2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于突触巩固机制的前馈小世界神经网络设计

李文静 李治港 乔俊飞

李文静, 李治港, 乔俊飞. 基于突触巩固机制的前馈小世界神经网络设计. 自动化学报, 2023, 49(10): 2145−2158 doi: 10.16383/j.aas.c220638
引用本文: 李文静, 李治港, 乔俊飞. 基于突触巩固机制的前馈小世界神经网络设计. 自动化学报, 2023, 49(10): 2145−2158 doi: 10.16383/j.aas.c220638
Li Wen-Jing, Li Zhi-Gang, Qiao Jun-Fei. Structure design for feedforward small-world neural network based on synaptic consolidation mechanism. Acta Automatica Sinica, 2023, 49(10): 2145−2158 doi: 10.16383/j.aas.c220638
Citation: Li Wen-Jing, Li Zhi-Gang, Qiao Jun-Fei. Structure design for feedforward small-world neural network based on synaptic consolidation mechanism. Acta Automatica Sinica, 2023, 49(10): 2145−2158 doi: 10.16383/j.aas.c220638

基于突触巩固机制的前馈小世界神经网络设计

doi: 10.16383/j.aas.c220638
基金项目: 国家重点研发计划(2021ZD0112301), 国家自然科学基金(62173008, 62021003, 61890930-5) 资助
详细信息
    作者简介:

    李文静:北京工业大学信息学部副教授. 主要研究方向为神经网络计算, 污水处理过程智能建模. 本文通信作者. E-mail: wenjing.li@bjut.edu.cn

    李治港:北京工业大学信息学部硕士研究生. 主要研究方向为神经网络结构设计与优化, 污水处理过程特征建模. E-mail: lzg551602@emails.bjut.edu.cn

    乔俊飞:北京工业大学信息学部教授. 主要研究方向为污水处理过程智能控制, 神经网络结构设计与优化. E-mail: adqiao@bjut.edu.cn

Structure Design for Feedforward Small-world Neural Network Based on Synaptic Consolidation Mechanism

Funds: Supported by National Key Research and Development Program of China (2021ZD0112301) and National Natural Science Foundation of China (62173008, 62021003, 61890930-5)
More Information
    Author Bio:

    LI Wen-Jing Associate professor at the Faculty of Information Technology, Beijing University of Technology. Her research interest covers neural network computation and intelligent modelling in wastewater treatment process. Corresponding author of this paper

    LI Zhi-Gang Master student at the Faculty of Information Technology, Beijing University of Technology. His research interest covers structure design and optimization of neural networks, and feature modelling in wastewater treatment process

    QIAO Jun-Fei Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent control of wastewater treatment process and structure design and optimization of neural networks

  • 摘要: 小世界神经网络具有较快的收敛速度和优越的容错性, 近年来得到广泛关注. 然而, 在网络构造过程中, 随机重连可能造成重要信息丢失, 进而导致网络精度下降. 针对该问题, 基于Watts-Strogatz (WS) 型小世界神经网络, 提出了一种基于突触巩固机制的前馈小世界神经网络(Feedforward small-world neural network based on synaptic consolidation, FSWNN-SC). 首先, 使用网络正则化方法对规则前馈神经网络进行预训练, 基于突触巩固机制, 断开网络不重要的权值连接, 保留重要的连接权值; 其次, 设计重连规则构造小世界神经网络, 在保证网络小世界属性的同时实现网络稀疏化, 并使用梯度下降算法训练网络; 最后, 通过4个UCI基准数据集和2个真实数据集进行模型性能测试, 并使用Wilcoxon符号秩检验对对比模型进行显著性差异检验. 实验结果表明: 所提出的FSWNN-SC模型在获得紧凑的网络结构的同时, 其精度显著优于规则前馈神经网络及其他WS型小世界神经网络.
  • 图  1  前馈神经网络结构示意图

