2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电熔镁砂生产用电需量多步智能预报方法

张菁雯 柴天佑 李慷

张菁雯, 柴天佑, 李慷. 电熔镁砂生产用电需量多步智能预报方法. 自动化学报, 2023, 49(9): 1868−1877 doi: 10.16383/j.aas.c220659
引用本文: 张菁雯, 柴天佑, 李慷. 电熔镁砂生产用电需量多步智能预报方法. 自动化学报, 2023, 49(9): 1868−1877 doi: 10.16383/j.aas.c220659
Zhang Jing-Wen, Chai Tian-You, Li Kang. Multi-step intelligent forecasting method for electricity demand of fused magnesia production. Acta Automatica Sinica, 2023, 49(9): 1868−1877 doi: 10.16383/j.aas.c220659
Citation: Zhang Jing-Wen, Chai Tian-You, Li Kang. Multi-step intelligent forecasting method for electricity demand of fused magnesia production. Acta Automatica Sinica, 2023, 49(9): 1868−1877 doi: 10.16383/j.aas.c220659

电熔镁砂生产用电需量多步智能预报方法

doi: 10.16383/j.aas.c220659
基金项目: 2020年度辽宁省科技重大专项计划(2020JH1/10100008), 国家自然科学基金重大项目 (61991404), 一体化过程控制学科创新引智基地 2.0 (B08015), 国家重点研发计划(2019YFB2006202) 资助
详细信息
    作者简介:

    张菁雯:东北大学流程工业综合自动化国家重点实验室博士研究生. 2016年获得大连理工大学硕士学位. 主要研究方向为深度学习, 工业人工智能. E-mail: 1610277@stu.neu.edu.cn

    柴天佑:中国工程院院士, 东北大学教授. IEEE Life Fellow, IFAC Fellow, 欧亚科学院院士. 主要研究方向为自适应控制, 智能解耦控制, 流程工业综合自动化与智能化系统理论、方法与技术. 本文通信作者. E-mail: tychai@mail.neu.edu.cn

    李慷:利兹大学教授, 通讯及电力网络研究所所长. 1995年获上海交通大学博士学位. 先后在上海交通大学、代尔夫特理工大学、女王大学工作. 主要研究方向为系统建模, 人工智能, 以及在电力能源、制造及交通等领域的工程应用. E-mail: K.Li1@leeds.ac.uk

Multi-step Intelligent Forecasting Method for Electricity Demand of Fused Magnesia Production

Funds: Supported by 2020 Science and Technology Major Project of Liaoning Province (2020JH1/10100008), Major Program of National Natural Science Foundation of China (61991404), 111 Project 2.0 (B08015), and National Key Research and Development Program (2019YFB2006202)
More Information
    Author Bio:

    ZHANG Jing-Wen Ph.D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries of Northeastern University. She received her master degree from Dalian University of Technology in 2016. Her research interest covers deep learning and industrial artificial intelligence

    CHAI Tian-You Academician of Chinese Academy of Engineering, professor at Northeastern University, IEEE Life Fellow, IFAC Fellow, and academician of the International Eurasian Academy of Sciences. His research interest covers adaptive control, intelligent decoupling control, and theories, methods and technology of synthetical automation and intelligent system for process industries. Corresponding author of this paper

    LI Kang Professor and director at the Institute of Communication and Power Networks, University of Leeds. He received his Ph.D. degree from Shanghai Jiao Tong University in 1995. He successively worked in Shanghai Jiao Tong University, Delft University of Technology and Queen's University. His research interest covers systems modeling, artificial intelligence, and engineering applications in the fields of power energy, manufacturing, and transportation

  • 摘要: 电熔镁砂生产 (Fused magnesia smelting process, FMSP)用电需量会出现先升后降的尖峰现象, 当峰值达到用电需量限幅值, 会将电熔镁炉(Fused magnesia furnace, FMF)拉闸断电. 为避免尖峰时刻的不必要拉闸需要对需量尖峰进行识别, 因此需要进行需量多步预报. 利用电熔镁砂生产过程熔化电流闭环控制系统方程建立了由线性模型和未知非线性动态系统组成的需量多步预报模型, 将系统辨识与深度学习相结合提出了端边云协同的电熔镁砂生产用电需量多步智能预报方法. 采用电熔镁砂生产过程的工业大数据的实验结果验证了所提的预报方法可以准确预报需量的变化趋势.
  • 电熔镁砂是一种生产航天、航空和工业所需耐火材料的原料. 电熔镁砂生产过程采用多台电熔镁炉, 熔炼菱镁矿石, 生产电熔镁砂. 电熔镁炉是一种重大耗能设备, 耗电成本占总生产成本的60%以上[1-2]. 需量是电熔镁砂生产过程的耗电指标, 供电部门规定需量为当前时刻和过去29个采样时刻的电熔镁砂生产用电功率的均值, 其采样周期为7秒[3]. 电熔镁砂生产企业采用需量监控系统监控需量值, 当需量达到其限幅值(22 300 kW)时会切断其中一台电熔镁炉的供电, 使需量不超过限幅值, 然而切断供电会破坏炉内温度场吸热和放热平衡, 降低产品质量[4].

    在电熔镁砂生产过程中, 当原料杂质成分含量增大和颗粒大小变化等造成阻抗减小, 导致熔化电流增大、功率增大, 进而需量上升. 由于熔化电流设定值不变, 因此熔化电流控制系统使熔化电流下降, 需量下降, 出现需量先升后降的尖峰现象. 当需量尖峰值达到其限幅值会造成拉闸断电, 为了避免需量尖峰造成的不必要的断电, 需要对需量尖峰进行识别, 因此需要对需量进行多步预报.

