[1]
|
Isidori A. Nonlinear Control Systems. London: Springer-Verlag, 1995.
|
[2]
|
Khalil H K. Nonlinear Systems. Upper Saddle River: Prentice Hall, 2002.
|
[3]
|
洪奕光, 程代展. 非线性系统的分析与控制. 北京: 科学出版社, 2005.Hong Yi-Guang, Cheng Dai-Zhan. Analysis and Design of Nonlinear Systems. Beijing: Science Press, 2005.
|
[4]
|
Aubin J P. Viability Theory. Boston: Birkhäuser, 1991.
|
[5]
|
Nagumo M. Über die lage der integralkurven gewöhnlicher differentialgleichungen. Proceedings of the Physico-Mathematical Society of Japan, 1942, 24(6), 551–559.
|
[6]
|
Clarke E M, Grumberg O, Peleg D. Model Checking. Cambridge: MIT Press, 1999.
|
[7]
|
Baier C, Katoen J P. Principles of Model Checking. Cambridge: MIT Press, 2008.
|
[8]
|
Tomlin C, Pappas G J, Sastry S. Conflict resolution for air traffic management: A study in multiagent hybrid systems. IEEE Transactions on Automatic Control, 1998, 43(4): 509–521. doi: 10.1109/9.664154
|
[9]
|
Mitchell I M, Bayen A M, Tomlin C J. A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Transactions on Automatic Control, 2005, 50(7): 947–957. doi: 10.1109/TAC.2005.851439
|
[10]
|
Gao Y, Johansson K H, Xie L. Computing probabilistic controlled invariant sets. IEEE Transactions on Automatic Control, 2021, 66(7): 3138–3151. doi: 10.1109/TAC.2020.3018438
|
[11]
|
Prajna S. Optimization-based Methods for Nonlinear and Hybrid Systems Verification [Ph.D. dissertation], California Institute of Technology, USA, 2005
|
[12]
|
Ames A D, Grizzle J W, Tabuada P. Control barrier function based quadratic programs with application to adaptive cruise control. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC). Los Angeles, CA, USA: IEEE, 2014. 6271–6278
|
[13]
|
Xu X, Tabuada P, Grizzle J W, Ames A D. Robustness of control barrier functions for safety-critical control. IFAC-PapersOnLine, 2015, 48(27): 54–61. doi: 10.1016/j.ifacol.2015.11.152
|
[14]
|
Ames A D, Xu X, Grizzle J W, Tabuada P. Control barrier function based quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 2017, 62(8), 3861–3876. doi: 10.1109/TAC.2016.2638961
|
[15]
|
Annichini A, Bouajjani A, Sighireanu M. TReX: A tool for reachability analysis of the complex systems. In: Proceedings of the International Conference on Computer Aided Verification (CAV). Paris, France: Springer, 2001. 368−372
|
[16]
|
Mitchell I M. A toolbox of level set methods [Online], available: https://www.cs.ubc.ca/~mitchell/ToolboxLS, September 3, 2019
|
[17]
|
Fisac J F, Chen M, Tomlin C J, Sastry S S. Reach-avoid problems with time-varying dynamics, targets and constraints. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control (HSCC). New York, USA: ACM, 2015. 11−20
|
[18]
|
Herbert S L, Chen M, Han S, Bansal S, Fisac J F, Tomlin C J. FaSTrack: A modular framework for fast and guaranteed safe motion planning. In: Proceedings of the 56th IEEE Conference on Decision and Control (CDC). Melbourne, Australia: IEEE, 2017. 1517−1522
|
[19]
|
Bajcsy A, Bansal S, Bronstein E, Tolani V, Tomlin C J. An efficient reachability-based framework for provably safe autonomous navigation in unknown environments. In: Proceedings of the 58th IEEE Conference on Decision and Control (CDC). Nice, France: IEEE, 2019. 1758−1765
|
[20]
|
Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004.