    Fig.  1  The architecture of feedforward neural network

    图  2  突触巩固

    Fig.  2  Synaptic consolidation

    图  3  基于突触巩固小世界神经网络构造流程

    Fig.  3  Construction process of small-world neural network based on synaptic consolidation

    图  4  FSWNN-SC算法流程图

    Fig.  4  The flowchart of FSWNN-SC

    图  5  网络小世界属性$\eta$与重连概率$P$的关系曲线$(P\text{-}\eta$曲线)

    Fig.  5  The curves for the relationship between the small-world property $\eta$ and the rewiring probability $P\;(P\text{-}\eta$ curves)

    图  6  预训练次数对网络性能的影响

    Fig.  6  Influence of pre-training epochs on network performance

    图  7  训练过程RMSE曲线

    Fig.  7  The RMSE curves in the training process

    图  8  测试集样本拟合与分类效果

    Fig.  8  Test set sample fitting and classification effects

    表  1  实验超参数设置

    Table  1  Setting of the hyperparameters in experiments

    数据集 网络结构 $\lambda$ $\mu$ $iter_{\mathrm{max}}$ $\mathrm{RMSE}_d$
    数据集1 8-15-15-1 $1.0\times10^{-3}$ 0.0003 6000 0.001
    数据集2 4-15-15-1 $1.0\times10^{-3}$ 0.0008 6000 0.001
    数据集3 13-20-20-1 $1.0\times10^{-6}$ 0.0008 10000 0.001
    数据集4 8-20-20-1 $1.0\times10^{-6}$ 0.0008 10000 0.001
    数据集5 6-20-20-1 $1.0\times10^{-6}$ 0.0005 10000 0.001
    数据集6 10-20-20-1 $1.0\times10^{-6}$ 0.0008 10000 0.001
    下载: 导出CSV

    表  2  分类实验结果对比

    Table  2  Comparison results in classification experiments

    分类实验 网络 网络结构 稀疏度SP 测试 Acc 训练时间 (s)
    均值 标准差 均值 标准差
    数据集1 FSWNN-SC 8-15-12-1 0.8861 0.9472 0.0034 3.9631 0.1936
    PFSWNN-SL 8-15-11-1 0.7511 0.9403 0.0026 5.6645 0.2085
    PFSWNN-Katz 8-12-10-1 0.6056 0.9396 0.0126 4.0555 0.2764
    FSWNN-TO 8-15-15-1 0.9392 0.0066 5.4922 0.0147
    FSWNN-WS 8-15-15-1 0.9374 0.0073 3.9371 0.1255
    FNN 8-15-15-1 0.9195 0.0093 3.7201 0.0609
    数据集2 FSWNN-SC 4-15-12-1 0.8950 0.9883 0.0049 2.7552 0.4252
    PFSWNN-SL 4-15-10-1 0.6608 0.9788 0.0081 4.6556 0.2525
    PFSWNN-Katz 4-10-11-1 0.5463 0.9823 0.0054 2.8007 0.1837
    FSWNN-TO 4-15-15-1 0.9840 0.0040 3.6596 0.0614
    FSWNN-WS 4-15-15-1 0.9782 0.0071 2.3605 0.0419
    FNN 4-15-15-1 0.9756 0.0132 2.3402 0.0347
    下载: 导出CSV

