[1]
|
王焕清, 陈明, 刘晓平. 一类非线性系统模糊自适应固定时间量化反馈控制. 自动化学报, 2021, 47(12): 2823−2830 doi: 10.16383/j.aas.c190681Wang Huan-Qing, Chen Ming, Liu Xiao-Ping. Fuzzy adaptive fixed-time quantized feedback control for a class of nonlinear systems. Acta Automatica Sinica, 2021, 47(12): 2823−2830 doi: 10.16383/j.aas.c190681
|
[2]
|
Liu L, Chen A Q, Liu Y J. Adaptive fuzzy output-feedback control for switched uncertain nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 2022, 52(8): 7340−7351 doi: 10.1109/TCYB.2021.3050510
|
[3]
|
Wang Q F, Zhang Z Q, Xie X J. Globally adaptive neural network tracking for uncertain output-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 814−823 doi: 10.1109/TNNLS.2021.3102274
|
[4]
|
Qian C J, Lin W. Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm. IEEE Transactions on Automatic Control, 2002, 47(10): 1710−1715 doi: 10.1109/TAC.2002.803542
|
[5]
|
Yan X H, Liu Y G, Zheng W X. Global adaptive output-feedback stabilization for a class of uncertain nonlinear systems with unknown growth rate and unknown output function. Automatica, 2019, 104: 173−181 doi: 10.1016/j.automatica.2019.02.040
|
[6]
|
Li H F, Zhang X F, Liu S. An improved dynamic gain method to global regulation of feedforward nonlinear systems. IEEE Transactions on Automatic Control, 2022, 67(6): 2981−2988 doi: 10.1109/TAC.2021.3088787
|
[7]
|
Xie X J, Duan N, Zhao C R. A combined homogeneous domination and sign function approach to output-feedback stabilization of stochastic high-order nonlinear systems. IEEE Transactions on Automatic Control, 2014, 59(5): 1303−1309 doi: 10.1109/TAC.2013.2286912
|
[8]
|
Zhang X H, Zhang K M, Xie X J. Finite-time output feedback stabilization of nonlinear high-order feedforward systems. International Journal of Robust and Nonlinear Control, 2016, 26(8): 1794−1814 doi: 10.1002/rnc.3384
|
[9]
|
Liu Z G, Tian Y P, Sun Z Y. An adaptive homogeneous domination method to time-varying control of nonlinear systems. International Journal of Robust and Nonlinear Control, 2022, 32(1): 527−540 doi: 10.1002/rnc.5806
|
[10]
|
Zhai J Y, Liu C. Global dynamic output feedback stabilization for a class of high-order nonlinear systems. International Journal of Robust and Nonlinear Control, 2022, 32(3): 1828−1843 doi: 10.1002/rnc.5911
|
[11]
|
Xie X J, Wu Y, Hou Z G. Further results on adaptive practical tracking for high-order nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 2022, 52(10): 9978−9985 doi: 10.1109/TCYB.2021.3069865
|
[12]
|
Lin X Z, Xue J L, Zheng E L, Park J H. State-feedback stabilization for high-order output-constrained switched nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(12): 7401−7410 doi: 10.1109/TSMC.2022.3154753
|
[13]
|
刘玉发, 刘勇华, 苏春翌, 鲁仁全. 一类具有未知幂次的高阶不确定非线性系统的自适应控制. 自动化学报, 2022, 48(8): 2018−2027 doi: 10.16383/j.aas.c200893Liu Yu-Fa, Liu Yong-Hua, Su Chun-Yi, Lu Ren-Quan. Adaptive control for a class of high-order uncertain nonlinear systems with unknown powers. Acta Automatica Sinica, 2022, 48(8): 2018−2027 doi: 10.16383/j.aas.c200893
|
[14]
|
黄亚欣, 张星慧, 蒋蒙蒙. 带有输入和状态时滞的高阶非线性前馈系统的自适应控制. 自动化学报, 2017, 43(7): 1273−1279 doi: 10.16383/j.aas.2017.e140146Huang Ya-Xin, Zhang Xing-Hui, Jiang Meng-Meng. Adaptive control for high-order nonlinear feedforward systems with input and state delays. Acta Automatica Sinica, 2017, 43(7): 1273−1279 doi: 10.16383/j.aas.2017.e140146
|
[15]
|
Krstic M. Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Transactions on Automatic Control, 2010, 55(2): 287−303 doi: 10.1109/TAC.2009.2034923
|
[16]
|
Karafyllis I. Stabilization by means of approximate predictors for systems with delayed input. SIAM Journal on Control and Optimization, 2011, 49(3): 1100−1123 doi: 10.1137/100781973
|
[17]
|
Mazenc F, Bliman P A. Backstepping design for time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(1): 149−154 doi: 10.1109/TAC.2005.861701
|
[18]
|
Zhou B, Yang X F. Global stabilization of feedforward nonlinear time-delay systems by bounded controls. Automatica, 2018, 88: 21−30 doi: 10.1016/j.automatica.2017.10.021
|
[19]
|
Zhang M X, Liu L L, Zhao C R. Memoryless output feedback control for a class of stochastic nonlinear systems with large delays in the state and input. Systems and Control Letters, 2023, 171: Article No. 105431 doi: 10.1016/j.sysconle.2022.105431
|
[20]
|
Zhao C R, Lin W. Global stabilization by memoryless feedback for nonlinear systems with a limited input delay and large state delays. IEEE Transactions on Automatic Control, 2021, 66(8): 3702−3709 doi: 10.1109/TAC.2020.3021053
|
[21]
|
Meng Q T, Ma Q, Shi Y. Fixed-time stabilization for nonlinear systems with low-order and high-order nonlinearities via event-triggered control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(7): 3006−3015 doi: 10.1109/TCSI.2022.3164552
|
[22]
|
都海波, 李世华, 钱春江, 何怡刚. 基于采样控制的一类本质非线性系统的全局镇定. 自动化学报, 2014, 40(2): 379−384Du Hai-Bo, Li Shi-Hua, Qian Chun-Jiang, He Yi-Gang. Global stabilization of a class of inherently nonlinear systems under sampled-data control. Acta Automatica Sinica, 2014, 40(2): 379−384
|
[23]
|
Nešić D, Teel A R, Kokotović P V. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Systems and Control Letters, 1999, 38(4−5): 259−270 doi: 10.1016/S0167-6911(99)00073-0
|
[24]
|
Qian C J, Du H B. Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control. IEEE Transactions on Automatic Control, 2012, 57(11): 2934−2939 doi: 10.1109/TAC.2012.2193707
|
[25]
|
Zhai J Y, Du H B, Fei S M. Global sampled-data output feedback stabilisation for a class of nonlinear systems with unknown output function. International Journal of Control, 2016, 89(3): 469−480 doi: 10.1080/00207179.2015.1081294
|
[26]
|
Li Z J, Zhao J. Output feedback stabilization for a general class of nonlinear systems via sampled-data control. International Journal of Robust and Nonlinear Control, 2018, 28(7): 2853−2867 doi: 10.1002/rnc.4053
|
[27]
|
Bacciotti A, Rosier L. Liapunov Functions and Stability in Control Theory. New York: Springer, 2001.
|
[28]
|
Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge University Press, 1952.
|
[29]
|
Hermes H. Homogeneous coordinates and continuous asymptotically stabilizing feedback controls. Differential Equations. New York: Marcel Dekker, 1991. 249−260
|