2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有输入时滞的非线性系统的输出反馈采样控制

马倩 盛兆明 徐胜元

马倩, 盛兆明, 徐胜元. 含有输入时滞的非线性系统的输出反馈采样控制. 自动化学报, 2024, 50(9): 1772−1784 doi: 10.16383/j.aas.c220774
引用本文: 马倩, 盛兆明, 徐胜元. 含有输入时滞的非线性系统的输出反馈采样控制. 自动化学报, 2024, 50(9): 1772−1784 doi: 10.16383/j.aas.c220774
Ma Qian, Sheng Zhao-Ming, Xu Sheng-Yuan. Sampled-data output feedback control for nonlinear systems with input delay. Acta Automatica Sinica, 2024, 50(9): 1772−1784 doi: 10.16383/j.aas.c220774
Citation: Ma Qian, Sheng Zhao-Ming, Xu Sheng-Yuan. Sampled-data output feedback control for nonlinear systems with input delay. Acta Automatica Sinica, 2024, 50(9): 1772−1784 doi: 10.16383/j.aas.c220774

含有输入时滞的非线性系统的输出反馈采样控制

doi: 10.16383/j.aas.c220774 cstr: 32138.14.j.aas.c220774
基金项目: 国家自然科学基金(62173183)资助
详细信息
    作者简介:

    马倩:南京理工大学自动化学院教授. 主要研究方向为时滞系统、多智能体系统和非线性系统的分析与控制. 本文通信作者. E-mail: qianmashine@gmail.com

    盛兆明:南京理工大学自动化学院博士研究生. 主要研究方向为非线性系统的分析与控制. E-mail: kzzxtmcszm@163.com

    徐胜元:南京理工大学自动化学院教授. 主要研究方向为广义系统、时滞系统和非线性系统的分析与控制. E-mail: syxu@njust.edu.cn

Sampled-data Output Feedback Control for Nonlinear Systems With Input Delay

Funds: Supported by National Natural Science Foundation of China (62173183)
More Information
    Author Bio:

    MA Qian Professor at the School of Automation, Nanjing University of Science and Technology. Her research interest covers analysis and control of time-delay systems, multi-agent systems, and nonlinear systems. Corresponding author of this paper

    SHENG Zhao-Ming Ph.D. candidate at the School of Automation, Nanjing University of Science and Technology. His research interest covers analysis and control of nonlinear systems

    XU Sheng-Yuan Professor at the School of Automation, Nanjing University of Science and Technology. His research interest covers analysis and control of singular systems, time-delay systems, and nonlinear systems

  • 摘要: 针对含有输入时滞和低阶非线性项的非线性系统, 提出一种基于采样机制的无记忆输出反馈控制方法. 该方法移除了传统预测控制方法预测映射难以确定的限制, 同时避免了时滞依赖方法对过去时刻状态信息的依赖性, 在实际中更易实现. 首先, 根据系统输出在采样时刻的信息, 利用加幂积分技术和齐次占优思想设计了无记忆输出反馈采样控制器. 然后, 利用齐次系统理论提出了闭环系统的稳定性条件. 最后, 仿真结果验证了所提方法的有效性和优越性.
  • 图  1  系统(90)中状态$ x_1 $的曲线

    Fig.  1  The curve of state $ x_1 $ in system (90)

    图  2  系统(90)中状态$ x_2 $的曲线

    Fig.  2  The curve of state $ x_2 $ in system (90)

    图  3  系统(90)中控制输入$ u $的曲线

    Fig.  3  The curve of control input $ u $ in system (90)

    图  4  系统(90)中状态$ x_1 $在不同控制方法下的曲线

    Fig.  4  The curve of state $ x_1 $ in system (90) under different control methods

    图  5  系统(90)中状态$ x_2 $在不同控制方法下的曲线

    Fig.  5  The curve of state $ x_2 $ in system (90) under different control methods

    图  6  系统(92)中状态$ x_1 $的曲线

    Fig.  6  The curve of state $ x_1 $ in system (92)