    表  3  回归实验结果对比

    Table  3  Comparison results in regression experiments

    回归实验 网络 网络结构 稀疏度SP 测试NRMSE 训练时间 (s)
    均值 标准差 均值 标准差
    数据集3 FSWNN-SC 13-20-13-1 0.7941 0.4331 0.0199 2.9838 0.0978
    PFSWNN-SL 13-20-14-1 0.7265 0.4546 0.0187 6.9352 0.2077
    PFSWNN-Katz 13-15-16-1 0.7563 0.4551 0.0200 4.6810 0.1358
    FSWNN-TO 13-20-20-1 0.4476 0.0193 4.3250 0.0267
    FSWNN-WS 13-20-20-1 0.4582 0.0232 2.9583 0.0609
    FNN 13-20-20-1 0.5728 0.0235 3.1481 0.1228
    数据集4 FSWNN-SC 8-20-16-1 0.8865 0.4814 0.0308 4.7431 0.1883
    PFSWNN-SL 8-20-17-1 0.7706 0.5104 0.0275 8.4518 0.3075
    PFSWNN-Katz 8-17-18-1 0.8064 0.5159 0.0234 5.6207 0.5053
    FSWNN-TO 8-20-20-1 0.4944 0.0147 5.8352 0.0231
    FSWNN-WS 8-20-20-1 0.5142 0.0222 4.6306 0.1288
    FNN 8-20-20-1 0.6691 0.0058 4.4024 0.0585
    数据集5 FSWNN-SC 6-20-14-1 0.7952 0.1351 0.0017 5.0063 0.2048
    PFSWNN-SL 6-20-14-1 0.6698 0.1405 0.0080 8.3014 0.3069
    PFSWNN-Katz 6-17-14-1 0.6647 0.1371 0.0031 5.2003 0.4510
    FSWNN-TO 6-20-20-1 0.1374 0.0032 5.5165 0.1494
    FSWNN-WS 6-20-20-1 0.1378 0.0026 4.8520 0.2943
    FNN 6-20-20-1 0.1544 0.0084 5.0213 0.4910
    数据集6 FSWNN-SC 10-20-16-1 0.8663 0.4055 0.0101 2.7706 0.1334
    PFSWNN-SL 10-20-15-1 0.7298 0.4168 0.0112 6.2909 0.0112
    PFSWNN-Katz 10-15-18-1 0.7649 0.4139 0.0093 3.5227 0.4455
    FSWNN-TO 10-20-20-1 0.4124 0.0143 3.2057 0.0388
    FSWNN-WS 10-20-20-1 0.4144 0.0102 2.7778 0.0161
    FNN 10-20-20-1 0.4309 0.0134 2.7206 0.0132
    下载: 导出CSV

