2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于捕获点理论的混合驱动水下刀锋腿机器人稳定性判据

陈乐鹏 崔荣鑫 严卫生 马飞宇

陈乐鹏, 崔荣鑫, 严卫生, 马飞宇. 基于捕获点理论的混合驱动水下刀锋腿机器人稳定性判据. 自动化学报, 2024, 50(8): 1565−1576 doi: 10.16383/j.aas.c220889
引用本文: 陈乐鹏, 崔荣鑫, 严卫生, 马飞宇. 基于捕获点理论的混合驱动水下刀锋腿机器人稳定性判据. 自动化学报, 2024, 50(8): 1565−1576 doi: 10.16383/j.aas.c220889
Chen Le-Peng, Cui Rong-Xin, Yan Wei-Sheng, Ma Fei-Yu. A stability criterion for hybrid-driven underwater bladed legged robot based on capture point theory. Acta Automatica Sinica, 2024, 50(8): 1565−1576 doi: 10.16383/j.aas.c220889
Citation: Chen Le-Peng, Cui Rong-Xin, Yan Wei-Sheng, Ma Fei-Yu. A stability criterion for hybrid-driven underwater bladed legged robot based on capture point theory. Acta Automatica Sinica, 2024, 50(8): 1565−1576 doi: 10.16383/j.aas.c220889

基于捕获点理论的混合驱动水下刀锋腿机器人稳定性判据

doi: 10.16383/j.aas.c220889
基金项目: 国家自然科学基金 (61733014, U22A2066, U1813225, U21B2047), 陕西省重点研发计划 (2022ZDLGY03-05) 资助
详细信息
    作者简介:

    陈乐鹏:西北工业大学航海学院博士研究生. 主要研究方向为水下机器人建模与控制. E-mail: chenlepeng@mail.nwpu.edu.cn

    崔荣鑫:西北工业大学航海学院教授. 主要研究方向为水下机器人智能控制, 自主感知与规划, 多机器人协作. 本文通信作者. E-mail: r.cui@nwpu.edu.cn

    严卫生:西北工业大学航海学院教授. 主要研究方向为水下航行器导引, 导航与控制. E-mail: wsyan@nwpu.edu.cn

    马飞宇:西北工业大学航海学院博士研究生. 主要研究方向为水下机器人控制与规划. E-mail: mfy_nwpu@mail.nwpu.edu.cn

A Stability Criterion for Hybrid-driven Underwater Bladed Legged Robot Based on Capture Point Theory

Funds: Supported by National Natural Science Foundation of China (61733014, U22A2066, U1813225, U21B2047) and Key Research and Development Program of Shaanxi Province (2022ZDLGY03-05)
More Information
    Author Bio:

    CHEN Le-Peng Ph.D. candidate at the School of Marine Science and Technology, Northwestern Polytechnical University. His research interest covers modeling and control of underwater robots

    CUI Rong-Xin Professor at the School of Marine Science and Technology, Northwestern Polytechnical University. His research interest covers intelligent control, perception, and planning for underwater robots, and the cooperation for multiple robots. Corresponding author of this paper

    YAN Wei-Sheng Professor at the School of Marine Science and Technology, Northwestern Polytechnical University. His research interest covers guidance, navigation, and control of underwater vehicles

    MA Fei-Yu Ph.D. candidate at the School of Marine Science and Technology, Northwestern Polytechnical University. Her research interest covers control and planning of underwater vehicles

  • 摘要: 由8个推进器和6条刀锋腿混合驱动的水下机器人可在水底或水下结构物表面上行走. 所提方法旨在研究这类机器人运动稳定性的评判准则, 即稳定性判据. 现有的稳定性判据多集中于同一机构(腿)驱动的陆地机器人, 未涉及混合驱动的水下刀锋腿机器人. 针对该问题, 提出了基于捕获点理论的混合驱动水下刀锋腿机器人稳定性判据. 首先, 在建立混合驱动水下滚动倒立摆模型的基础上, 利用机器人运动状态预测摆动腿和支撑腿切换瞬间机器人的动能; 然后, 根据推进器所能提供的推力范围, 计算迫使机器人静止的捕获点变化范围, 即获取捕获域; 最后, 根据捕获域与支撑域的空间关系, 判断机器人是否稳定, 并计算机器人的稳定裕度. 水下实验结果表明, 所提出的稳定性判据具有较好的充要性和普适性.
  • 图  1  混合驱动水下刀锋腿机器人系统结构