|
[21]
|
Glavaski S, Papachristodoulou A, Ariyur K. Safety verification of controlled advanced life support system using barrier certificates. In: Proceedings of the International Workshop on Hybrid Systems: Computation and Control (HSCC). Zurich, Switzerland: Springer, 2005. 306−321
|
[22]
|
Wang L, Ames A D, Egerstedt M. Safety barrier certificates for collisions-free multirobot systems. IEEE Transactions on Robotics, 2017, 33(3): 661–674. doi: 10.1109/TRO.2017.2659727
|
[23]
|
Xu X, Grizzle J W, Tabuada P, Ames A D. Correctness guarantees for the composition of lane keeping and adaptive cruise control. IEEE Transactions on Automation Science and Engineering, 2017, 15(3): 1216–1229.
|
[24]
|
Prajna S, Jadbabaie A. Safety verification of hybrid systems using barrier certificates. In: Proceedings of the International Workshop on Hybrid Systems: Computation and Control (HSCC). Philadelphia, PA, USA: Springer, 2004. 477−492
|
[25]
|
Prajna S, Jadbabaie A, Pappas G J. A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Transactions on Automatic Control, 2007, 52(8): 1415–1428. doi: 10.1109/TAC.2007.902736
|
[26]
|
Prajna S, Rantzer A. Convex programs for temporal verification of nonlinear dynamical systems. SIAM Journal on Control and Optimization, 2007, 46(3): 999–1021. doi: 10.1137/050645178
|
[27]
|
Wongpiromsarn T, Topcu U, Lamperski A. Automata theory meets barrier certificates: Temporal logic verification of nonlinear systems. IEEE Transactions on Automatic Control, 2015, 61(11): 3344–3355.
|
[28]
|
Wisniewski R, Sloth C. Converse barrier certificate theorems. IEEE Transactions on Automatic Control, 2015, 61(5): 1356–1361.
|
[29]
|
Ratschan S. Converse theorems for safety and barrier certificates. IEEE Transactions on Automatic Control, 2018, 63(8): 2628–2632. doi: 10.1109/TAC.2018.2792325
|
[30]
|
Liu J. Converse barrier functions via lyapunov functions. IEEE Transactions on Automatic Control, 2021, 67(1): 497–503.
|
[31]
|
Maghenem M A, Sanfelice R G. On the converse safety problem for differential inclusions: Solutions, regularity, and time-varying barrier functions. IEEE Transactions on Automatic Control, 2022: 1–16 doi: 10.1109/TAC.2022.3148226, to be published.
|
[32]
|
Jankovic M. Robust control barrier functions for constrained stabilization of nonlinear systems. Automatica, 2021, 96(x): 359–367.
|
[33]
|
Ngo K B, Mahony R, Jiang Z P. Integrator backstepping using barrier functions for systems with multiple state constraints. In: Proceedings of the 44th IEEE Conference on Decision and Control (CDC). Seville, Spain: IEEE, 2005. 8306−8312
|
[34]
|
Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45(4): 918–927. doi: 10.1016/j.automatica.2008.11.017
|
[35]
|
Wang X, Lyu Z, Dong Y. A unified approach for safety critical control problem via output regulation theory and barrier function. In: Proceedings of the 41st Chinese Control Conference (CCC). Hefei, China: IEEE, 2022. 833−837
|
[36]
|
Kong H, He F, Song X, Hung W N, Gu M. Exponential-condition-based barrier certificate generation for safety verification of hybrid systems. In: Proceedings of the International Conference on Computer Aided Verification (CAV). Saint Petersburg, Russia: Springer, 2013. 242−257
|
[37]
|
Lin Y, Sontag E D, Wang Y. A smooth converse Lyapunov theorem for robust stability. SIAM Journal on Control and Optimization, 1996, 34(1): 124–160. doi: 10.1137/S0363012993259981
|
[38]
|
Li A, Wang L, Pierpaoli P, Egerstedt M. Formally correct composition of coordinated behaviors using control barrier certificates. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018. 3723−3729
|
[39]
|
Glotfelter P, Cortés J, Egerstedt M. Nonsmooth barrier functions with applications to multi-robot systems. IEEE Control Systems Letters, 2017, 1(2): 310–315. doi: 10.1109/LCSYS.2017.2710943
|
[40]
|
Ahmadi M, Singletary A, Burdick J W, Ames A D. Safe policy synthesis in multi-agent pomdps via discrete-time barrier functions. In: Proceedings of the 58th IEEE Conference on Decision and Control (CDC). Nice, France: IEEE, 2019. 4797−4803
|
[41]
|
Sontag E D, Wang Y. On characterizations of the input-to-state stability property. Systems & Control Letters, 1995, 24(5): 351–359.