    表  4  Wilcoxon符号秩检验结果

    Table  4  Results of Wilcoxon signed-rank test

    实验 模型 ${R^+}$ ${R^-}$ $Z$ ${P_{w}}$
    FSWNN-SC vs. PFSWNN-SL 206 4 −3.7706 0.0002*
    FSWNN-SC vs. PFSWNN-Katz 179 31 −2.7626 0.0058*
    数据集1 FSWNN-SC vs. FSWNN-TO 203 7 −3.6586 0.0002*
    FSWNN-SC vs. FSWNN-WS 198.5 11.5 −3.4906 0.0004*
    FSWNN-SC vs. FNN 210 0 −3.9199 0*
    FSWNN-SC vs. PFSWNN-SL 203.5 6.5 −3.6773 0.0002*
    FSWNN-SC vs. PFSWNN-Katz 177 33 −2.6880 0.0074*
    数据集2 FSWNN-SC vs. FSWNN-TO 176.5 33.5 −2.6693 0.0076*
    FSWNN-SC vs. FSWNN-WS 199.5 10.5 −3.5279 0.0004*
    FSWNN-SC vs. FNN 206.5 3.5 −3.7893 0.0004*
    FSWNN-SC vs. PFSWNN-SL 187 23 −3.0613 0.0022*
    FSWNN-SC vs. PFSWNN-Katz 207 3 −3.8079 0.0002*
    数据集3 FSWNN-SC vs. FSWNN-TO 190 20 −3.1733 0.0016*
    FSWNN-SC vs. FSWNN-WS 209 1 −3.8826 0.0002*
    FSWNN-SC vs. FNN 210 0 −3.9199 0*
    FSWNN-SC vs. PFSWNN-SL 184 26 −2.9493 0.0032*
    FSWNN-SC vs. PFSWNN-Katz 210 0 −3.9199 0.0000*
    数据集4 FSWNN-SC vs. FSWNN-TO 159 51 −2.0160 0.0434*
    FSWNN-SC vs. FSWNN-WS 208 2 −3.8453 0.0002*
    FSWNN-SC vs. FNN 210 0 −3.9199 0*
    FSWNN-SC vs. PFSWNN-SL 187 23 −3.0613 0.0022*
    FSWNN-SC vs. PFSWNN-Katz 169 41 −2.3893 0.0168*
    数据集5 FSWNN-SC vs. FSWNN-TO 177 33 −2.6880 0.0074*
    FSWNN-SC vs. FSWNN-WS 190 20 −3.1733 0.0016*
    FSWNN-SC vs. FNN 210 0 −3.9199 0*
    FSWNN-SC vs. PFSWNN-SL 171 39 −2.4640 0.0138*
    FSWNN-SC vs. PFSWNN-Katz 160 50 −2.0533 0.0434*
    数据集6 FSWNN-SC vs. FSWNN-TO 177 33 −2.6880 0.0074*
    FSWNN-SC vs. FSWNN-WS 172 38 −2.5013 0.0124*
    FSWNN-SC vs. FNN 210 0 −3.9199 0*
    下载: 导出CSV
  • [1] Tran V P, Santoso F, Garrat M A, Anavatti S G. Neural network-based self-learning of an adaptive strictly negative imaginary tracking controller for a quadrotor transporting a cable-suspended payload with minimum swing. IEEE Transactions on Industrial Electronics, 2021, 68(10): 10258-10268 doi: 10.1109/TIE.2020.3026302
    [2] Zhang G H, Li B, Wu J X, Wang R, Lan Y Z, Sun L, et.al. A low-cost and high-speed hardware implementation of spiking neural network. Neurocomputing, 2020, 382: 106-115 doi: 10.1016/j.neucom.2019.11.045
    [3] Lv H, Wen M, Lu R A, Li J. An adversarial attack based on incremental learning techniques for unmanned in 6G scenes. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5254-5264 doi: 10.1109/TVT.2021.3069426
    [4] Li W J, Li M, Zhang J K, Qiao J F. Design of a self-organizing reciprocal modular neural network for nonlinear system modeling. Neurocomputing, 2020, 411: 327-339 doi: 10.1016/j.neucom.2020.06.056
    [5] 乔俊飞, 丁海旭, 李文静. 基于WTFMC算法的递归模糊神经网络结构设计. 自动化学报, 2020, 46(11): 2367-2378 doi: 10.16383/j.aas.c180847

    Qiao Jun-Fei, Ding Hai-Xu, Li Wen-Jing. Structure design for recurrent fuzzy neural network based on wavelet transform fuzzy markov chain. Acta Automatica Sinica, 2020, 46(11): 2367-2378 doi: 10.16383/j.aas.c180847
    [6] 冯永, 陈以刚, 强保华. 融合社交因素和评论文本卷积网络模型的汽车推荐研究. 自动化学报, 2019, 45(3): 518-529

    Feng Yong, Chen Yi-Gang, Qiang Bao-Hua. Social and comment text CNN model based automobile recommendation. Acta Automatica Sinica, 2019, 45(3): 518-529
    [7] Wang S, Cao J, Yu P S. Deep learning for spatio-temporal data mining: A survey. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3681-3700 doi: 10.1109/TKDE.2020.3025580
    [8] 陈清江, 张雪. 基于并联卷积神经网络的图像去雾. 自动化学报, 2021, 47(7): 1739-1748

