[1]
|
郑重, 李鹏, 钱默抒. 具有角速度和输入约束的航天器姿态协同控制. 自动化学报, 2021, 47(6): 1444-1452Zheng Zhong, Li Peng, Qian Mo-Shu. Spacecraft attitude coordination control with angular velocity and input constraints. Acta Automatica Sinca, 2021, 47(6): 1444-1452
|
[2]
|
耿云海, 金荣玉, 陈雪芹, 李冬柏. 执行机构故障的航天器姿态容错控制. 宇航学报, 2017, 38(11): 1186-1194 doi: 10.3873/j.issn.1000-1328.2017.11.007Geng Yun-Hai, Jin Rong-Yu, Chen Xue-Qin, Li Dong-Bai. Spacecraft attitude fault tolerant control with actuator fault, Journal of Astronautics, 2017, 38(11): 1186-1194 doi: 10.3873/j.issn.1000-1328.2017.11.007
|
[3]
|
Wang D, Fu F, Li W, Tu Y, Liu C, Liu W. A review of the diagnosability of control systems with applications to spacecraft. Annual Reviews in control, 2020, 49: 212-229 doi: 10.1016/j.arcontrol.2020.03.004
|
[4]
|
Fu F, Xue T, Wu Z, Wang D. A fault diagnosability evaluation method for dynamic systems without distribution knowledge. IEEE Transactions on Cybernetics, 2022, 52(6): 5113-5123 doi: 10.1109/TCYB.2020.3027549
|
[5]
|
王大轶, 屠园园, 刘成瑞, 何英姿, 李文博. 航天器控制系统可重构性的内涵与研究综述. 自动化学报, 2017, 43(10): 1687-1702Wang Da-Yi, Tu Yuan-Yuan, Liu Cheng-Rui, He Ying-Zi, Li Wen-Bo. Connotation and research of reconfigurability for spacecraft control systems: a review. Acta Automatica Sinca, 2017, 43(10): 1687-1702
|
[6]
|
文利燕, 陶钢, 姜斌, 杨杰. 非线性动态突变系统的多模型自适应执行器故障补偿设计. 自动化学报, 2022, 48(1): 207-222 doi: 10.16383/j.aas.c200318Wen Li-Yan, Tao Gang, Jiang Bin, Yang Jie. A multiple-model based adaptive actuator failure compensation scheme for nonlinear systems with dynamic mutations. Acta Automatica Sinica, 2022, 48(1): 207-222 doi: 10.16383/j.aas.c200318
|
[7]
|
张绍杰, 吴雪, 刘春生. 执行器故障不确定非线性系统最优自适应输出跟踪控制. 自动化学报, 2018, 44(12): 2188-2197Zhang Shao-Jie, Wu Xue, Liu Chun-Sheng. Optimal adaptive output tracking control for a class of uncertain nonlinear systems with actuator failures. Acta Automatica Sinica, 2018, 44(12): 2188-2197
|
[8]
|
张福桢, 金磊. 使用SGCMGs航天器滑模姿态容错控制. 北京航空航天大学学报, 2017, 43(4): 806-813Zhang Fu-Zhen, Jin Lei. Sliding-mode fault-tolerant attitude control for spacecraft using SGCMGs. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(4): 806-813.
|
[9]
|
Zhu X, Zheng H, Chen J. Dual quaternion-based adaptive iterative learning control for flexible spacecraft rendezvous. Acta Astronautica, 2021, 189: 99-118 doi: 10.1016/j.actaastro.2021.08.040
|
[10]
|
梅亚飞, 廖瑛, 龚轲杰, 罗达. SE(3) 上航天器姿轨耦合固定时间容错控制. 航空学报, 2021, 42(11): 525089-1−14Mei Ya-Fei, Liao Ying, Gong Ke-Jie, Luo Da. Fixed-time fault-tolerant control for coupled spacecraft on SE(3). Acta Astronautica et Astronautica Sinca, 2021, 42(11): 525089-1−14
|
[11]
|
沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述. 宇航学报, 2020, 41(6): 647-656 doi: 10.3873/j.issn.1000-1328.2020.06.002Shen Yi, Li Li-Liang, Wang Zhen-Hua. A review of fault diagnosis and fault-tolerant control techniques for spacecraft. Journal of Astronautics, 2020, 41(6): 647-656 doi: 10.3873/j.issn.1000-1328.2020.06.002
|
[12]
|
金小峥, 杨光红, 常晓恒, 车伟伟. 容错控制系统鲁棒H∞和自适应补偿设计. 自动化学报, 2013, 39(1): 31-42 doi: 10.1016/S1874-1029(13)60004-XJin Xiao-Zheng, Yang Guang-Hong, Chang Xiao-Heng, Che Wei-Wei. Robust fault-tolerant H∞ control with adaptive compensation. Acta Automatica Sinica, 2013, 39(1): 31-42 doi: 10.1016/S1874-1029(13)60004-X
|
[13]
|
Xiao B, Hu Q, Singhose W. Reaction wheel fault compensation and disturbance rejection for spacecraft attitude tracking. Journal of Guidance, Control, and Dynamics, 2013, 36: 1565-1575 doi: 10.2514/1.59839
|
[14]
|
Yao X, Tao G, Ma Y, Jiang B. Adaptive actuator failure compensation design for spacecraft attitude control. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3): 1021-1034 doi: 10.1109/TAES.2016.130802
|
[15]
|
Gui H, Ruiter A. Adaptive fault-tolerant spacecraft pose tracking with control allocation. IEEE Transactions on Control Systems Technology, 2019, 27(2): 479-494 doi: 10.1109/TCST.2017.2771374