|
[42]
|
Romdlony M Z, Jayawardhana B. On the new notion of input-to-state safety. In: Proceedings of the 55th IEEE Conference on Decision and Control (CDC). Las Vegas, NV, USA: IEEE, 2016. 6403−6409
|
[43]
|
Romdlony M Z, Jayawardhana B. Robustness analysis of systems' safety through a new notion of input-to-state safety. International Journal of Robust and Nonlinear Control, 2019, 29(7): 2125–2136. doi: 10.1002/rnc.4482
|
[44]
|
Kolathaya S, Ames A D. Input-to-state safety with control barrier functions. IEEE Control Systems Letters, 2018, 3(1): 108–113.
|
[45]
|
Lyu Z, Xu X, Hong Y. Small-gain theorem for safety verification of interconnected systems. Automatica, 2022, 139: Article No. 110178
|
[46]
|
Krstic M. Inverse optimal safety filters [Online], available: https://arxiv.org/abs/2112.08225, February 20, 2023
|
[47]
|
Taylor A J, Ong P, Cortés J, Ames A D. Safety-critical event triggered control via input-to-state safe barrier functions. IEEE Control Systems Letters, 2020, 5(3): 749–754.
|
[48]
|
Long L, Wang J. Safety-critical dynamic event-triggered control of nonlinear systems. Systems & Control Letters, 2022, 162: Article No. 105176
|
[49]
|
Li X, Yin X, Li S. Cooperative event triggered control for multi-robot systems with collision avoidance. In: Proceedings of the 40th Chinese Control Conference (CCC). Shanghai, China: IEEE, 2021. 5460−5465
|
[50]
|
Cortez W S, Dimarogonas D V. Correct-by-design control barrier functions for Euler-Lagrange systems with input constraints. In: Proceedings of the American Control Conference (ACC). Denver, CO, USA: IEEE, 2020. 950−955
|
[51]
|
Shi L, Singh S K. Decentralized adaptive controller design for large-scale systems with higher order interconnections. IEEE Transactions on Automatic Control, 1992, 37(8): 1106–1118. doi: 10.1109/9.151092
|
[52]
|
Lyu Z, Xu X, Hong Y. Small-gain theorem for safety verification under high-relative-degree constraints [Online], available: https://arxiv.org/abs/2204.04376, February 20, 2023
|
[53]
|
Nguyen Q, Sreenath K. Exponential control barrier functions for enforcing high relative-degree safety-critical constraints. In: Proceedings of the American Control Conference (ACC). Boston, MA, USA: IEEE, 2016. 322−328
|
[54]
|
Xu X. Constrained control of input-output linearizable systems using control sharing barrier functions. Automatica, 2018, 87(x): 195–201.
|
[55]
|
Xiao W, Belta C. High order control barrier functions. IEEE Transactions on Automatic Control, 2021: 1–8 doi: 10.1109/TAC.2021.3105491, to be published.
|
[56]
|
Tan X, Cortez W S, Dimarogonas D V. High-order barrier functions: Robustness, safety, and performance-critical control. IEEE Transactions on Automatic Control, 2021, 67(6): 3021–3028.
