2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电熔镁砂生产用电需量多步智能预报方法

张菁雯 柴天佑 李慷

张菁雯, 柴天佑, 李慷. 电熔镁砂生产用电需量多步智能预报方法. 自动化学报, 2023, 49(9): 1868−1877 doi: 10.16383/j.aas.c220659
引用本文: 张菁雯, 柴天佑, 李慷. 电熔镁砂生产用电需量多步智能预报方法. 自动化学报, 2023, 49(9): 1868−1877 doi: 10.16383/j.aas.c220659
Zhang Jing-Wen, Chai Tian-You, Li Kang. Multi-step intelligent forecasting method for electricity demand of fused magnesia production. Acta Automatica Sinica, 2023, 49(9): 1868−1877 doi: 10.16383/j.aas.c220659
Citation: Zhang Jing-Wen, Chai Tian-You, Li Kang. Multi-step intelligent forecasting method for electricity demand of fused magnesia production. Acta Automatica Sinica, 2023, 49(9): 1868−1877 doi: 10.16383/j.aas.c220659

电熔镁砂生产用电需量多步智能预报方法

doi: 10.16383/j.aas.c220659
基金项目: 2020年度辽宁省科技重大专项计划(2020JH1/10100008), 国家自然科学基金重大项目 (61991404), 一体化过程控制学科创新引智基地 2.0 (B08015), 国家重点研发计划(2019YFB2006202) 资助
详细信息
    作者简介:

    张菁雯:东北大学流程工业综合自动化国家重点实验室博士研究生. 2016年获得大连理工大学硕士学位. 主要研究方向为深度学习, 工业人工智能. E-mail: 1610277@stu.neu.edu.cn

    柴天佑:中国工程院院士, 东北大学教授. IEEE Life Fellow, IFAC Fellow, 欧亚科学院院士. 主要研究方向为自适应控制, 智能解耦控制, 流程工业综合自动化与智能化系统理论、方法与技术. 本文通信作者. E-mail: tychai@mail.neu.edu.cn

    李慷:利兹大学教授, 通讯及电力网络研究所所长. 1995年获上海交通大学博士学位. 先后在上海交通大学、代尔夫特理工大学、女王大学工作. 主要研究方向为系统建模, 人工智能, 以及在电力能源、制造及交通等领域的工程应用. E-mail: K.Li1@leeds.ac.uk

Multi-step Intelligent Forecasting Method for Electricity Demand of Fused Magnesia Production

Funds: Supported by 2020 Science and Technology Major Project of Liaoning Province (2020JH1/10100008), Major Program of National Natural Science Foundation of China (61991404), 111 Project 2.0 (B08015), and National Key Research and Development Program (2019YFB2006202)
More Information
    Author Bio:

    ZHANG Jing-Wen Ph.D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries of Northeastern University. She received her master degree from Dalian University of Technology in 2016. Her research interest covers deep learning and industrial artificial intelligence

    CHAI Tian-You Academician of Chinese Academy of Engineering, professor at Northeastern University, IEEE Life Fellow, IFAC Fellow, and academician of the International Eurasian Academy of Sciences. His research interest covers adaptive control, intelligent decoupling control, and theories, methods and technology of synthetical automation and intelligent system for process industries. Corresponding author of this paper

    LI Kang Professor and director at the Institute of Communication and Power Networks, University of Leeds. He received his Ph.D. degree from Shanghai Jiao Tong University in 1995. He successively worked in Shanghai Jiao Tong University, Delft University of Technology and Queen's University. His research interest covers systems modeling, artificial intelligence, and engineering applications in the fields of power energy, manufacturing, and transportation

  • 摘要: 电熔镁砂生产 (Fused magnesia smelting process, FMSP)用电需量会出现先升后降的尖峰现象, 当峰值达到用电需量限幅值, 会将电熔镁炉(Fused magnesia furnace, FMF)拉闸断电. 为避免尖峰时刻的不必要拉闸需要对需量尖峰进行识别, 因此需要进行需量多步预报. 利用电熔镁砂生产过程熔化电流闭环控制系统方程建立了由线性模型和未知非线性动态系统组成的需量多步预报模型, 将系统辨识与深度学习相结合提出了端边云协同的电熔镁砂生产用电需量多步智能预报方法. 采用电熔镁砂生产过程的工业大数据的实验结果验证了所提的预报方法可以准确预报需量的变化趋势.
  • 图  1  电熔镁砂生产用电需量监控流程图