|
[16]
|
Xia K, Zou Y. Adaptive saturated fault-tolerant control for spacecraft rendezvous with redundancy thrusters. IEEE Transactions on Control Systems Technology, 2021, 29(2): 502-513 doi: 10.1109/TCST.2019.2950399
|
[17]
|
Xia K, Zou Y. Adaptive fixed-time fault-tolerant control for noncooperative spacecraft proximity using relative motion information. Nonlinear Dynamics, 2020, 100: 2521-2535 doi: 10.1007/s11071-020-05634-2
|
[18]
|
胡庆雷, 姜博严, 石忠. 基于新型终端滑模的航天器执行器故障容错姿态控制. 航空学报, 2014, 35(1): 249-258Hu Qing-Lei, Jiang Bo-Yan, Shi-Zhong. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults. Acta Astronautica et Astronautica Sinca, 2014, 35(1): 249-258
|
[19]
|
于彦波, 胡庆雷, 董宏洋, 马广富. 执行器故障与饱和受限的航天器滑模容错控制. 航空学报, 2016, 48(4): 20-25Yu Yan-Bo, Hu Qing-Lei, Dong Hong-Yang, Ma Guang-Fu. Sliding mode fault tolerant control for spacecraft under actuator fault and saturation. Journal of Harbin Institute of Technology, 2016, 48(4): 20-25
|
[20]
|
Jiang B, Hu Q, Friswell M. Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1576-1586 doi: 10.1109/TAES.2016.140406
|
[21]
|
Li Q, Yuan J, Sun C. Robust fault-tolerant saturated control for spacecraft proximity operations with actuator saturation and faults. Advances in Space Research, 2019, 63(5): 1541-1553 doi: 10.1016/j.asr.2018.11.004
|
[22]
|
Wang Y, Liu K, Ji H. Adaptive robust fault-tolerant control scheme for spacecraft proximity operations under external disturbances and input saturation. Nonlinear Dynamics, 2022, 108(1): 207-222 doi: 10.1007/s11071-021-07182-9
|
[23]
|
Philip N, Ananthasayanam M. Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft. Acta Astronautica, 2003, 52(7): 511-522 doi: 10.1016/S0094-5765(02)00125-X
|
[24]
|
Hu Q, Shao X, Chen W. Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode. IEEE Transactions on Aerospace and electronic Systems, 2018, 54(1): 2-17 doi: 10.1109/TAES.2017.2729978
|
[25]
|
Sun L, Huo W, Jiao Z. Adaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraint. IEEE Transactions on Industrial Electronics, 2017, 64(1): 480-492 doi: 10.1109/TIE.2016.2609399
|
[26]
|
Sveier A, Myhre T, Egeland O. Pose estimation with dual quaternions and iterative closest point. Advances in Computing and Communications, 2018: 1913-1920
|
[27]
|
Dong H, Hu Q, Friswell M, Ma G. Dual-quaternion-based fault-tolerant control for spacecraft tracking With finite-time convergence. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1231-1242
|
[28]
|
Yang J, Stoll E. Adaptive sliding mode control for spacecraft proximity operations based on dual quaternions. Journal of Guidance, Control, and Dynamics, 2019, 42(11): 2356-2368 doi: 10.2514/1.G004435
|
[29]
|
Geng Y, Biggs J, Li C. Pose regulation via the dual unitary group: an application to spacecraft rendezvous. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3734-3748 doi: 10.1109/TAES.2021.3090929
|
[30]
|
Dong H, Hu Q, Akella M, Mazenc F. Partial lyapunov strictification: dual-quaternion-based observer for 6-DOF tracking control. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2453-2469 doi: 10.1109/TCST.2018.2864723
|
[31]
|
Ma Y, Jiang B, Tao G, Cheng Y. A direct adaptive actuator failure compensation scheme for satellite attitude control systems. Journal of Aerospace Engineering, 2014, 228(4): 542-556
|
[32]
|
Ma Y, Jiang B, Tao G, Cheng Y. Uncertainty decomposition-based fault-tolerant adaptive control of flexible spacecraft. IEEE Transactions on Aerospace and Electronic System, 2015, 51(2): 1053-1068 doi: 10.1109/TAES.2014.130032
|
[33]
|
Clifford W. A Preliminary Sketch of Biquaternions. Proceedings of the London Mathematics Society, 1873, 1-4(1): 381-395
|
[34]
|
Study E. Von den Bewegungen und Umlegungen. Mathematische Annalen, 1891: 441-565
|