2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机使能的无线传感网总能耗优化方法

李敏 包富瑜 王恒

李敏, 包富瑜, 王恒. 无人机使能的无线传感网总能耗优化方法. 自动化学报, 2024, 50(11): 1−12 doi: 10.16383/j.aas.c220914
引用本文: 李敏, 包富瑜, 王恒. 无人机使能的无线传感网总能耗优化方法. 自动化学报, 2024, 50(11): 1−12 doi: 10.16383/j.aas.c220914
Li Min, Bao Fu-Yu, Wang Heng. Optimization of total energy consumption for unmanned aerial vehicle-enabled wireless sensor networks. Acta Automatica Sinica, 2024, 50(11): 1−12 doi: 10.16383/j.aas.c220914
Citation: Li Min, Bao Fu-Yu, Wang Heng. Optimization of total energy consumption for unmanned aerial vehicle-enabled wireless sensor networks. Acta Automatica Sinica, 2024, 50(11): 1−12 doi: 10.16383/j.aas.c220914

无人机使能的无线传感网总能耗优化方法

doi: 10.16383/j.aas.c220914
基金项目: 国家自然科学基金(92267106, 61972061), 重庆英才计划基础研究与前沿探索项目(cstc2021ycjh-bgzxm0017)资助
详细信息
    作者简介:

    李敏:重庆邮电大学自动化学院教授. 2014年获得重庆大学博士学位. 主要研究方向为无线传感网, 无人机和无线功率传输. 本文通信作者. E-mail: limin@cqupt.edu.cn

    包富瑜:重庆邮电大学自动化学院硕士研究生. 主要研究方向为无线传感网, 无人机. E-mail: baofuyu1218@163.com

    王恒:重庆邮电大学自动化学院教授. 2010年获得重庆大学博士学位. 主要研究方向为工业物联网, 无线传感网和时间同步. E-mail: wangheng@cqupt.edu.cn

Optimization of Total Energy Consumption for Unmanned Aerial Vehicle-enabled Wireless Sensor Networks

Funds: Supported by National Natural Science Foundation of China (92267106, 61972061) and Fundamental Research and Frontier Exploration Program of Chongqing (cstc2021ycjh-bgzxm0017)
More Information
    Author Bio:

    LI Min Professor at the college of Automation, Chongqing University of Posts and Telecommunications. She received her Ph.D. degree from Chongqing University in 2014. Her research interest covers wireless sensor networks, unmanned aerial vehicle, and wireless power transfer. Corresponding author of this paper

    BAO Fu-Yu Master student at the college of Automation, Chongqing University of Posts and Telecommunications. His research interest covers wireless sensor networks and unmanned aerial vehicle

    WANG Heng Professor at the college of Automation, Chongqing University of Posts and Telecommunications. He received his Ph.D. degree from Chongqing University in 2010. His research interest covers industrial internet of things, wireless sensor networks, and clock synchronization

  • 摘要: 为降低无人机(Unmanned aerial vehicle, UAV)使能的无线传感网(Wireless sensor networks, WSNs)的能耗, 延长网络生命周期, 提出一种在地面节点能量预算下系统总能耗优化方法. 首先, 提出地面节点聚类方法, 利用目标函数确定最优簇数, 改进模糊C均值(Fuzzy C-mean, FCM)算法构建能量均衡的集群, 采用退避定时器机制根据隶属度和能量值选择各集群的最优簇头, 减少地面节点的能耗; 然后, 根据已选簇头位置, 利用遗传算法规划UAV飞行轨迹, 减小UAV能耗; 最后, 通过单纯形搜索算法和连续凸逼近(Successive convex approximation, SCA)算法联合优化簇头发射功率和UAV悬停位置, 减小数据采集时系统的总能耗. 仿真结果表明, 该方法优于其他方法.
  • 图  1  系统模型

    Fig.  1  System model

    图  2  不同簇头个数的系统总能耗

    Fig.  2  Total energy consumption of the system with different numbers of cluster head

    图  3  集群规模变化

    Fig.  3  Variation in size of clusters

    图  4  集群内距离成本

    Fig.  4  Cost of the intra-cluster distance

    图  5  节点存活数

    Fig.  5  The number of alive nodes

    图  6  网络剩余能量

    Fig.  6  Residual energy of network

    图  7  系统能耗

    Fig.  7  System energy consumption

    图  8  UAV飞行轨迹

    Fig.  8  UAV flight trajectory

    图  9  不同簇成员个数对系统能耗的影响

    Fig.  9  Effect of different number of cluster members on system energy consumption