|
[57]
|
Parrilo P A. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization [Ph.D. dissertation], California Institute of Technology, USA, 2000
|
[58]
|
Prajna S, Papachristodoulou A, Parrilo P A. Introducing SOSTOOLS: A general purpose sum of squares programming solver. In: Proceedings of the 41st IEEE Conference on Decision and Control (CDC). Las Vegas, NV, USA: IEEE, 2002. 741–746
|
[59]
|
Papachristodoulou A, Prajna S. A tutorial on sum of squares techniques for systems analysis. In: Proceedings of the American Control Conference (ACC). Portland, OR, USA: IEEE, 2005. 2686−2700
|
[60]
|
Seiler P. SOSOPT: A toolbox for polynomial optimization [Online], available: https://arxiv.org/abs/1308.1889, February 20, 2023
|
[61]
|
Willems J C. Dissipative dynamical systems part i: General theory. Archive for Rational Mechanics and Analysis, 1972, 45(5): 321–351. doi: 10.1007/BF00276493
|
[62]
|
Desoer C A, Vidyasagar M. Feedback Systems: Input-Output Properties. New York: Academic Press, 1975.
|
[63]
|
Hill D J. A generalization of the small-gain theorem for nonlinear feedback systems. Automatica, 1991, 27(6): 1043–1045. doi: 10.1016/0005-1098(91)90140-W
|
[64]
|
Jiang Z P, Teel A R, Praly L. Small-gain theorem for ISS systems and applications. Mathematics of Control, Signals and Systems, 1994, 7(2): 95–120. doi: 10.1007/BF01211469
|
[65]
|
Teel A R. A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Transactions on Automatic Control, 1996, 41(9): 1256–1270. doi: 10.1109/9.536496
|
[66]
|
Huang X, Lyu Z, Hong Y. Safety verification of large-scale nonlinear systems: A cyclic-small-gain approach. In: Proceedings of the 17th International Conference on Control & Automation (ICCA). Naples, Italy: IEEE, 2022. 459−462
|
[67]
|
Jagtap P, Swikir A, Zamani M. Compositional construction of control barrier functions for interconnected control systems. In: Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control (HSCC). New York, USA: ACM, 2000. 1−11
|
[68]
|
Yin X, Li S. Recent advances on formal methods for safety and security of cyber-physical systems. Control Theory and Technology, 2020, 18(4): 459–461. doi: 10.1007/s11768-020-00008-w
|
[69]
|
Belta C, Yordanov B, Gol E A. Formal Methods for Discrete-Time Dynamical Systems. Berlin: Springer, 2017.
|
[70]
|
Tian D, Fang H, Yang Q, Wei Y. Decentralized motion planning for multiagent collaboration under coupled LTL task specifications. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(6): 3602–3611. doi: 10.1109/TSMC.2021.3073105
|
[71]
|
Wieland P, Allgöwer F. Constructive safety using control barrier functions. IFAC Proceedings Volumes, 2007, 40(12): 462–467. doi: 10.3182/20070822-3-ZA-2920.00076
|
[72]
|
Artstein Z. Stabilization with relaxed controls. Nonlinear Analysis: Theory, Methods & Applications, 1983, 7(11): 1163–1173.
|
[73]
|
Sontag E D. A ùniversal' construction of Artstein's theorem on nonlinear stabilization. Systems & Sontrol Letters, 1989, 13(2): 117–123.
|
[74]
|
Hsu S C, Xu X, Ames A D. Control barrier function based quadratic programs with application to bipedal robotic walking. In: Proceedings of the American Control Conference (ACC). Chicago, IL, USA: IEEE, 2015. 4542−4548
|
[75]
|
Krstic M, Kokotovic P V, Kanellakopoulos I. Nonlinear and Adaptive Control Design. New York: Wiley and Sons, 1995.
|
[76]
|
Romdlony M Z, Jayawardhana B. Uniting control Lyapunov and control barrier functions. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC). Los Angeles, CA, USA: IEEE, 2014. 2293−2298
|
[77]
|
Wu C, Fang H, Yang Q, Zeng X, Wei Y, Chen J. Distributed cooperative control of redundant mobile manipulators with safety constraints. IEEE Transactions on Cybernetics, 2022: 1–13 doi: 10.1109/TCYB.2021.3104044, to be published.