    需量多步预报的研究集中在城市用电领域. 文献[5]利用采样周期为1小时的用电需量数据, 提出一种自回归模型与三次样条曲线相结合的混合负荷多步预报方法, 预报大西洋城未来一天每小时的用电需量. 文献[6]利用采样周期为0.5小时的用电需量数据, 提出基于信号滤波和季节调整的多输出前馈神经网络与经验模态分解相结合的多步预报模型, 预报澳大利亚新南威尔士州未来一天每半小时的用电需量. 文献[7]利用采样周期为1分钟的需量数据, 提出基于非线性自回归神经网络的多步预报方法, 预报未来1分钟、10分钟、1小时和2小时的住宅用电需量. 文献[8]利用采样周期为0.5小时的用电需量数据, 提出基于多目标优化算法的最小二乘支持向量机的多步预报方法, 预报电力市场未来0.5小时、1小时、2小时和3小时的用电需量. 文献[9]利用采样周期为1天的用电需量数据, 提出基于支持向量机的多步预报模型, 预报某配电公司未来30天的每天最大用电需量. 文献[10]利用采样周期为0.5小时的用电需量数据, 提出基于支持向量机、极限学习机和多层循环神经网络的用电需量多步预报方法, 预报了未来1.5小时的每半小时的城市用电需量. 文献[11]利用采样周期为1小时的用电需量数据, 提出基于自回归滑动平均模型的某地区未来一天的用电需量预报方法. 文献[12]利用采样周期为1个月的用电需量数据, 提出基于多层神经网络的未来12个月的地区用电需量预报模型. 文献[13]利用采样周期为1个月的用电需量数据, 提出基于神经网络的未来12个月的地区用电需量预报方法. 文献[14]利用采样周期为15分钟的用电需量数据, 提出基于变分模态分解的某地区未来1分钟、3分钟和5分钟的用电需量预报方法. 文献[15]利用采样周期为30秒的用电需量数据, 提出基于集成经验模态分解和卷积神经网络的某地区未来30秒、1分钟、1.5分钟和2分钟的用电需量预报方法. 电熔镁砂生产用电需量的变化是快变化的动态系统, 需量的采样周期为7秒, 发生需量尖峰的整个时间在70秒之内. 由于电熔镁砂生产过程是由多台电熔镁炉运行组成, 其用电需量变化过程是模型结构与系统阶次未知的非线性动态系统, 而城市用电需量变化是一个慢变化的系统, 可以采用上述静态建模方法[5-15]. 电熔镁砂生产用电需量的多步预报难以采用文献[5-15]方法进行需量尖峰的准确预报.

    文献[16-17]利用采样周期为7秒的用电需量数据, 提出数据与模型驱动的电熔镁砂生产用电需量单步预报方法. 为了提高需量预报精度, 文献[18]采用用电需量大数据提出系统辨识与自适应深度学习相结合的电熔镁砂生产用电需量一步预报方法. 由于需量尖峰是需量先升高后下降, 需要对需量进行多步预报.

    本文利用电熔镁砂生产过程熔化电流闭环控制系统方程, 建立了由线性模型和未知非线性动态系统组成的群炉需量多步预报模型, 将系统辨识与自适应深度学习相结合, 采用端边云协同结构, 提出了电熔镁砂生产用电需量多步智能预报方法. 采用电熔镁砂生产过程的工业大数据验证了所提方法可以准确预报用电需量的变化趋势.

    图1所示, 电熔镁砂的生产过程由多台电熔镁炉控制系统, 供电系统和需量监控系统组成, 每台电熔镁炉控制系统由电熔镁炉、拉闸系统、加料系统、熔化电流控制系统组成[2]. 需量监控系统由功率采集装置和需量监控计算机组成. 电熔镁炉采用埋弧方式, 通过加料系统将原矿送入电熔镁炉内, 电流控制系统控制三相电极与原料之间的距离使产生的电弧电流达到生产工艺规定的熔化电流, 形成熔池. 边熔化边加料, 使熔池增高至炉口, 熔炼过程结束. 熔炼过程持续约10小时, 每台电熔镁炉每炉次耗电约40 MWh, 因此电熔镁炉是高耗能设备.

    图 1  电熔镁砂生产用电需量监控流程图
    Fig. 1  An flow chart of electricity demand monitoring process for a fused magnesia production

    为了节能减排, 电力部门规定当前时刻和过去29个时刻的功率的平均值作为当前时刻的需量值并规定了需量的限幅值, 当需量实际值超过需量限幅值对用电企业罚款, 因此生产企业设立需量监控系统, 操作人员监视需量实际值, 当超过限幅值, 通过拉闸系统切断其中一台电熔镁炉的电源. 由于电熔镁砂生产过程常出现尖峰现象, 导致不必要的拉闸. 为避免尖峰导致的不必要的拉闸断电, 需要对尖峰进行预报, 由于尖峰现象是需量先升高后下降, 因此需要对需量进行多步预报.

    需量$ \bar{p}(k) $为$ k $时刻群炉功率$ p(k) $与过去29个采样周期的群炉功率的均值, 即

    $$ \begin{split} \bar{p}(k)=\;& \frac{1}{30}\sum_{j = 0}^{29} p(k-j) =\\ &\bar{p}(k-1)+\frac{p(k)-p(k-30)}{30} \end{split} $$ (1)

    其中, $ k = 1 $表示采样周期7秒, $ (k+n) $时刻的需量$\bar{p}(k+n)$为

    $$ \begin{split} \bar{p}(k+n) = &\frac{1}{30}\sum_{j = 0}^{29} p(k+n-j)=\frac{1}{30}\sum_{i = 0}^n{p}(k+n-i)\;+\\&\frac{1}{30}\sum_{j = 0}^{29-n} p(k-j)=\bar{p}(k)\;-\\ &\frac{1}{30}\sum_{i = 0}^n{p}(k-30+i)+\frac{1}{30}\sum_{i = 1}^n p(k+i)\ \end{split} $$ (2)

    其中, 群炉功率$ p(k+1), \cdots, p(k+n) $未知, 因此需要建立群炉功率多步预报模型.

    首先需建立群炉功率$ p(k) $的动态模型. 电熔镁炉群炉功率$ p(k) $为 $M$个电熔镁炉功率之和$ \sum_{s = 1}^M p_s(k) $.

    采用文献[18]的方法建立第$ s $个电熔镁炉的功率$ p_s(k) $的动态模型. 第$ s $个电熔镁炉的熔化电流$ y_s(k) $为电流闭环控制系统的输出, 其动态模型为

    $$ \begin{align} T_s(z^{-1})y_s(k) = G_s(z^{-1})y^*+v_s(k) \end{align} $$ (3)

    其中, $ y^* $是已知的熔化电流设定值, $ v_s(k) $为未知非线性项, $ T_s(z^{-1}) $ 和 $ G_s(z^{-1}) $为关于$ z^{-1} $的多项式, 即$ T_s(z^{-1}) = 1+t_{s1}(z^{-1})+t_{s2}(z^{-2})+t_{s3}(z^{-3}) $, $G_s(z^{-1}) = g_{s0}+g_{s1}(z^{-1})+g_{s2}(z^{-2})$.

    第$ s $个电熔镁炉的功率动态模型为

    $$ \begin{split} p_s(k) =\; &\sqrt{3}Uy_s(k)\cos \phi =-\;t_{s1}p_s(k-1)\;-\\ &t_{s2}p_s(k-2)-t_{s3}p_s(k-3)\;+\\ &d_{s0}p^*+v_s(k) \end{split} $$ (4)

    其中, $ p^* $是熔化电流设定值 $ y^* $对应的功率; $p_s(k- 1) $, $p_s(k-2) $, $ p_s(k-3)$为$ (k-1) $, $ (k-2) $, $(k- 3) $时刻的第$s$个电熔镁炉功率; $d_{s0} =g_{s0}+ g_{s1}+ g_{s2} $.

