 2019, 64(2) 743-750 doi: 10.1109/TAC.2018.2844409 [12] Li Q, Wang Z D, Hu J, Sheng W G. Distributed state and fault estimation over sensor networks with probabilistic quantizations: The dynamic event-triggered case. Automatica, 2021, 131: Article No.109784 doi: 10.1016/j.automatica.2021.109784 [13] 李天梅, 司小胜, 刘翔, 裴洪. 大数据下数模联动的随机退化设备剩余寿命预测技术. 自动化学报, 2022, 48(9): 2119-2141Li Tian-Mei, Si Xiao-Sheng, Liu Xiang, Pei Hong. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data. Acta Automatica Sinica, 2022, 48(9): 2119-2141 [14] 李杰, 李响, 许元铭, 杨绍杰, 孙可意. 工业人工智能及应用研究现状及展望. 自动化学报, 2020, 46(10): 2031-2044Li Jie, Li Xiang, Xu Yuan-Ming, Yang Shao-Jie, Sun Ke-Yi. Recent advances and prospects in industrial AI and applications. Acta Automatica Sinica, 2020, 46(10): 2031-2044 [15] 韩中, 程林, 熊金泉, 刘满军. 大数据结构化与数据驱动的复杂系统维修决策. 自动化学报, 2020, 46(2): 385-396Han Zhong, Cheng Lin, Xiong Jin-Quan, Liu Man-Jun. Complex system maintenance decisions based on big data structuration and data-driven. Acta Automatica Sinica, 2020, 46(2): 385-396 [16] 喻勇, 司小胜, 胡昌华, 崔忠马, 李洪鹏. 数据驱动的可靠性评估与寿命预测研究进展: 基于协变量的方法. 自动化学报, 2018, 44(2): 216-227Yu Yong, Si Xiao-Sheng, Hu Chang-Hua, Cui Zhong-Ma, Li Hong-Peng. Data driven reliability assessment and life-time prognostics: A review on covariate models. Acta Automatica Sinica, 2018, 44(2): 216-227 [17] Yang B Y, Liu R N, Zio E. Remaining useful life prediction based on a double-convolutional neural network architecture. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9521-9530 doi: 10.1109/TIE.2019.2924605 [18] Babu G S, Zhao P L, Li X L. Deep convolutional neural network based regression approach for estimation of remaining useful life. In: Proceedings of the International Conference on Database Systems for Advanced Applications. Cham, Switzerland: Springer, 2016. 214–228 [19] Li X, Ding Q, Sun J Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering System Safety, 2018, 172: 1-11. doi: 10.1016/j.ress.2017.11.021 [20] Malhi A, Yan R Q, Gao R X. Prognosis of defect propagation based on recurrent neural networks. IEEE Transactions on Instrumentation and Measurement, 2011, 60(3): 703-711 doi: 10.1109/TIM.2010.2078296 [21] Yu W N, Kim I Y, Mechefske C. An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme. Reliability Engineering System Safety, 2020, 199: Article No. 106926. doi: 10.1016/j.ress.2020.106926 [22] Zheng S, Ristovski K, Farahat A, Gupta C. Long short-term memory network for remaining useful life estimation. In: Proceedings of the IEEE International Conference on Prognostics and Health Management (ICPHM). Dallas, USA: IEEE, 2017. 88−95 [23] Jin R B, Chen Z H, Wu K Y, Wu M, Li X L, Yan R Q. Bi-LSTM based two-stream network for machine remaining useful life prediction. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-10. [24] Liu C L, Zhang Y, Sun J R, Cui Z H, Wang K. Stacked bidirectional LSTM RNN to evaluate the remaining useful life of supercapacitor, International Journal of Energy Research, 2022, 46(3): 3034–3043. doi: 10.1002/er.7360 [25] 康守强, 周月, 王玉静, 谢金宝, MIKULOVICH Vladimir Ivanovich. 基于改进SAE和双向LSTM的滚动轴承RUL预测方法. 自动化学报, 2022, 48(9): 2327-2336Kang Shou-Qiang, Zhou Yue, Wang Yu-Jing, Xie Jin-Bao, MIKULOVICH Vladimir Ivanovich. RUL prediction method of a rolling bearing based on improved SAE and BI-LSTM. Acta Automatica Sinica, 2022, 48(9): 2327-2336 [26] Chen J G, Chen D J, Liu G P.. Using temporal convolution network for remaining useful lifetime prediction. Engineering Reports, 2021, 3(3): Article No. e12305. doi: 10.1002/eng2.12305 [27] Chang Y H, Chen J L, Liu Y L, Xu E Y, He S L. Temporal convolution-based sorting feature repeat-explore network combining with multi-band information for remaining useful life estimation of equipment. Knowledge-based Systems, 2022, 249: Article No. 108958. doi: 10.1016/j.knosys.2022.108958 [28] Liu C L, Li D Z, Wang L C, Li L W, Wang K. Strong robustness and high accuracy in predicting remaining useful life of supercapacitors. APL Materials, 2022, 10(6): Article No. 061106. [29] Mo Y, Wu Q H, Li X, Huang B Q. Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit. Journal of Intelligent Manufacturing, 2021, 32(7): 1997-2006 doi: 10.1007/s10845-021-01750-x [30] Chen D, Hong W, Zhou X. Transformer network for remaining useful life prediction of lithium-ion batteries. IEEE Access, 2022, 10: 19621-19628 doi: 10.1109/ACCESS.2022.3151975 [31] Zhang Z Z, Song W, Li Q Q. Dual-aspect self-attention based on transformer for remaining useful life prediction.IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11 [32] Ahmadzadeh F, Lundberg J. Remaining useful life estimation: Review. International Journal of System Assurance Engineering and Management, 2014, 5(4): 461-474 [33] Xu X, Wu Q, Li X, Huang B. Dilated convolution neural network for remaining useful life prediction. Journal of Computing and Information Science in Engineering, 2020, 2: 021004 [34] Yu W N, Kim I Y, Mechefske C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme. Mechanical Systems and Signal Processing, 2019, 129: 764–780 doi: 10.1016/j.ymssp.2019.05.005 [35] Zhang C, Lim P, Qin A K, Tan K C. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2306–2318. doi: 10.1109/TNNLS.2016.2582798 [36] Liao L X, Jin W J, Pavel R. Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7076–7083. doi: 10.1109/TIE.2016.2586442 [37] Cai H S, Feng J S, Li W Z, Hsu Y M, Lee J. Similarity-based particle filter for remaining useful life prediction with enhanced performance. Applied Soft Computing, 2020, 94: Article No. 106474. doi: 10.1016/j.asoc.2020.106474