    图  7  系统(92)中状态$ x_2 $的曲线

    Fig.  7  The curve of state $ x_2 $ in system (92)

    图  8  系统(92)中控制输入$ u $的曲线

    Fig.  8  The curve of control input $ u $ in system (92)

    图  9  系统(92)中状态$ x_1 $在不同控制方法下的曲线

    Fig.  9  The curve of state $ x_1 $ in system (92) under different control methods

    图  10  系统(92)中状态$ x_2 $在不同控制方法下的曲线

    Fig.  10  The curve of state $ x_2 $ in system (92) under different control methods

  • [1] 王焕清, 陈明, 刘晓平. 一类非线性系统模糊自适应固定时间量化反馈控制. 自动化学报, 2021, 47(12): 2823−2830 doi: 10.16383/j.aas.c190681

    Wang Huan-Qing, Chen Ming, Liu Xiao-Ping. Fuzzy adaptive fixed-time quantized feedback control for a class of nonlinear systems. Acta Automatica Sinica, 2021, 47(12): 2823−2830 doi: 10.16383/j.aas.c190681
    [2] Liu L, Chen A Q, Liu Y J. Adaptive fuzzy output-feedback control for switched uncertain nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 2022, 52(8): 7340−7351 doi: 10.1109/TCYB.2021.3050510
    [3] Wang Q F, Zhang Z Q, Xie X J. Globally adaptive neural network tracking for uncertain output-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 814−823 doi: 10.1109/TNNLS.2021.3102274
    [4] Qian C J, Lin W. Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm. IEEE Transactions on Automatic Control, 2002, 47(10): 1710−1715 doi: 10.1109/TAC.2002.803542
    [5] Yan X H, Liu Y G, Zheng W X. Global adaptive output-feedback stabilization for a class of uncertain nonlinear systems with unknown growth rate and unknown output function. Automatica, 2019, 104: 173−181 doi: 10.1016/j.automatica.2019.02.040
    [6] Li H F, Zhang X F, Liu S. An improved dynamic gain method to global regulation of feedforward nonlinear systems. IEEE Transactions on Automatic Control, 2022, 67(6): 2981−2988 doi: 10.1109/TAC.2021.3088787
    [7] Xie X J, Duan N, Zhao C R. A combined homogeneous domination and sign function approach to output-feedback stabilization of stochastic high-order nonlinear systems. IEEE Transactions on Automatic Control, 2014, 59(5): 1303−1309 doi: 10.1109/TAC.2013.2286912
    [8] Zhang X H, Zhang K M, Xie X J. Finite-time output feedback stabilization of nonlinear high-order feedforward systems. International Journal of Robust and Nonlinear Control, 2016, 26(8): 1794−1814 doi: 10.1002/rnc.3384
    [9] Liu Z G, Tian Y P, Sun Z Y. An adaptive homogeneous domination method to time-varying control of nonlinear systems. International Journal of Robust and Nonlinear Control, 2022, 32(1): 527−540 doi: 10.1002/rnc.5806
    [10] Zhai J Y, Liu C. Global dynamic output feedback stabilization for a class of high-order nonlinear systems. International Journal of Robust and Nonlinear Control, 2022, 32(3): 1828−1843 doi: 10.1002/rnc.5911
    [11] Xie X J, Wu Y, Hou Z G. Further results on adaptive practical tracking for high-order nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 2022, 52(10): 9978−9985 doi: 10.1109/TCYB.2021.3069865
    [12] Lin X Z, Xue J L, Zheng E L, Park J H. State-feedback stabilization for high-order output-constrained switched nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(12): 7401−7410 doi: 10.1109/TSMC.2022.3154753
    [13] 刘玉发, 刘勇华, 苏春翌, 鲁仁全. 一类具有未知幂次的高阶不确定非线性系统的自适应控制. 自动化学报, 2022, 48(8): 2018−2027 doi: 10.16383/j.aas.c200893