    采用未知常数$ t_{1}, t_{2}, t_{3}, d_{0} $代替式(4)中的$ t_{s1}, t_{s2}, t_{s3}, d_{s0} $, 群炉功率$ p(k) $为

    $$ \begin{split} p(k) =\; &\sum_{s = 1}^{M} p_s(k)= -\;t_{1}p(k-1)-t_{2}p(k-2)\;-\\ &t_{3}p(k-3)+d_{0}p^*+v(k) \end{split} $$ (5)

    其中, $ v(k) $为$v(k) = \sum_{s = 1}^{M}\left((t_1-t_{s1})p(k-1)+\right. (t_2-$ $t_{s2})p(k-2) $ $+\;(t_3\;-\;t_{s3})p(k-3)\;-\;(d_0\;-\;d_{s0})p^*\;+$ $v_s(k) ). $

    由式(5)可得$ (k+1) $时刻的群炉功率$ p(k+1) $为

    $$ \begin{split} {p}(k+1) =\; &{\boldsymbol{\varphi}}(k){{\boldsymbol{\theta}}}^1+{v}(k+1)=\\ &{\boldsymbol{\varphi}}(k){{\boldsymbol{\theta}}}^1+{r}(k+1) \end{split} $$ (6)

    其中, ${\boldsymbol{\varphi}}(k) \,= \,( p(k),\, p(k-1),\, p(k-2), p(k-3) )$, $ {{\boldsymbol{\theta}}}^1 = ( {\theta}_1^1, {\theta}_2^1, {\theta}_3^1, {\theta}_4^1)^{\rm{T}} = (-t_{1}, -t_{2}, -t_{3}, d_{0})^{\rm{T}} $, ${r}(k\;+ 1) = {v}(k+1).$ $ (k+2) $时刻的群炉功率 $ p(k+2) $为

    $$ \begin{split} {p}(k+2) =\; &{\boldsymbol{\varphi}}(k+1){\boldsymbol{\theta}}^1+v(k+2)=\\ &({\boldsymbol{\varphi}}(k){{\boldsymbol{\theta}}}^1+{v}(k+1), p(k), p(k-1),\\ & p^* ){\boldsymbol{\theta}}^1+v(k+2)=\\ &p(k)((\theta_1^1)^2+\theta_2^1)+p(k-1)(\theta_1^1\theta_2^1+\theta_3^1)\;+\\ &p(k-2)\theta_3^1\theta_1^1+p^*(\theta_1^1\theta_4^1+\theta_4^1)\;+\\ &r(k+1)\theta_1^1+v(k+2)=\\ &{\boldsymbol{\varphi}}(k){{\boldsymbol{\theta}}}^2(k)+r(k+2) \\[-10pt]\end{split} $$ (7)

    其中, 线性模型参数${{\boldsymbol{\theta}}}^2 = ({\theta}_1^2, {\theta}^2_{2}, {\theta}^2_{3}, {\theta}^2_{4})^{\rm{T}},{\theta}_1^2 = (\theta_1^1)^2\, +$ $\theta_2^1, {\theta}^2_{2} = \theta_1^1\theta_2^1+\theta_3^1, {\theta}^2_{3} = \theta_3^1\theta_1^1, {\theta}^2_{4} = \theta_1^1\theta_4^1+\theta_4^1$, 未知非线性项$ r(k+2) $ 为 ${r}(k+2) \;=\; {r}(k+1)\theta_1^1(k+1)\;+ v(k+2)$.

    采用数学归纳法可以证明假设$ (k+n-1) $时刻的群炉功率$ p(k+n-1) $为式(8)成立, 则$ (k+n) $时刻的群炉功率$ p(k+n) $表达式(9)成立

    $$ {p}(k+n-1) = {\boldsymbol{\varphi}}(k){{\boldsymbol{\theta}}}^{n-1}+ {r}(k+n-1) $$ (8)
    $$ {p}(k+n) = {\boldsymbol{\varphi}}(k){{\boldsymbol{\theta}}}^n+ {r}(k+n) $$ (9)

    其中, ${{\boldsymbol{\theta}}}^{n-1} = ({\theta}_1^{n-1}, {\theta}^{n-1}_{2}, {\theta}^{n-1}_{3}, {\theta}^{n-1}_{4})^{\rm{T}}$, ${{\boldsymbol{\theta}}}^n = ({\theta}_1^n,$${\theta}_2^n, {\theta}^n_{3}, {\theta}^n_{4})^{\rm{T}}, {\theta}_1^n = {\theta}_1^{n-1}\theta_1^1+{\theta}_1^{n-2}\theta_2^1+{\theta}_1^{n-3}\theta_3^1$, ${\theta}_2^n = $ ${\theta}_2^{n-1}\theta_1^1+{\theta}_2^{n-2}\theta_2^1+{\theta}_2^{n-3}\theta_3^1$, $ {\theta}_3^n = {\theta}_3^{n-1}\theta_1^1+{\theta}_3^{n-2}\theta_2^1\;+ $ ${\theta}_3^{n-3}\theta_3^1 $, $ {\theta}_4^n = {\theta}_4^{n-1}\theta_1^1+{\theta}_4^{n-2}\theta_4^1+{\theta}_4^{n-3}\theta_3^1+\theta_4^1$, 未知非线性项$ {r}(k+n) $为${r}(k+n) = {r}(k+n- 1)\theta_1^1+{r}(k\;+ n-2)\theta_2^1+{r}(k+n-3)\theta_3^1+{v}(k+n)$. 因此群炉功率多步预报模型为

    $$ \begin{align} {P}(k+n) = &\Theta^{\rm{T}}\varphi^{\rm{T}}(k)+ {R}(k+n) \end{align} $$ (10)

    其中, $ {P}(k+n) = (p(k+1), \cdots, p(k+n))^{\rm{T}} $, 模型参数$ \Theta = ({\boldsymbol{\theta}}^1, \cdots, {\boldsymbol{\theta}}^n) $, $R(k+n) = (r_1(k+1), \cdots, r_i(k\,+ i), \cdots, r_n(k+n))^{\rm{T}}$.