    Fig.  1  An flow chart of electricity demand monitoring process for a fused magnesia production

    图  2  端边云协同需量多步智能预报结构图

    Fig.  2  Schematic of multi-step intelligent forecasting of demand with edge-cloud coordination

    图  3  $ \bar{r}(k+i)$的深度学习预报模型结构

    Fig.  3  Structure of deep learning prediction model of $ \bar{r}(k+i)$

    图  4  需量1-步预报结果

    Fig.  4  Demand forecast results for the 1st-step

    图  5  需量5-步预报结果

    Fig.  5  Demand forecast results for the 5th-step

    图  6  需量10-步预报结果

    Fig.  6  Demand forecast results for the 10th-step

    表  1  $ { TP}_i(k), { FP}_i(k), { TN}_i(k), {FN}_i(k)$的计算方式

    Table  1  Formula mode of ${ TP}_i(k), { FP}_i(k), $ ${ TN}_i(k), {FN}_i(k) $

    $\hat{\bar{r} }_i(k)-\hat{\bar{r} }_i(k-1)\geq 0$$\hat{\bar{r} }_i(k)-\hat{\bar{r} }_i(k-1) < 0$
    $\bar{r}_i(k)-\bar{r}_i(k-1)\geq 0$${TP}_i(k)=1$${FP}_i(k)=1$
    $\bar{r}_i(k)-\bar{r}_i(k-1)< 0$${FN}_i(k)=1$${TN}_i(k)=1$
    下载: 导出CSV

    表  2  需量预报精度对比

    Table  2  Precision comparison of demand forecast

    预报步数$i$12345678910
    $R^2_i\;(\%)$本文99.9699.6299.5999.4799.3999.3198.9998.5198.0397.95
    文献[9]90.3490.0589.7789.5488.7388.4888.0187.7687.3386.94
    ${{RMSE} }_i$本文9.9311.0611.9913.0313.8914.7316.0516.8317.9318.78
    文献[9]24.9230.0134.4939.9944.7950.2354.9360.0565.3270.64
    ${{MAPE} }_i\;(\%)$本文0.040.050.050.060.060.070.070.080.080.08
    文献[9]0.110.130.150.180.200.220.240.270.290.32
    $TPR_i\;(\%)$本文94.8893.2192.1991.4290.1789.7788.2190.0591.5589.66
    文献[9]86.1282.1180.0580.1178.9479.3379.1177.0680.1579.02
    $TNR_i\;(\%)$本文93.2294.6792.1992.0194.2193.1890.9689.9988.1290.01
    文献[9]81.1280.0480.6783.7279.9980.1577.5686.7780.1576.91
    下载: 导出CSV
  • [1] 吴志伟, 柴天佑, 吴永建. 电熔镁砂产品单吨能耗混合预报模型. 自动化学报, 2013, 39(12): 2002-2011

    WU Zhi-Wei, CHAI Tian-You, WU Yong-Jian. A hybrid prediction model of energy consumption per ton for fused magnesia. Acta Automatica Sinica, 2013, 39(12): 2002-2011
    [2] 吴高昌, 刘强, 柴天佑, 秦泗钊. 基于时序图像深度学习的电熔镁炉异常工况诊断. 自动化学报, 2019, 45(8): 1475-1485

    Wu Gao-Chang, Liu Qiang, Chai Tian-You, Qin S. Joe. Abnormal condition diagnosis through deep learning of image sequences for fused magnesium furnaces. Acta Automatica Sinica, 2019, 45(8): 1475-1485
    [3] 王维洲, 吴志伟, 柴天佑. 电熔镁砂熔炼过程带输出补偿的PID控制. 自动化学报, 2018, 44(7): 1282-1292