    Chen Qing-Jiang, Zhang Xue. Single image dehazing based on multiple convolutional neural networks. Acta Automatica Sinica, 2021, 47(7): 1739-1748
    [9] Jiao Y, Yao H, Xu C. SAN: Selective alignment network for cross-domain pedestrian detection. IEEE Transactions on Image Processing, 2021, 30: 2155-2167 doi: 10.1109/TIP.2021.3049948
    [10] Otter D W, Medina J R, Kalita J K. A Survey of the Use of Deep Learning for Natural Language Processing. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 604-624 doi: 10.1109/TNNLS.2020.2979670
    [11] 奚雪峰, 周国栋. 面向自然语言处理的深度学习研究. 自动化学报, 2016, 42(10): 1445-1465

    Xi Xue-Feng, Zhou Guo-Dong. A survey on deep learning for natural language processing. Acta Automatica Sinica, 2016, 42(10): 1445-1465
    [12] Watts D J, Strogatz S H. Collective dynamics of small world networks. Nature, 1998, 393(4): 440-442
    [13] Bassett D S, Bullmore E. Small-world brain networks. Neuroscientist, 2006, 12(6): 512-523 doi: 10.1177/1073858406293182
    [14] Strogatz S H. Exploring complex networks. Nature, 2001, 410: 268-276 doi: 10.1038/35065725
    [15] Pessoa L. Understanding brain networks and brain organization. Physics of Life Reviews, 2014, 11(3): 400-435 doi: 10.1016/j.plrev.2014.03.005
    [16] Latora V, Marchiori M. Efficient behavior of small-world networks. Physical Review Letters, 2001, 87(19): Article No. 198701
    [17] Li H, Zhang L. A bilevel learning model and algorithm for self-organizing feed-forward neural networks for pattern classification. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(11): 4901-4915 doi: 10.1109/TNNLS.2020.3026114
    [18] Guliyev N J, Ismailov V E. On the approximation by single hidden layer feedforward neural networks with fixed weights. Neural Networks, 2017, 98: 296-304
    [19] Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892 doi: 10.1109/TNN.2006.875977
    [20] Qiao J F, Li F, Yang C L, Li W J, Gu K. A self-organizing RBF neural network based on distance concentration immune algorithm. IEEE/CAA Journal of Automatica Sinica, 2022, 7(1): 276-291
    [21] Yu Q, Song S, Ma C, Wei J, Chen S, Tan K C. Temporal encoding and multispike learning framework for efficient recognition of visual patterns. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3387-3399 doi: 10.1109/TNNLS.2021.3052804
    [22] Simard D, Nadeau L, Kroger H. Fastest learning in small-world neural networks. Physics Letters A, 2004, 336(1): 8-15
    [23] Li X H, Li X L, Zhang J H, Zhang Y L, Li M L. A new multilayer feedforward small-world neural network with its performances on function approximation. In: Proceedings of the IEEE International Conference on Computer Science and Automation Engineering (CSAE). Shanghai, China: IEEE, 2011. 353−357
    [24] Li X, Xu F, Zhang J, Wang S. A multilayer feed forward small-world neural network controller and its application on electrohydraulic actuation system. Journal of Applied Mathematics, 2013, 21: 1-8
    [25] Dong Z K, Duan S K, Hu X F, Li H. A novel memristive multilayer feedforward small-world neural network with its applications in PID control. The Scientific World Journal, 2014, 14: 1-12
    [26] Wang S X, Zhao X, Wang H, Li M. Small-world neural network and its performance for wind power forecasting. CSEE Journal of Power and Energy Systems, 2020, 6(2): 362-373
    [27] Erkaymaz O, Ozer M. Impact of small-world networktopology on the conventional artificial neural network for the diagnosis of diabetes. Chaos, Solitons & Fractals, 2016, 83: 178-185
    [28] Erkaymaz O, Ozer M, Perc M. Performance of small-world feedforward neural networks for the diagnosis of diabetes. Applied Mathematics and Computation, 2017, 311: 22-28 doi: 10.1016/j.amc.2017.05.010
    [29] Zhang R C, Hu X L. Effluent quality prediction of wastewater treatment system based on small-world ANN. Journal of Computers, 2012, 7(9): 2136-2143
    [30] Li W J, Chu M H, Qiao J F. A pruning feedforward small-world neural network based on Katz centrality for nonlinear system modeling. Neural Networks, 2020, 130: 269-285 doi: 10.1016/j.neunet.2020.07.017
    [31] Newman M E J, Watts D J. Renormalization group analysis of the small-world network model. Physics Letters A, 1999, 263(4): 341-346
    [32] 李小虎, 杜海峰, 张进华, 王孙安. 多层前向小世界神经网络及其函数逼近. 控制理论与应用, 2010, 27(7): 836-842