    由式(10)可知模型参数$ \Theta $的辨识方程为

    $$ \begin{align} P_s(k) = \begin{pmatrix} {\boldsymbol{\varphi}}(k-1){\boldsymbol{\theta}}^1\\ \vdots\\ {\boldsymbol{\varphi}}(k-i){\boldsymbol{\theta}}^i\\ \vdots\\ {\boldsymbol{\varphi}}(k-n){\boldsymbol{\theta}}^n \end{pmatrix} + {R_s}(k) \end{align} $$ (11)

    其中, $ n\times 1 $的向量$ P_s(k+n) $为

    $$ P_s(k+n) = (p(k), \cdots, p(k))^{\rm{T}} $$
    $$ {R_s}(k) = (r_1(k), \cdots, r_i(k), \cdots, r_n(k))^{\rm{T}} $$

    采用最小二乘算法[19]离线辨识模型参数$ \Theta $, 由式(10)和式(11)可得群炉功率预报模型为

    $$ \begin{align} {P}(k+n) = \hat{\Theta}^{\rm{T}}{\boldsymbol{\varphi}}^{\rm{T}}(k)+ \bar{R}(k+n) \end{align} $$ (12)

    其中, $\hat{\Theta}^{\rm{T}} = ({\hat{\boldsymbol{\theta}}}^1, \cdots, {\hat{\boldsymbol{\theta}}}^n), \bar{R}(k+n) = (\Theta-\hat{\Theta}^{\rm{T}})\varphi^{\rm{T}}(k)\,+$ $R(k+n) = (\bar{r}_1(k+1), \cdots, \bar{r}_i(k+i), \cdots, \bar{r}_n(k + n))^{\rm{T}}$,

    $$ \begin{split} \bar{r}_i(k+i) =\;& f_i(p(k), p(k-1), \cdots, \\ &\bar{r}_i(k), \bar{r}_i(k-1), \cdots) \end{split} $$ (13)

    其中, $ f(\cdot) $是模型结构与阶次未知的未知非线性函数, $i = 1, \cdots, n$. 由式(11)知

    $$ \begin{align} {\bar{R}_s}(k) = P_s(k)- \begin{pmatrix} {\boldsymbol{\varphi}}(k-1){\hat{\boldsymbol{\theta}}}^1\\ \vdots\\ {\boldsymbol{\varphi}}(k-i){\hat{\boldsymbol{\theta}}}^i\\ \vdots\\ {\boldsymbol{\varphi}}(k-n){\hat{\boldsymbol{\theta}}}^n \end{pmatrix} \end{align} $$ (14)

    其中, $ \bar{R}_s(k) = \left(\bar{r}_{1}(k), \cdots, \bar{r}_{i}(k), \cdots, \bar{r}_{n}(k)\right) $.

    由式(2)和式(12)可以得到需量多步预报模型为

    $$ \begin{split} \bar{P}\left( k+n \right) =\; &\left( \begin{matrix} \bar{p}(k) \\ \bar{p}(k) \\ \vdots \\ \bar{p}(k) \\ \end{matrix} \right)-\frac{1}{30}\left( \begin{matrix} p(k-29) \\ \displaystyle\sum\limits_{i = 1}^{2}{p(k-30+i)} \\ \vdots \\ \displaystyle\sum\limits_{i = 1}^{n}{p(k-30+i)} \\ \end{matrix} \right)+\\ & \frac{1}{30}\left( \begin{matrix} p(k\text+1) \\ \displaystyle\sum\limits_{i = 1}^{2}{p(k+i)} \\ \vdots \\ \displaystyle\sum\limits_{i = 1}^{n}{p(k+i)} \end{matrix} \right) =\\ &\left( \begin{matrix} \bar{p}(k) \\ \bar{p}(k) \\ \vdots \\ \bar{p}(k) \end{matrix} \right)-\frac{1}{30}\left( \begin{matrix} p(k-29) \\ \displaystyle\sum\limits_{i = 1}^{2}{p(k-30+i)} \\ \vdots \\ \displaystyle\sum\limits_{i = 1}^{n}{p(k-30+i)} \end{matrix} \right)+\\ &\frac{1}{30}\left( \begin{matrix} {\boldsymbol{\varphi}} (k){{{\hat{\theta }}}^{1}} \\ \displaystyle\sum\limits_{i = 1}^{2}{{\boldsymbol{\varphi}} (k){{{\hat{\theta }}}^{i}}} \\ \vdots \\ \displaystyle\sum\limits_{i = 1}^{n}{{\boldsymbol{\varphi}} (k){{{\hat{\theta }}}^{i}}} \\ \end{matrix} \right)+\frac{1}{30}\left( \begin{matrix} \bar{r}(k) \\ \displaystyle\sum\limits_{i = 1}^{2}{\bar{r}(k+i)} \\ \vdots \\ \displaystyle\sum\limits_{i = 1}^{n}{\bar{r}(k+i)} \\ \end{matrix} \right) =\\ &{\bar{P}_S(k)}+\frac{1}{30}AP(k+n-30)\;+\\ &\frac{1}{30}A\hat{\Theta}^{\rm{T}}{\boldsymbol{\varphi}}^{\rm{T}}(k)+ \frac{1}{30}A\bar{R}(k+n) \\[-10pt]\end{split} $$ (5)

    其中, $\bar{P}(k+n) = (\bar{p}(k+1), \cdots, \bar{p}(k+n))^{\rm{T}}$, ${\bar{P}_S(k)} = (\bar{p}(k), \cdots, \bar{p}(k))^{\rm{T}}$, $P(k+n-30) = (p(k-29), \cdots, p(k-n+30))^{\rm{T}}$, $ \bar{R}(k+n) $ 为 $(\bar{r}_1(k), \cdots, \bar{r}_i(k+ i), \cdots, \bar{r}_n(k+n))^{\rm{T}}$, $ A $为非0元素为1的$ n\times n $维下三角阵. 式(15)中$ {\bar{P}_S(k)}, P(k+n-30), \hat{\Theta}^{\rm{T}}{\boldsymbol{\varphi}}^{\rm{T}}(k) $已知, 向量$ \bar{R}(k+n) $是模型结构阶次与参数未知的非线性动态系统.

    采用文献[18]方法建立式(15)的未知非线性动态系统的由在线深度学习多步预报模型、自校正深度学习多步预报模型和自校正机制组成的自适应深度学习多步预报模型.

    采用图2所示的端边云协同结构实现电熔镁砂生产用电需量多步智能预报算法, 其中端−需量监控系统实时采集电熔镁砂生产过程中的群炉功率$ p(k) $与需量$ \bar{p}(k) $, 边−需量预报计算机执行数据处理、在线计算$ \hat{\Theta}^{\rm{T}}\varphi^{\rm{T}}(k) $, 采用窗口长度为$ N $的数据和$ \bar{R}(k\;+ n) $的在线深度学习多步预报模型获得$ \hat{\bar{R}}(k+n) $, 采用式(15)求取需量多步预报值$ \hat{\bar{P}}(k+n) $, 云−数据服务器和人工智能计算平台采用$ k $时刻以及以前所有时刻的输入输出数据和$ \bar{R}(k+n) $的自校正深度学习多步预报模型更新自校正深度学习多步预报模型的全部权值参数和偏置参数. 自校正机制在线监控$ \bar{R}(k+n) $的在线深度学习多步预报模型的预报精度, 当不满足精度要求时, 采用自校正深度学习多步预报模型的参数校正在线深度学习多步预报模型的参数, 从而保证需量的预报精度.