|
[78]
|
Raman V, Donzé A, Maasoumy M, Murray R M. Model predictive control with signal temporal logic specifications. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC). Los Angeles, CA, USA: IEEE, 2014. 81−87
|
[79]
|
Wu S, Liu T, Jiang Z P. Continuous safety control of mobile robots in cluttered environments. IEEE Robotics and Automation Letters, 2022, 7(3): 8012–8019. doi: 10.1109/LRA.2022.3187492
|
[80]
|
Nguyen Q, Sreenath K. Safety-critical control for dynamical bipedal walking with precise footstep placement. IFAC-PapersOnLine, 2015, 48(27): 147–154. doi: 10.1016/j.ifacol.2015.11.167
|
[81]
|
Khan M, Zafar M, Chatterjee A. Barrier functions in cascaded controller: Safe quadrotor control. In: Proceedings of the American Control Conference (ACC). Denver, CO, USA: IEEE, 2020. 1737−1742
|
[82]
|
Wang L, Theodorou E A, Egerstedt M. Safe learning of quadrotor dynamics using barrier certificates. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia: IEEE, 2018. 2460−2465
|
[83]
|
Wu G, Sreenath K. Safety-critical control of a 3D quadrotor with range-limited sensing. In: Proceedings of the ASME Dynamic Systems and Control Conference (DSCC). Minneapolis, MN, USA: ASME, 2016. 1−11
|
[84]
|
Xiao W, Mehdipour N, Collin A, Bin-Nun A Y, Frazzoli E, Tebbens R D, et al. Rule-based optimal control for autonomous driving. In: Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems (ICCPS). New York, NY, USA: ACM/IEEE, 2021. 143−154
|
[85]
|
Glotfelter P, Cortés J, Egerstedt M. Boolean composability of constraints and control synthesis for multi-robot systems via nonsmooth control barrier functions. In: Proceedings of the IEEE Conference on Control Technology and Applications (CCTA). Copenhagen, Denmark: IEEE, 2018. 897−902
|
[86]
|
Glotfelter P, Cortés J, Egerstedt M. A nonsmooth approach to controller synthesis for boolean specifications. IEEE Transactions on Automatic Control, 2020, 66(11): 5160–5174.
|
[87]
|
Lindemann L, Dimarogonas D V. Control barrier functions for signal temporal logic tasks. IEEE Control Systems Letters, 2018, 3(1): 96–101.
|
[88]
|
Manna Z, Pnueli A. Temporal Verification of Reactive Systems: Safety. New York: Springer Verlag, 1995.
|
[89]
|
Tian D, Fang H, Yang Q, Guo Z, Cui J, Liang W, Wu Y. Two-phase motion planning under signal temporal logic specifications in partially unknown environments. IEEE Transactions on Industrial Electronics, 2022: 1–10 doi: 10.1109/TIE.2022.3203752, to be published.
|
[90]
|
Li X, Serlin Z, Yang G, Belta C. A formal methods approach to interpretable reinforcement learning for robotic planning. Science Robotics, 2019, 4(37): 1–15.
|
[91]
|
Gundana D, Kress-Gazit H. Event-based signal temporal logic synthesis for single and multi-robot tasks. IEEE Robotics and Automation Letters, 2021, 6(2): 3687–3694. doi: 10.1109/LRA.2021.3064220
|
[92]
|
Maler O, Nickovic D. Monitoring temporal properties of continuous signals. Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, 2004: 152−166
|
[93]
|
Huang X, Li L, Chen J. Multi-agent system motion planning under temporal logic specifications and control barrier function. Control Theory and Technology, 2020, 18(3): 269–278. doi: 10.1007/s11768-020-0110-6
|
[94]
|
Jagtap P, Soudjani S, Zamani M. Formal synthesis of stochastic systems via control barrier certificates. IEEE Transactions on Automatic Control, 2020, 66(7): 3097–3110.
|
[95]
|
Srinivasan M, Coogan S. Control of mobile robots using barrier functions under temporal logic specifications. IEEE Transactions on Robotics, 2020, 37(2): 363–374.
|