    Li Xiao-Hu, Du Hai-Feng, Zhang Jin-Hua, Wang Sun-An. Multilayer feedforward small-world neural networks and its function approximation. Control Theory & Applications, 2010, 27(7): 836-842
    [33] 王爽心, 杨成慧. 基于层连优化的新型小世界神经网络. 控制与决策, 2014, 29(1): 77-82 doi: 10.13195/j.kzyjc.2012.1420

    Wang Shuang-Xin, Yang Cheng-Hui. Novel small-world neural network based on topology optimization. Control and Decision, 2014, 29(1): 77-82 doi: 10.13195/j.kzyjc.2012.1420
    [34] Guo D, Yang L. Research on trim of multilayer feedforward small world network based on E-exponential information entropy. In: Proceedings of the 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Hangzhou, China: IEEE, 2017. 155−158
    [35] Grutzendler J, Kasthuri N, Gan W B. Long-term dendritic spine stability in the adult cortex. Nature, 2002, 420: 812-816 doi: 10.1038/nature01276
    [36] Zuo Y, Lin A, Chang P, Gan W B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron, 2005, 46: 181-189 doi: 10.1016/j.neuron.2005.04.001
    [37] Demiar J, Schuurmans D. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 2006, 7(1): 1-30
    [38] Humphries M D, Gurney K. Network “Small-world-ness”: A quantitative method for determining canonical network equivalence. Plos One, 2008, 3(4): Article No. e0002051
    [39] Ziegler L, Zenke F, Kastner D B, Gerstner W. Synaptic consolidation: From synapses to behavioral modeling. Journal of Neuroscience, 2015, 35(3): 1319-1334 doi: 10.1523/JNEUROSCI.3989-14.2015
    [40] Bliss T V P, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology, 1973, 232(2): 331-356 doi: 10.1113/jphysiol.1973.sp010273
    [41] Dudek S M, Bear M F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proceedings of the National Academy of Sciences, 1992, 89(10): 4363-4367 doi: 10.1073/pnas.89.10.4363
    [42] Rathi N, Panda P, Roy K. STDP-based pruning of connections and weight quantization in spiking neural networks for energy-efficient recognition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(4) : 668-677 doi: 10.1109/TCAD.2018.2819366
    [43] Peng J, Tang B, Jiang H, Li Z, Lin T, Li H F. Overcoming long-term catastrophic forgetting through adversarial neural pruning and synaptic consolidation. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4243-4256 doi: 10.1109/TNNLS.2021.3056201
    [44] Wang J, Xu C, Yang X, Zurada J M. A novel pruning algorithm for smoothing feedforward neural networks based on group lasso method. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(5): 2012-2024 doi: 10.1109/TNNLS.2017.2748585
    [45] Bache K, Lichman M. UCI machine learning repository [Online], available: https://archive.ics.uci.edu/ml, December 20, 2021
    [46] Papantoni-Kazakos P. Small-sample efficiencies of rank tests. IEEE Transactions on Information Theory, 1975, 21(2): 150-157 doi: 10.1109/TIT.1975.1055361
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  609
  • HTML全文浏览量:  80
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 录用日期:  2022-11-12
  • 网络出版日期:  2022-12-20
  • 刊出日期:  2023-10-24

目录

    /

    返回文章
    返回