    图 2  端边云协同需量多步智能预报结构图
    Fig. 2  Schematic of multi-step intelligent forecasting of demand with edge-cloud coordination

    首先建立$ \bar{R}(k+n) $的自适应深度学习多步预报算法. 采用长短周期记忆(Long short-term memory, LSTM)[20-22]的网络架构提出如图3所示的需量第$ i $步预报$ \bar{r}(k+i) $的深度学习预报模型结构. 结合$ \bar{r}(k+i) $动态特性, 将其输入变量作为单个神经元的输入, 未知阶次用神经元个数$ t $来表示, 由式(13)和式(14)可知$ \bar{r}(k+i) $的深度学习网络的第$ j $个神经元的输入为 ${\boldsymbol{x}}_i(k-j+1) = (p(k- j\;+ 1), \bar{r}_i(k-j+1))^{\rm{T}}$, 其中 $\bar{r}_i(k-j+1) = p(k- j\;+ 1)-{\boldsymbol{\varphi}}(k- i-j+1){\hat{\boldsymbol{\theta}}}^i$, $ j = 1, \cdots, t $. 采用文献[18]的训练方法, 利用30个炉次(150000组)的群炉功率数据离线训练$ \bar{r}(k+i) $的深度学习模型结构, 确定神经元个数$ t = 25 $、神经元的节点个数$ \bar{h} = 200 $、隐藏层数$ L = 3 $、在线训练数据窗口长度$ N = 2\,000 $. 采用该深度学习预报模型结构, 提出由在线深度学习预报模型、自校正深度学习预报模型和自校正机制组成的$ \bar{r}(k+i) $的自适应深度学习预报算法.

    图 3  $ \bar{r}(k+i)$的深度学习预报模型结构
    Fig. 3  Structure of deep learning prediction model of $ \bar{r}(k+i)$

    采用窗口长度$ N $的实时数据在线校正$ \bar{r}(k+i) $的在线深度学习预报模型的输出层权值与偏置参数. 校正算法为

    $$ \begin{align} \hat{\bar{r}}_i(k+i) = {\hat{\boldsymbol{\beta}}}_i(k){\boldsymbol{h}}_i^3(k)+\hat{b}_i(k) \end{align} $$ (16)

    其中,

    $$ {\hat{\boldsymbol{\beta}}}_i(k) = {\hat{\boldsymbol{\beta}}}_i(k-1)-\alpha\frac{\partial L_i(k)}{\partial {{\boldsymbol{\beta}}}_i(k-1)} $$ (17)
    $$ \hat{b}_i(k) = \hat{b}_i(k-1)-\alpha\frac{\partial L_i(k)}{\partial{b}_i(k-1)} $$ (18)
    $$ L_i(k) =\frac{1}{N}\sum_{m = 0}^{N-1}||\Delta \bar{r}_i(k-m)||_2 $$ (19)

    其中, $ \Delta\bar{r}_i(k-m) = \bar{r}_i(k-m)-\hat{\bar{r}}_i(k-m) $.

    采用当前时刻$ k $以及以前所有时刻的实时数据校正自校正深度学习预报模型的全部权值和偏置参数. 其输出层的权值与偏置参数采用式(16) ~ (19)校正. 第$ l $层第$ j $个神经元的输出

    $$ \begin{split} {\boldsymbol{h}}_i^l(k-j+1) =\;& {\boldsymbol{o}}_i^l(k-j+1) \;\odot\\ &\tanh( C_i^l(k-j+1)) \end{split} $$ (20)

    其中, $ \odot $为哈达玛积[22], $ \tanh(\cdot) $为双曲正切函数, $ ( C_i^l(k-j+1)) $和$ {\boldsymbol{o}}_i^l(k-j+1) $表示第$ l $层第$ j $个神经元的状态和输出门的输出, 采用文献[12]方法计算, 其中, 第$ l $层第$i $个神经元的输出门的权值与偏置参数的校正算法为

    $$ W_i^l(k-j+1) = W_i^l(k-j)-\alpha\frac{\partial L_i(k)}{\partial W_i^l(k-j)} $$ (21)
    $$ b_i^l(k-j+1) = b_i^l(k-j)-\alpha\frac{\partial L_i(k)}{\partial b_i^l(k-j)} $$ (22)
    $$L_i(k) =\frac{1}{k}\sum_{m = 0}^{k-1}||\Delta \bar{r}_i(k-m)||_2 $$ (23)

    其中, $ \Delta\bar{r}_i(k-m) = \bar{r}_i(k-m)-\tilde{r}_i(k-m) $.

    为了准确预报需量尖峰, 需要保证需量预报误差精度和需量变化趋势预报精度, 由式(15)知需量预报精度取决于$ \bar{r}(k+i) $的预报精度. 采用自校正机制监控$ \bar{r}(k+i) $的在线深度学习预报模型的预报误差和变化趋势的预报精度, 当不满足精度要求时, 采用自校正深度学习预报模型的各层权值参数与偏置参数校正在线深度学习预报模型的权值参数与偏置参数.

    自校正机制采用$ \bar{r}(k+i) $的预报误差$ \Delta \bar{r}_i(k) $, 未知非线性系统第$ i $步上升趋势预报准确率$ { TPR_i(k)} $和第$ i $步下降趋势预报准确率$ { TNR_i(k)} $三项指标, 即

    $$ |\Delta\bar{r}_i(k)| = |\bar{r}_i(k)-\hat{\bar{r}}_i(k)| $$ (24)
    $$ { TPR_i(k)} = \frac{\sum\limits_{m = 0}\limits^{N-1}{ TP}_i(k-m)}{\sum\limits_{m = 0}\limits^{N-1}{ TP}_i(k-m)+\sum\limits_{m = 0}\limits^{N-1}{ FP}_i(k-m)} $$ (25)
    $$ { TNR_i(k)} =\frac{\sum\limits_{m = 0}\limits^{N-1}{ TN}_i(k-m)}{\sum\limits_{m = 0}\limits^{N-1}{ TN}_i(k-m)+\sum\limits_{m = 0}\limits^{N-1}{ FN}_i(k-m)} $$ (26)

    其中, $ {TP}_i(k), { FP}_i(k), { TN}_i(k), { FN}_i(k) $的计算方式如表1所示.

    表 1  $ { TP}_i(k), { FP}_i(k), { TN}_i(k), {FN}_i(k)$的计算方式
    Table 1  Formula mode of ${ TP}_i(k), { FP}_i(k), $ ${ TN}_i(k), {FN}_i(k) $
    $\hat{\bar{r} }_i(k)-\hat{\bar{r} }_i(k-1)\geq 0$$\hat{\bar{r} }_i(k)-\hat{\bar{r} }_i(k-1) < 0$
    $\bar{r}_i(k)-\bar{r}_i(k-1)\geq 0$${TP}_i(k)=1$${FP}_i(k)=1$
    $\bar{r}_i(k)-\bar{r}_i(k-1)< 0$${FN}_i(k)=1$${TN}_i(k)=1$
    下载: 导出CSV 
    | 显示表格

    $ k $时刻在线深度学习预报模型的预报误差$ |\Delta\bar{r}_i(k)|\geq \delta_i $ ($ \delta_i $为预报误差上界), 自校正深度学习预报模型的预报误差$ |\Delta\bar{r}_i(k)|< \delta_i $, 且在线深度学习预报模型的上升趋势和下降趋势预报准确率均小于自校正深度学习预报模型的上升趋势和下降趋势预报准确率, 采用自校正深度学习预报模型的全部权值参数和偏置参数校正在线深度学习预报模型的全部权值参数和偏置参数.