    图  10  不同簇头能量预算对系统能耗的影响

    Fig.  10  Impact of different cluster head energy budgets on system energy consumption

    表  1  仿真参数

    Table  1  Simulation parameter

    参数参数值参数参数值
    $\alpha$0.03${{v}_{v}}$10 m/s
    $\beta$10${{E}_{cap}}$50 J
    $\eta LoS$3 dB$l$1 Mb
    $\eta NLoS$13 dB${{\alpha }_{1}}$,${{\alpha }_{2}}$0.5
    ${{d}_{0}}$1 m$\phi $1000
    ${{\sigma }^{2}}$−174 dBm/Hz${{v}_{u}}$15 m/s
    下载: 导出CSV

    表  2  不同算法的VSC值比较

    Table  2  Comparison of VSC values for different algorithms

    实验次数OCM-FCMIEECPSHM-FCM
    1428.4052.8548.50
    2362.3549.0546.70
    3271.1566.5557.65
    4254.2051.7543.45
    5272.4058.6550.50
    6387.5052.9031.75
    7329.1549.3543.54
    8289.4558.4562.55
    9290.2555.8055.20
    10319.1546.7537.50
    下载: 导出CSV

    表  3  网络稳定性比较

    Table  3  Comparison of network stability

    算法名称FNDHNDLNDWFND
    OCM-FCM1751540.0065
    IEECP21042260.0089
    SHM-FCM91764160.0220
    下载: 导出CSV
  • [1] Li J X, Zhao H T, Wang H J, Gu F L, Wei J B, Yin H, et al. Joint optimization on trajectory, altitude, velocity, and link scheduling for minimum mission time in UAV-aided data collection. IEEE Internet of Things Journal, 2019, 7(2): 1464−1475
    [2] 王峰, 黄子路, 韩孟臣, 邢立宁, 王凌. 基于KnCMPSO算法的异构无人机协同多任务分配. 自动化学报, 2023, 49(2): 399−414 doi: 10.16383/j.aas.c210696

    Wang Feng, Huang Zi-Lu, Han Meng-Chen, Xing Li-Ning, Wang Ling. A knee point based coevolution multi-objective particle swarm optimization algorithm for heterogeneous UAV cooperative multi-task allocation. Acta Automatica Sinica, 2023, 49(2): 399−414 doi: 10.16383/j.aas.c210696
    [3] Samir M, Sharafeddine S, Assi C M, Nguyen T M, Ghrayeb A. UAV trajectory planning for data collection from time-constr-ained IoT devices. IEEE Transactions on Wireless Communications, 2019, 19(1): 34−46
    [4] 刘志新, 赵松晗, 杨毅, 袁亚洲. 智能反射面辅助的无人机无线携能通信网络吞吐量最大化算法研究. 电子与信息学报, 2022, 44(7): 2325−2331 doi: 10.11999/JEIT220195