    Liu Yu-Fa, Liu Yong-Hua, Su Chun-Yi, Lu Ren-Quan. Adaptive control for a class of high-order uncertain nonlinear systems with unknown powers. Acta Automatica Sinica, 2022, 48(8): 2018−2027 doi: 10.16383/j.aas.c200893
    [14] 黄亚欣, 张星慧, 蒋蒙蒙. 带有输入和状态时滞的高阶非线性前馈系统的自适应控制. 自动化学报, 2017, 43(7): 1273−1279 doi: 10.16383/j.aas.2017.e140146

    Huang Ya-Xin, Zhang Xing-Hui, Jiang Meng-Meng. Adaptive control for high-order nonlinear feedforward systems with input and state delays. Acta Automatica Sinica, 2017, 43(7): 1273−1279 doi: 10.16383/j.aas.2017.e140146
    [15] Krstic M. Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Transactions on Automatic Control, 2010, 55(2): 287−303 doi: 10.1109/TAC.2009.2034923
    [16] Karafyllis I. Stabilization by means of approximate predictors for systems with delayed input. SIAM Journal on Control and Optimization, 2011, 49(3): 1100−1123 doi: 10.1137/100781973
    [17] Mazenc F, Bliman P A. Backstepping design for time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(1): 149−154 doi: 10.1109/TAC.2005.861701
    [18] Zhou B, Yang X F. Global stabilization of feedforward nonlinear time-delay systems by bounded controls. Automatica, 2018, 88: 21−30 doi: 10.1016/j.automatica.2017.10.021
    [19] Zhang M X, Liu L L, Zhao C R. Memoryless output feedback control for a class of stochastic nonlinear systems with large delays in the state and input. Systems and Control Letters, 2023, 171: Article No. 105431 doi: 10.1016/j.sysconle.2022.105431
    [20] Zhao C R, Lin W. Global stabilization by memoryless feedback for nonlinear systems with a limited input delay and large state delays. IEEE Transactions on Automatic Control, 2021, 66(8): 3702−3709 doi: 10.1109/TAC.2020.3021053
    [21] Meng Q T, Ma Q, Shi Y. Fixed-time stabilization for nonlinear systems with low-order and high-order nonlinearities via event-triggered control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(7): 3006−3015 doi: 10.1109/TCSI.2022.3164552
    [22] 都海波, 李世华, 钱春江, 何怡刚. 基于采样控制的一类本质非线性系统的全局镇定. 自动化学报, 2014, 40(2): 379−384

    Du Hai-Bo, Li Shi-Hua, Qian Chun-Jiang, He Yi-Gang. Global stabilization of a class of inherently nonlinear systems under sampled-data control. Acta Automatica Sinica, 2014, 40(2): 379−384
    [23] Nešić D, Teel A R, Kokotović P V. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Systems and Control Letters, 1999, 38(4−5): 259−270 doi: 10.1016/S0167-6911(99)00073-0
    [24] Qian C J, Du H B. Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control. IEEE Transactions on Automatic Control, 2012, 57(11): 2934−2939 doi: 10.1109/TAC.2012.2193707
    [25] Zhai J Y, Du H B, Fei S M. Global sampled-data output feedback stabilisation for a class of nonlinear systems with unknown output function. International Journal of Control, 2016, 89(3): 469−480 doi: 10.1080/00207179.2015.1081294
    [26] Li Z J, Zhao J. Output feedback stabilization for a general class of nonlinear systems via sampled-data control. International Journal of Robust and Nonlinear Control, 2018, 28(7): 2853−2867 doi: 10.1002/rnc.4053
    [27] Bacciotti A, Rosier L. Liapunov Functions and Stability in Control Theory. New York: Springer, 2001.
    [28] Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge University Press, 1952.
    [29] Hermes H. Homogeneous coordinates and continuous asymptotically stabilizing feedback controls. Differential Equations. New York: Marcel Dekker, 1991. 249−260
  • 加载中
图(10)
计量
  • 文章访问数:  993
  • HTML全文浏览量:  330
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 录用日期:  2023-04-12
  • 网络出版日期:  2023-08-21
  • 刊出日期:  2024-09-19

目录

    /

    返回文章
    返回