    由式(15)可得需量多步预报模型为

    $$ \begin{split} \hat{\bar{P}}(k+n) =\; &{\bar{P}_S(k)}-\frac{1}{30}AP(k+n-30)\;+\\ &\frac{1}{30}A\hat{\Theta}^{\rm{T}}\varphi^{\rm{T}}(k)+ \frac{1}{30}A\hat{\bar{R}}(k+n) \end{split} $$ (27)

    其中,

    $$ \begin{split} \hat{\bar{P}}(k+n) =\;& (\hat{\bar{p}}_1(k+1), \cdots, \hat{\bar{p}}_i(k+i), \cdots,\\ &\hat{\bar{p}}_n(k+n))^{\rm{T}}\\ \hat{\bar{R}}(k+n) =\;&(\hat{\bar{r}}_1(k+1), \cdots, \hat{\bar{r}}_i(k+i), \cdots,\\ &\hat{\bar{r}}_n(k+n))^{\rm{T}} \end{split} $$

    端边云协同的需量多步智能预报算法:

    1)端−需量监控系统实时采集电熔镁砂生产过程中的群炉功率$ p(k) $与需量$ \bar{p}(k) $;

    2) 边−需量预报计算机执行数据处理和需量在线多步预报模型. 在线计算$ \hat{\Theta}^{\rm{T}}\varphi^{\rm{T}}(k) $, 由式(14)计算$ \hat{\bar{R}}(k+n) $. 采用窗口长度为$ N $的输入输出数据由$ \bar{R}(k+n) $的在线深度学习多步预报模型得其预报值$ \hat{\bar{R}}(k+n) $, 由需量多步预报模型式(27)得需量多步预报值$ \hat{\bar{P}}(k+n) $;

    3)云−数据服务器和人工智能计算平台采用$ k $时刻以及以前所有时刻的输入输出数据和$ \bar{R}(k+n) $的自校正深度学习多步预报模型得其预报值$ \hat{\bar{R}}(k+ n) $. 采用自校正机制的三项指标式(24) ~ (26), 当$ \bar{R}(k+n) $的在线深度学习多步预报模型的预报误差超过预报精度上界时, 采用自校正深度学习多步预报模型的权值参数和偏置参数校正在线深度学习多步预报模型的权值参数和偏置参数.

    采用某电熔镁砂生产企业的实际功率和需量数据进行了本文提出的需量多步智能预报方法的实验, 并与文献[9]提出的基于支持向量机、极限学习机和循环神经网络的用电需量多步预报方法进行了对比实验.

    采用30个炉次的150000组功率数据离线确定$ \bar{r}(k+i) $的深度学习预报模型结构, 神经元个数$ t = 25 $、神经元的节点个数$ \bar{h} = 200 $、隐藏层数$ L = 3 $. 校正算法中的式(17)、式(18)、式(21)和式(22)中的学习率为$ \alpha = 0.1 $, 在线训练数据窗口长度$ N = 2\,000 $. 自校正机制中的预报误差上界$ \delta_i = 100 $.

    由于发生需量尖峰的整个时间小于70秒, 而需量的采样周期为7秒, 因此选择需量预报步数$ i = 1, \cdots, 10 $. 采用线性模型参数辨识方程式(11)得模型参数$ \hat{\Theta} $为

    $$ \begin{split} &{{{\hat{\boldsymbol{\theta}} }}^{1}} = {{\left( {0}{.140, 0}{.075, -0}{.157, 0}{.869} \right)}^{\rm T}}\\ & {{{\hat{\boldsymbol{\theta}} }}^{2}} = {{\left( {0}{.201, 0}{.135, -0}{.042, 0}{.587} \right)}^{\rm T}} \\ & {{{\hat{\boldsymbol{\theta}} }}^{3}} = {{\left( {0}{.204, 0}{.146, 0}{.061, 0}{.431} \right)}^{\rm T}}\\ &{{{\hat{\boldsymbol{\theta}} }}^{4}} = {{\left( {0}{.201, 0}{.109, 0}{.103, 0}{.411} \right)}^{\rm T}} \\ & {{{\hat{\boldsymbol{\theta}} }}^{5}} = {{\left( {0}{.203, 0}{.103, 0}{.068, 0}{.427} \right)}^{\rm T}}\\ &{{{\hat{\boldsymbol{\theta}} }}^{6}} = {{\left( {0}{.207, 0}{.103, 0}{.063, 0}{.409} \right)}^{\rm T}} \\ & {{{\hat{\boldsymbol{\theta}} }}^{7}} = {{\left( {0}{.208 , 0}{.103 , 0}{.066, 0}{.389} \right)}^{\rm T}} \\ &{{{\hat{\boldsymbol{\theta}} }}^{8}} = {{\left( {0}{.204, 0}{.103, 0}{.069, 0}{.374} \right)}^{\rm T}}\\ &{{{\hat{\boldsymbol{\theta}} }}^{9}} = {{\left( {0}{.203, 0}{.097, 0}{.071, 0}{.364} \right)}^{\rm T}}\\ &{{{\hat{\boldsymbol{\theta}} }}^{10}} = {{\left( {0}{.202, 0}{.095, 0}{.067, 0}{.358} \right)}^{\rm T}}\end{split} $$

    采用上述30个炉次的150000组需量数据离线建立文献[9]的用电需量多步预报模型:

    $$ \begin{split} \hat{\bar{p}}(k+i) =\; &{{W}_{1}}{{\hat{\bar{p}}}_{svm}}(k+i)+{{W}_{2}}{{\hat{\bar{p}}}_{elm}}(k+i)\;+\\ &{{W}_{3}}{{\hat{\bar{p}}}_{rnn}}(k+i) \end{split} $$

    其中, $ \hat{\bar{p}}_{svm}, \hat{\bar{p}}_{elm}, \hat{\bar{p}}_{rnn} $分别为支持向量机、极限学习机和循环神经网络的输出, 上述模型的阶次$ t = 25 $, 支持向量机中径向基函数的期望为150、方差为0.08, 循环神经网络的每层节点数为$ \bar{h} = 150 $, 隐藏层数为$ L = 2 $, 权参数$W_1 = 0.16, W_2 = 0.34, W_3 = 0.71$.