    Liu Zhi-Xin, Zhao Song-Han, Yang Yi, Yuan Ya-Zhou. Thro-ugh put maximization algorithm for intelligent reflecting surface-aided unmanned aerial vehicle communication networks with wireless energy transfer. Journal of Electronics & Information Technology, 2022, 44(7): 2325−2331 doi: 10.11999/JEIT220195
    [5] Heinzelman W B, Chandrakasan A P, Balakrishnan H. Approximate policy-based accelerated deep reinforcement learning. An Application-specific Protocol Architecture for Wireless Microsensor Networks, 2002, 1(4): 660−670
    [6] Behera T M, Mohapatra S K, Samal U C, Khan S M, Daneshmand M, Gandomi A H. Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet of Things Journal, 2019, 6(3): 5132−5139 doi: 10.1109/JIOT.2019.2897119
    [7] Su S C, Zhao S G. An optimal clustering mechanism based on Fuzzy-C means for wireless sensor networks. Sustainable Computing: Informatics and Systems, 2018, 18: 127−134 doi: 10.1016/j.suscom.2017.08.001
    [8] Hassan A A H, Shah W M, Habeb A H H, Othman M F I, Al-Mhiqani M N. An improved energy-efficient clustering protocol to prolong the lifetime of the WSN-based IoT. IEEE Access, 2020, 8: 200500−200517 doi: 10.1109/ACCESS.2020.3035624
    [9] Zhan C, Lai H. Energy minimization in internet-of-things system based on rotary-wing UAV. IEEE Wireless Communications Letters, 2019, 8(5): 1341−1344 doi: 10.1109/LWC.2019.2916549
    [10] Zhan C, Zeng Y, Zhang R. Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wireless Communications Letters, 2017, 7(3): 328−331
    [11] Ebrahimi D, Sharafeddine S, Ho P H, Assi C. UAV-aided projection-based compressive data gathering in wireless sensor networks. IEEE Internet of Things Journal, 2018, 6(2): 1893−1905
    [12] Chen J M, Li S Y, Chen S, He S B, Shi Z G. Q-charge: A quadcopter-based wireless charging platform for large-scale sensing applications. IEEE Network, 2017, 31(6): 56−61 doi: 10.1109/MNET.2017.1700071
    [13] Zeng Y, Xu J, Zhang R. Energy minimization for wireless communication with rotary-wing UAV. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329−2345 doi: 10.1109/TWC.2019.2902559
    [14] Zeng Y, Zhang R. Energy-efficient UAV communication with trajectory optimization. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747−3760 doi: 10.1109/TWC.2017.2688328
    [15] Ghdiri O, Jaafar W, Alfattani S, Abderrazak J B, Yanikomeroglu H. Offline and online UAV-enabled data collection in time-constrained IoT networks. IEEE Transactions on Green Communications and Networking, 2021, 5(4): 1918−1933 doi: 10.1109/TGCN.2021.3104801
    [16] Yang D C, Wu Q Q, Zeng Y, Zhang R. Energy tradeoff in ground-to-UAV communication via trajectory design. IEEE Transactions on Vehicular Technology, 2018, 67(7): 6721−6726 doi: 10.1109/TVT.2018.2816244
    [17] Zhan C, Huang R J. Energy minimization for data collection in wireless sensor networks with UAV. In: Proceedings of the IEEE Global Communications Conference. Waikoloa, USA: IEEE, 2019. 1−6
    [18] 王巍, 彭力, 赵继军, 朱天宇, 崔益豪, 田立勤. 基于旋翼无人机近地面空间应急物联网节点动态协同部署. 自动化学报, 2021, 47(8): 2002−2015 doi: 10.16383/j.aas.c180146

    Wang Wei, Peng Li, Zhao Ji-Jun, Zhu Tian-Yu, Cui Yi-Hao, Tian Li-Qin. Dynamic cooperative deployment of emergency internet of things near ground space based on drone. Acta Automatica Sinica, 2021, 47(8): 2002−2015 doi: 10.16383/j.aas.c180146
    [19] 李安, 戴龙斌, 余礼苏, 王振. 加权能耗最小化的无人机辅助移动边缘计算资源分配策略. 电子与信息学报, 2022, 44(11): 3858−3865 doi: 10.11999/JEIT210832

    Li An, Dai Long-Bin, Yu Li-Su, Wang Zhen. Resource allocation for unmanned aerial vehicle-assisted mobile edge computing to minimize weighted energy consumption. Journal of Electronics & Information Technology, 2022, 44(11): 3858−3865 doi: 10.11999/JEIT210832
    [20] Zhu B T, Bedeer E, Nguyen H H, Barton R, Henry J. UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning. IEEE Transactions on Vehicular Technology, 2021, 70(5): 9540−9554
    [21] Zhu B T, Bedeer E, Nguyen H H, Barton R, Henry J. Joint cluster head selection and trajectory planning in UAV-aided IoT networks by reinforcement learning with sequential model. IEEE Internet of Things Journal, 2021, 9(14): 12071−12084
    [22] Mozaffari M, Saad W, Bennis M, Debbah M. Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things communications. IEEE Internet of Things Journal, 2017, 16(11): 7574−7589
  • 加载中
计量
  • 文章访问数:  507
  • HTML全文浏览量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 录用日期:  2023-04-04
  • 网络出版日期:  2023-04-28

目录

    /

    返回文章
    返回