    Fig.  1  Diagram of hybrid-driven underwater bladed legged robot

    图  2  倒立摆系统及参数定义

    Fig.  2  Inverted pendulum and parameter definition

    图  3  两种时刻下刀锋腿的旋转角度

    Fig.  3  Rotation angles of bladed leg under two moments

    图  4  线性倒立摆与滚动倒立摆

    Fig.  4  Linear and rolling inverted pendulums

    图  5  混合驱动水下刀锋腿机器人的受力分析

    Fig.  5  Forces analysis of the hybrid-driven underwater bladed legged robot

    图  6  ${{t}_{2}}$时刻支撑域示意图

    Fig.  6  Diagram of support domain at ${{t}_{2}}$ moment

    图  7  支撑域与捕获域示意图

    Fig.  7  Diagram of support domain and capture domain

    图  8  支撑域与捕获域之间的4类重叠情况

    Fig.  8  Four types of overlap between support domain and capture domain

    图  9  混合驱动水下刀锋腿机器人稳定性判据框图

    Fig.  9  Block diagram of stability criterion for hybrid-driven underwater bladed legged robot

    图  10  水池实验场景图

    Fig.  10  Scene of pool experiment

    图  11  池底行走连拍图

    Fig.  11  Snapshots of walking on pool bottom

    图  12  5 组互异垂推推力的水下刀锋腿机器人稳定裕度

    Fig.  12  Stability margin of underwater bladed legged robot in five kinds of different vertical thrusters

    图  13  5组实验中水下刀锋腿机器人稳定裕度平均值

    Fig.  13  Average stability margin of underwater bladed legged robot in five experiments

    图  14  15组互异推力上下界的稳定裕度

    Fig.  14  Stability margin under fifteen different upper and lower bounds of thrust

    图  15  15组互异推力上下界的稳定裕度平均值

    Fig.  15  Average value of stability margin under 15 groups of different thrust upper and lower bounds

    表  1  15组实验中推力上下界(N)

    Table  1  Upper and lower bounds of thrust in 15 groups of experiments (N)

    实例 垂向推进器
    推力上界
    垂向推进器
    推力下界
    水平推进器
    推力上界
    水平推进器
    推力下界
    1 −10 −10 0 0
    2 −10 −10 1 −1
    3 −10 −10 2 −2
    4 −10 −10 5 −5
    5 −9 −11 0 0
    6 −6 −14 0 0
    7 0 −20 0 0
    8 30 −20 0 0
    9 30 −25 0 0
    10 30 −30 0 0
    11 30 −40 0 0
    12 30 −60 0 0
    13 30 −100 0 0
    14 30 −30 5 −5
    15 30 −30 30 −30
    下载: 导出CSV
  • [1] Ma F, Yan W, Chen L, Cui R. CPG-based motion planning of hybrid underwater hexapod robot for wall climbing and transition. IEEE Robotics and Automation Letters, 2022, 7(4): 12299−12306 doi: 10.1109/LRA.2022.3216233
    [2] 陈恳, 付成龙. 仿人机器人理论与技术. 清华大学出版社, 2010. 56−64

    Chen Ken, Fu Cheng-Long. Humanoid Robot Theory and Technology. Beijing: Tsinghua University Press, 2010. 56−64
    [3] 田彦涛, 孙中波, 李宏扬, 王静. 动态双足机器人的控制与优化研究进展. 自动化学报, 2016, 42(8): 1142−1157 doi: 10.16383/j.aas.2016.c150821