    采用实时采集的70个炉次的350000组的需量与功率数据对本文所提需量多步预报算法与文献[9]多步预报算法进行了预报步数$ i = 1, \cdots, 10 $的对比实验. 采用文献[23]的均方根误差(Root mean square error, RMSE)式(28), 文献[24]的拟合优度$ R^2 $式(29), 文献[17]的平均绝对百分比误差(Mean absolute percentage error, MAPE)式(30), 需量第$ i $步预报的上升趋势预报准确率$ {TPR}_i $式(25)和下降趋势预报准确率$ { TNR}_i $式(26)指标对本文所提需量多步预报算法和文献[9]多步预报算法的实验结果进行评估. 实验结果见表2.

    表 2  需量预报精度对比
    Table 2  Precision comparison of demand forecast
    预报步数$i$12345678910
    $R^2_i\;(\%)$本文99.9699.6299.5999.4799.3999.3198.9998.5198.0397.95
    文献[9]90.3490.0589.7789.5488.7388.4888.0187.7687.3386.94
    ${{RMSE} }_i$本文9.9311.0611.9913.0313.8914.7316.0516.8317.9318.78
    文献[9]24.9230.0134.4939.9944.7950.2354.9360.0565.3270.64
    ${{MAPE} }_i\;(\%)$本文0.040.050.050.060.060.070.070.080.080.08
    文献[9]0.110.130.150.180.200.220.240.270.290.32
    $TPR_i\;(\%)$本文94.8893.2192.1991.4290.1789.7788.2190.0591.5589.66
    文献[9]86.1282.1180.0580.1178.9479.3379.1177.0680.1579.02
    $TNR_i\;(\%)$本文93.2294.6792.1992.0194.2193.1890.9689.9988.1290.01
    文献[9]81.1280.0480.6783.7279.9980.1577.5686.7780.1576.91
    下载: 导出CSV 
    | 显示表格
    $$ {{RMSE}}_i = \sqrt{\frac{1}{N_t}\sum\limits_{k = 1}^{N_t} \left( \bar{p}(k)-\hat{\bar{p}}_i(k)\right)^2} $$ (28)
    $$ { R}_i^2 = \frac{\sum\limits_{k = 1}\limits^{N_t}\left( \hat{\bar{p}}_i(k)-{\tilde{p}}_i\right)^2 }{\sum\limits_{k = 1}\limits^{N_t}\left(\bar{p}_i(k)-\tilde{p}_i \right)^2 }\times 100{\text{%}} $$ (29)

    其中, $ \tilde{p}_i = \frac{1}{N_t}\sum_{k = 1}^{N_t} \bar{p}(k+i-1) $.

    $$ {{MAPE}}_i = \frac{1}{N_t}\sum\limits_{k = 1}^{N_t}\left|\frac{\bar{p}(k)-\hat{\bar{p}}_i(k)}{\bar{p}(k)}\right|\times 100{\text{%}} $$ (30)

    为了能清楚地对比实验结果, 采用图4 ~ 图6表示从在线的350000组数据的实验结果中随机抽取100组$ i = 1, 5, 10 $步需量预报结果, 虚线为本文需量预报结果, 实线为文献[9]需量预报结果, 点线为需量真实值. 可以看出本文需量预报方法与文献[9]方法相比, 预报精度明显提高.

    图 4  需量1-步预报结果
    Fig. 4  Demand forecast results for the 1st-step
    图 5  需量5-步预报结果
    Fig. 5  Demand forecast results for the 5th-step
    图 6  需量10-步预报结果
    Fig. 6  Demand forecast results for the 10th-step

    表2可以看出, 本文的方法与文献[9]方法的$ i = 1, 5, 10 $步预报结果相比, $ R^2 $提高$ 11.01{\text{%}} $, $ {{RMSE}}_i $降低51.86, $ {{MAPE}}_i $降低$ 0.24{\text{%}} $, 上升趋势$ { TPR}_i $提高$ 10.23{\text{%}} $, 下降趋势$ { TNR}_i $提高$ 14.22{\text{%}} $. 对比实验结果表明本文方法比文献[9]方法的需量多步预报精度和需量变化趋势的预报精度明显提高.

    本文通过电熔镁砂生产过程熔化电流闭环控制系统方程建立需量动态模型, 在此基础上建立了由线性模型和未知非线性动态系统组成的需量多步预报模型, 采用文献[18]方法建立了未知非线性动态系统的自适应深度学习多步预报模型, 在此基础上提出了端边云协同的电熔镁砂生产过程需量多步智能预报方法. 采用70个炉次的电熔镁砂生产过程的实际数据的实验结果表明本文的方法与文献[9]方法的$ i = 1, 5, 10 $ 步预报结果相比, $ R^2 $提高$ 11.01{\text{%}} $, $ {{RMSE}}_i $降低51.86, $ {{MAPE}}_i $降低$ 0.24{\text{%}} $, 上升趋势$ { TPR}_i $提高$ 10.23{\text{%}} $, 下降趋势$ { TNR}_i $提高$ 14.22{\text{%}} $, 验证了本文所提的预报方法可以准确预报需量的变化趋势, 为实现需量尖峰的准确预报和控制创造了条件.

  • 图  1  电熔镁砂生产用电需量监控流程图

    Fig.  1  An flow chart of electricity demand monitoring process for a fused magnesia production

    图  2  端边云协同需量多步智能预报结构图

    Fig.  2  Schematic of multi-step intelligent forecasting of demand with edge-cloud coordination

    图  3  $ \bar{r}(k+i)$的深度学习预报模型结构

    Fig.  3  Structure of deep learning prediction model of $ \bar{r}(k+i)$

    图  4  需量1-步预报结果

    Fig.  4  Demand forecast results for the 1st-step

    图  5  需量5-步预报结果

    Fig.  5  Demand forecast results for the 5th-step

    图  6  需量10-步预报结果

    Fig.  6  Demand forecast results for the 10th-step

    表  1  $ { TP}_i(k), { FP}_i(k), { TN}_i(k), {FN}_i(k)$的计算方式

    Table  1  Formula mode of ${ TP}_i(k), { FP}_i(k), $ ${ TN}_i(k), {FN}_i(k) $

    $\hat{\bar{r} }_i(k)-\hat{\bar{r} }_i(k-1)\geq 0$$\hat{\bar{r} }_i(k)-\hat{\bar{r} }_i(k-1) < 0$
    $\bar{r}_i(k)-\bar{r}_i(k-1)\geq 0$${TP}_i(k)=1$${FP}_i(k)=1$
    $\bar{r}_i(k)-\bar{r}_i(k-1)< 0$${FN}_i(k)=1$${TN}_i(k)=1$
    下载: 导出CSV