    Wang Wei-Zhou, Wu Zhi-Wei, Chai Tian-You. PID control With output compensation for the fused magnesia smelting process. Acta Automatica Sinica, 2018, 44(7): 1282-1292
    [4] Zhang J W, Li K, Chai T Y. Demand forecasting of a fused magnesia smelting process based on LSTM and FRA. In: Proceedings of the LSMS 2020 and ICSEE 2020 (LSMS and ICSEE). Shanghai, China: Springer, 2020. 201−215
    [5] Jornaz A, Samaranayake V A. A multi-step approach to modeling the 24-hour daily profiles of electricity load using daily splines. Energies, 2019, 12(21): 41-69
    [6] An N, Zhao W G, Wang J Z. Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting. Energy, 2013, 49(1): 279-288
    [7] Bonetto R, Rossi M. Parallel multi-step ahead power demand forecasting through NAR neural networks. In: Proceedings of the IEEE International Conference on Smart Grid Communications (IEEE Smart Grid Comm). Sydney, Australia: IEEE, 2016. 314−319
    [8] Li R., Chen X L., Balezentis T, Dalia S, Niu Z Y. Multi-step least squares support vector machine modeling approach for forecasting short-term electricity demand with application. Neural Computing and Applications, 2021, 33(3): 301-320
    [9] Li G, Li Y, Roozitalab F. Midterm load forecasting: a multi-step approach based on phase space reconstruction and support vector machine. IEEE Systems Journal, 2020, 14(4): 4967-4977 doi: 10.1109/JSYST.2019.2962971
    [10] Yang Y, Shang Z H, Chen Y, Chen Y H. Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting. Energies, 2020, 13(3): 532-541 doi: 10.3390/en13030532
    [11] Liu J M, Chen R, Liu L M, Harris J L. A semi-parametric time series approach in modeling hourly electricity loads. Journal of Forecasting, 2006, 25(8): 537-559 doi: 10.1002/for.1006
    [12] Srinivasan D. Energy demand prediction using GMDH networks. Neurocomputing, 2008, 72(3): 625-629
    [13] Cai Y, Wang J Z, Tang Y, Yang Y C. An efficient approach for electric load forecasting using distributed ART (adaptive resonance theory) and HS-ARTMAP (Hyper-spherical ARTMAP network) neural network. Energy, 2011, 36(2): 1340-1350 doi: 10.1016/j.energy.2010.11.005
    [14] 何峰, 钟婷, 谭貌. 基于二次EEMD的工业电能需量多步预测. 计算技术与自动化, 2021, 40(3): 72-77

    He Feng, Zhong Ting, Tan Mao. Multi-step forecasting of industrial electrical power demand based on twice ensemble empirical mode decomposition. Computing Technology and Automation, 2011, 40(3): 72-77
    [15] 赵征, 周孜钰, 南宏钢. 基于VMD的CNN-BiLSTM超短期风电功率多步区间预测. 华北电力大学学报: 自然科学版, 2022, 49(4): 91-97

    Zhang Zheng, Zhou Zi-Yu, Nan Hong-Gang. Research on multi-step interval forecasting of CNN-BiLSTM ultra-short-term wind power based on VMD. Journal of North China Electric Power University: Natural Science Edition, 2012, 49(4): 91-97
    [16] 杨杰, 柴天佑, 张亚军, 吴志伟. 数据与模型驱动的电熔镁群炉需量预报方法. 自动化学报, 2018, 44(8): 1460-1474

    Yang Jie, Chai Tiang-You, Zhang Ya-Jun, Wu Zhi-Wei. Data and model driven demand forecasting method for fused magnesium furnace group. Acta Automatica Sinica, 2018, 44(8): 1460-1474
    [17] Yang J, Chai T Y, Luo C, Wen Y. Intelligent demand forecasting of smelting process using data-driven and mechanism model. IEEE Transactions on Industrial Electronics, 2019, 66(1): 9745-9755
    [18] Chai T Y, Zhang J W, Yang T. Demand forecasting of the fused magnesia smelting process with system identification and deep learning. IEEE Transactions on Industrial Informatics, 2021, 17(2): 8387-8396
    [19] Qin P, Nishii R, Nakagawa T. ARX models for time-varying systems estimated by recursive penalized weighted least squares method. Journal of Math for Industry, 2010, 2(10): 109-114
    [20] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 10(9): 1735-1780
    [21] Kiran R, Soumitri S, Mitra K. Deep learning based dynamic behavior modelling and prediction of particulate matter in air. Chemical Engineering Journal, 2021, 426(3): 13-22
    [22] Greff K, Srivastava R K, J Koutn k, et al. LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(10): 2222-2232
    [23] Wang W J, Li Y M. Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. In: Proceedings of the 5th International Conference on Mechanical Engineering, Materials Science and Civil Engineering. Kuala Lumpur, Malaysia: IEEE, 2018. 324
    [24] Cheung G W, Rensvold R B. Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling A Multidisciplinary Journal, 2002, 9(2): 233-255 doi: 10.1207/S15328007SEM0902_5
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1514
  • HTML全文浏览量:  213
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-20
  • 录用日期:  2022-12-13
  • 网络出版日期:  2023-02-13
  • 刊出日期:  2023-09-26

目录

    /

    返回文章
    返回