    Tian Yan-Tao, Sun Zhong-Bo, Li Hong-Yang, Wang Jing. A review of optimal and control strategies for dynamic walking bipedal robots. Acta Automatica Sinica, 2016, 42(8): 1142−1157 doi: 10.16383/j.aas.2016.c150821
    [4] Hu C J, Huang C K, Lin P C. A torque-actuated dissipative spring loaded inverted pendulum model with rolling contact and its use as the template for design and dynamic behavior generation on a hexapod robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Seattle, Washington, USA: IEEE, 2015. 5177−5183
    [5] Lu W, Yu M, Lin P. Clock-torqued rolling SLIP model and its application to variable-speed running in a hexapod robot. IEEE Transactions on Robotics, 2018, 34(6): 1643−1650 doi: 10.1109/TRO.2018.2862903
    [6] Calisti M, Laschi C. Morphological and control criteria for self-stable underwater hopping. Bioinspiration and Biomimetics, 2018, 13: Article No. 016001
    [7] Picardi G, Lovecchio R, Calisti M. Towards autonomous area inspection with a bio-inspired underwater legged robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic: IEEE, 2021. 930−935
    [8] Vukobratovi M, Borovac B. Zero-moment point-thirty five years of its life. International Journal of Humanoid Robotics, 2004, 1(1): 157−173 doi: 10.1142/S0219843604000083
    [9] Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Science and Business Media, 2013. 8−32
    [10] Grizzle J W, Abba G, Plestan F. Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control, 2001, 46(1): 51−64 doi: 10.1109/9.898695
    [11] Fu C, Chen K. Section-map stability criterion for biped robots part I: Theory. In: Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA). Harbin, China: IEEE, 2007. 1529−1534
    [12] Hirukawa H, Hattori S, Harada K, Kajita S, Kaneko K, Kanehiro F, et al. A universal stability criterion of the foot contact of legged robots-adios ZMP. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Orlando, USA: IEEE, 2006. 1976−1983
    [13] Harada K, Kajita S, Kaneko K, Hirukawa H. Dynamics and balance of a humanoid robot during manipulation tasks. IEEE Transactions on Robotics, 2006, 22(3): 568−575 doi: 10.1109/TRO.2006.870649
    [14] Audren H, Kheddar A. 3-D robust stability polyhedron in multicontact. IEEE Transactions on Robotics, 2018, 34(2): 388−403 doi: 10.1109/TRO.2022.3186804
    [15] Jenelten F, Grandia R, Farshidian F, Hutter M. TAMOLS: Terrain-aware motion optimization for legged systems. IEEE Transactions on Robotics, 2022, 38(6): 3395−3413 doi: 10.1109/TRO.2017.2786683
    [16] Winkler W, Farshidian F, Pardo D, Neunert M, Buchli J. Fast trajectory optimization for legged robots using vertex-based zmp constraints. IEEE Robotics and Automation Letters, 2017, 2(4): 2201−2208 doi: 10.1109/LRA.2017.2723931
    [17] Viragh Y, Bjelonic M, Bellicoso C, Jenelten F, Hutter M. Trajectory optimization for wheeled-legged quadrupedal robots using linearized zmp constraints. IEEE Robotics and Automation Letters, 2019, 4(2): 1633−1640 doi: 10.1109/LRA.2019.2896721
    [18] Pratt J, Koolen T, Boer T, Rebula J, Cotton S, Carff J, et al. Capturability-based analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid. The International Journal of Robotics Research, 2012, 31(10): 1117−1133 doi: 10.1177/0278364912452762
    [19] 刘飞, 陈小平. 基于轨道能量模型的步行机器人平衡恢复方法. 机器人, 2011, 33(2): 244−250 doi: 10.3724/SP.J.1218.2011.00244

    Liu Fei, Chen Xiao-Ping. Balance recovery method of walking robot based on orbital energy model. ROBOT, 2011, 33(2): 244−250 doi: 10.3724/SP.J.1218.2011.00244
    [20] Liu J, Chen H, Wensing P M, Zhang W. Instantaneous capture input for balancing the variable height inverted pendulum. IEEE Robotics and Automation Letters, 2021, 6(4): 7421−7428 doi: 10.1109/LRA.2021.3097074
    [21] Caron S, Escande A, Lanari L, Mallein B. Capturability-based pattern generation for walking with variable height. IEEE Transactions on Robotics, 2019, 36(2): 517−536
    [22] Koolen T, De Boer T, Rebula J, Goswami A, Pratt J. Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models. The International Journal of Robotics Research, 2012, 31(9): 1094−1113 doi: 10.1177/0278364912452673
    [23] Liu J, Chen H, Wensing P M, Zhang W. Quadruped capturability and push recovery via a switched-systems characterization of dynamic balance. IEEE Transactions on Robotics, 2023, 39(3): 2111−2130 doi: 10.1109/TRO.2023.3240622
    [24] 严卫生, 陈乐鹏, 崔荣鑫, 许晖, 张守旭, 马飞宇. 一种水下机器人定向和稳定行走方法, 中国专利, ZL202110837326.X, 2022-11-22

    Yan Wei-Sheng, Chen Le-Peng, Cui Rong-Xin, Xu Hui, Zhang Shou-Xu, Ma Fei-Yu. A Directional and Stable Walking Method for Underwater Robots, China Patent ZL202110837326.X, November 22, 2022
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  3840
  • HTML全文浏览量:  185
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 录用日期:  2023-03-03
  • 网络出版日期:  2023-10-24
  • 刊出日期:  2024-08-22

目录

    /

    返回文章
    返回