    表  2  需量预报精度对比

    Table  2  Precision comparison of demand forecast

    预报步数$i$12345678910
    $R^2_i\;(\%)$本文99.9699.6299.5999.4799.3999.3198.9998.5198.0397.95
    文献[9]90.3490.0589.7789.5488.7388.4888.0187.7687.3386.94
    ${{RMSE} }_i$本文9.9311.0611.9913.0313.8914.7316.0516.8317.9318.78
    文献[9]24.9230.0134.4939.9944.7950.2354.9360.0565.3270.64
    ${{MAPE} }_i\;(\%)$本文0.040.050.050.060.060.070.070.080.080.08
    文献[9]0.110.130.150.180.200.220.240.270.290.32
    $TPR_i\;(\%)$本文94.8893.2192.1991.4290.1789.7788.2190.0591.5589.66
    文献[9]86.1282.1180.0580.1178.9479.3379.1177.0680.1579.02
    $TNR_i\;(\%)$本文93.2294.6792.1992.0194.2193.1890.9689.9988.1290.01
    文献[9]81.1280.0480.6783.7279.9980.1577.5686.7780.1576.91
    下载: 导出CSV
  • [1] 吴志伟, 柴天佑, 吴永建. 电熔镁砂产品单吨能耗混合预报模型. 自动化学报, 2013, 39(12): 2002-2011

    WU Zhi-Wei, CHAI Tian-You, WU Yong-Jian. A hybrid prediction model of energy consumption per ton for fused magnesia. Acta Automatica Sinica, 2013, 39(12): 2002-2011
    [2] 吴高昌, 刘强, 柴天佑, 秦泗钊. 基于时序图像深度学习的电熔镁炉异常工况诊断. 自动化学报, 2019, 45(8): 1475-1485

    Wu Gao-Chang, Liu Qiang, Chai Tian-You, Qin S. Joe. Abnormal condition diagnosis through deep learning of image sequences for fused magnesium furnaces. Acta Automatica Sinica, 2019, 45(8): 1475-1485
    [3] 王维洲, 吴志伟, 柴天佑. 电熔镁砂熔炼过程带输出补偿的PID控制. 自动化学报, 2018, 44(7): 1282-1292

    Wang Wei-Zhou, Wu Zhi-Wei, Chai Tian-You. PID control With output compensation for the fused magnesia smelting process. Acta Automatica Sinica, 2018, 44(7): 1282-1292
    [4] Zhang J W, Li K, Chai T Y. Demand forecasting of a fused magnesia smelting process based on LSTM and FRA. In: Proceedings of the LSMS 2020 and ICSEE 2020 (LSMS and ICSEE). Shanghai, China: Springer, 2020. 201−215
    [5] Jornaz A, Samaranayake V A. A multi-step approach to modeling the 24-hour daily profiles of electricity load using daily splines. Energies, 2019, 12(21): 41-69
    [6] An N, Zhao W G, Wang J Z. Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting. Energy, 2013, 49(1): 279-288
    [7] Bonetto R, Rossi M. Parallel multi-step ahead power demand forecasting through NAR neural networks. In: Proceedings of the IEEE International Conference on Smart Grid Communications (IEEE Smart Grid Comm). Sydney, Australia: IEEE, 2016. 314−319
    [8] Li R., Chen X L., Balezentis T, Dalia S, Niu Z Y. Multi-step least squares support vector machine modeling approach for forecasting short-term electricity demand with application. Neural Computing and Applications, 2021, 33(3): 301-320
    [9] Li G, Li Y, Roozitalab F. Midterm load forecasting: a multi-step approach based on phase space reconstruction and support vector machine. IEEE Systems Journal, 2020, 14(4): 4967-4977 doi: 10.1109/JSYST.2019.2962971
    [10] Yang Y, Shang Z H, Chen Y, Chen Y H. Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting. Energies, 2020, 13(3): 532-541 doi: 10.3390/en13030532
    [11] Liu J M, Chen R, Liu L M, Harris J L. A semi-parametric time series approach in modeling hourly electricity loads. Journal of Forecasting, 2006, 25(8): 537-559 doi: 10.1002/for.1006
    [12] Srinivasan D. Energy demand prediction using GMDH networks. Neurocomputing, 2008, 72(3): 625-629
    [13] Cai Y, Wang J Z, Tang Y, Yang Y C. An efficient approach for electric load forecasting using distributed ART (adaptive resonance theory) and HS-ARTMAP (Hyper-spherical ARTMAP network) neural network. Energy, 2011, 36(2): 1340-1350 doi: 10.1016/j.energy.2010.11.005
    [14] 何峰, 钟婷, 谭貌. 基于二次EEMD的工业电能需量多步预测. 计算技术与自动化, 2021, 40(3): 72-77

    He Feng, Zhong Ting, Tan Mao. Multi-step forecasting of industrial electrical power demand based on twice ensemble empirical mode decomposition. Computing Technology and Automation, 2011, 40(3): 72-77
    [15] 赵征, 周孜钰, 南宏钢. 基于VMD的CNN-BiLSTM超短期风电功率多步区间预测. 华北电力大学学报: 自然科学版, 2022, 49(4): 91-97

    Zhang Zheng, Zhou Zi-Yu, Nan Hong-Gang. Research on multi-step interval forecasting of CNN-BiLSTM ultra-short-term wind power based on VMD. Journal of North China Electric Power University: Natural Science Edition, 2012, 49(4): 91-97
    [16] 杨杰, 柴天佑, 张亚军, 吴志伟. 数据与模型驱动的电熔镁群炉需量预报方法. 自动化学报, 2018, 44(8): 1460-1474

    Yang Jie, Chai Tiang-You, Zhang Ya-Jun, Wu Zhi-Wei. Data and model driven demand forecasting method for fused magnesium furnace group. Acta Automatica Sinica, 2018, 44(8): 1460-1474
    [17] Yang J, Chai T Y, Luo C, Wen Y. Intelligent demand forecasting of smelting process using data-driven and mechanism model. IEEE Transactions on Industrial Electronics, 2019, 66(1): 9745-9755
    [18] Chai T Y, Zhang J W, Yang T. Demand forecasting of the fused magnesia smelting process with system identification and deep learning. IEEE Transactions on Industrial Informatics, 2021, 17(2): 8387-8396
    [19] Qin P, Nishii R, Nakagawa T. ARX models for time-varying systems estimated by recursive penalized weighted least squares method. Journal of Math for Industry, 2010, 2(10): 109-114
    [20] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 10(9): 1735-1780
    [21] Kiran R, Soumitri S, Mitra K. Deep learning based dynamic behavior modelling and prediction of particulate matter in air. Chemical Engineering Journal, 2021, 426(3): 13-22
    [22] Greff K, Srivastava R K, J Koutn k, et al. LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(10): 2222-2232
    [23] Wang W J, Li Y M. Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. In: Proceedings of the 5th International Conference on Mechanical Engineering, Materials Science and Civil Engineering. Kuala Lumpur, Malaysia: IEEE, 2018. 324
    [24] Cheung G W, Rensvold R B. Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling A Multidisciplinary Journal, 2002, 9(2): 233-255 doi: 10.1207/S15328007SEM0902_5
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1601
  • HTML全文浏览量:  229
  • PDF下载量:  417
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-20
  • 录用日期:  2022-12-13
  • 网络出版日期:  2023-02-13
  • 刊出日期:  2023-09-26

目录

/

返回文章
返回