2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车牵引电机转子断条和速度传感器联合诊断方法

许水清 柴晖 胡友强 黄大荣 张可 柴毅

许水清, 柴晖, 胡友强, 黄大荣, 张可, 柴毅. 高速列车牵引电机转子断条和速度传感器联合诊断方法. 自动化学报, 2023, 49(6): 1214−1227 doi: 10.16383/j.aas.c220461
引用本文: 许水清, 柴晖, 胡友强, 黄大荣, 张可, 柴毅. 高速列车牵引电机转子断条和速度传感器联合诊断方法. 自动化学报, 2023, 49(6): 1214−1227 doi: 10.16383/j.aas.c220461
Xu Shui-Qing, Chai Hui, Hu You-Qiang, Huang Da-Rong, Zhang Ke, Chai Yi. Simultaneous fault diagnosis of broken rotor bar and speed sensor for traction motor in high-speed train. Acta Automatica Sinica, 2023, 49(6): 1214−1227 doi: 10.16383/j.aas.c220461
Citation: Xu Shui-Qing, Chai Hui, Hu You-Qiang, Huang Da-Rong, Zhang Ke, Chai Yi. Simultaneous fault diagnosis of broken rotor bar and speed sensor for traction motor in high-speed train. Acta Automatica Sinica, 2023, 49(6): 1214−1227 doi: 10.16383/j.aas.c220461

高速列车牵引电机转子断条和速度传感器联合诊断方法

doi: 10.16383/j.aas.c220461
基金项目: 国家自然科学基金 (62273128, 61803140, U2034209), 中国博士后面上基金 (2020M682474), 重庆市技术创新与应用发展专项重点项目 (cstc2019jscx-msxmX0073), 四川省川渝合作重点研发项目 (2020YFQ0057) 资助
详细信息
    作者简介:

    许水清:合肥工业大学电气与自动化工程学院副教授. 主要研究方向为电气设备在线监测与故障诊断. E-mail: xsqanhui91@gmail.com

    柴晖:合肥工业大学电气与自动化工程学院硕士研究生. 主要研究方向为电气设备故障诊断与应用. E-mail: chaihui0915@163.com

    胡友强:重庆大学自动化学院副研究员. 主要研究方向为故障诊断, 机器学习. E-mail: yqhu@cqu.edu.cn

    黄大荣:安徽大学人工智能学院教授. 主要研究方向为故障诊断与预测. 本文通信作者. E-mail: drhuang@cqjtu.edu.cn

    张可:重庆大学自动化学院教授. 主要研究方向为智能控制, 故障诊断. E-mail: smeta@163.com

    柴毅:重庆大学自动化学院教授. 主要研究方向为智能系统故障诊断与应用. E-mail: chaiyi@cqu.edu.cn

Simultaneous Fault Diagnosis of Broken Rotor Bar and Speed Sensor for Traction Motor in High-speed Train

Funds: Supported by National Natural Science Foundation of China (62273128, 61803140, U2034209), China Postdoctoral Science Foundation (2020M682474), Special Key Project of Chongqing Technological Innovation and Application Development (cstc2019jscx-msxmX0073), and Sichuan-Chongqing Cooperation Key Project (2020YFQ0057)
More Information
    Author Bio:

    XU Shui-Qing Associate professor at the School of Electrical Engineering and Automation, Hefei University of Technology. His research interest covers online monitoring and fault diagnosis of electrical equipment

    CHAI Hui Master student at the School of Electrical Engineering and Automation, Hefei University of Technology. His research interest covers electrical equipment fault diagnosis and its applications

    HU You-Qiang Associate researcher at the School of Automation, Chongqing University. His research interest covers fault diagnosis and machine learning

    HUANG Da-Rong Professor at the School of Artificial Intelligence, Anhui University. His research interest covers fault diagnosis and prediction. Corresponding author of this paper

    ZHANG Ke Professor at the School of Automation, Chongqing University. His research interest covers intelligent control and fault diagnosis

    CHAI Yi Professor at the School of Automation, Chongqing University. His research interest covers intelligent system fault diagnosis and its applications

  • 摘要: 为提升高速列车牵引系统的稳定性和可靠性, 针对其牵引电机提出一种基于未知输入观测器的转子断条和速度传感器故障联合诊断方法. 首先, 通过非奇异坐标变换, 将牵引电机系统解耦为两个分别只包含转子断条故障和速度传感器故障的子系统, 实现转子断条故障与速度传感器故障的解耦, 并进一步利用一阶低通滤波器将含速度传感器故障的子系统转化为增广系统. 其次, 对含转子断条故障的子系统和速度传感器故障增广系统分别设计未知输入区间观测器和未知输入滑模观测器. 在此基础上, 采用未知输入区间观测器上界和下界构建转子断条故障诊断的检测变量和自适应阈值, 利用未知输入滑模观测器的等效输出控制原理实现速度传感器故障估计. 最后, 通过仿真和TDCS-FIB平台实验验证了所提方法的有效性和鲁棒性.
  • 图  1  故障诊断原理图

    Fig.  1  Schematic diagram of fault diagnosis

    图  2  牵引电机转子断条数目较多时的故障诊断结果

    Fig.  2  Fault diagnosis results when the number of broken bar of traction motor rotor is large

    图  3  牵引电机转子断条数目较少时的故障诊断结果

    Fig.  3  Fault diagnosis results when the number of broken bar of traction motor rotor is small

    图  4  牵引电机速度传感器漂移故障估计结果

    Fig.  4  Drift fault estimation results of traction motor speed sensor

    图  5  牵引电机速度传感器时变故障估计结果

    Fig.  5  Time varying fault estimation results of traction motor speed sensor

    图  6  变负载转矩下牵引电机转子断条故障诊断结果

    Fig.  6  Fault diagnosis results of broken bar of traction motor rotor under variable load torque

    图  7  基于TDCS-FIB平台的牵引电机速度传感器时变故障估计结果

    Fig.  7  Time varying fault estimation results of traction motor speed sensor in TDCS-FIB platform

    图  8  基于TDCS-FIB平台的牵引电机转子断条故障诊断结果

    Fig.  8  Fault diagnosis results of broken bar of traction motor rotor in TDCS-FIB platform

    表  1  牵引电机主要参数

    Table  1  Main parameters of traction motor

    参数 符号 数值
    极对数 $ {n_p} $ 3
    定子电感 $ {L_s} $ $ 0.3410 \ {\rm{ H}} $
    定子电阻 $ {R_s} $ $0.0087 \; {{ \Omega } }$
    转子电感 $ {L_r} $ $ 0.0355 \ {\rm{ H}} $
    转子电阻 $ {R_r} $ $0.0087 \; {{ \Omega } }$
    磁链 $ {\psi _f} $ $ 0.1840 \ {\rm{ Wb}} $
    转动惯量 $ J $ $0.8620 \; {\rm{ kg} } {\cdot} {\rm{ m^2} }$
    直流侧电压 $ {U_{dc}} $ $ 311 \ {\rm{ V}} $
    下载: 导出CSV

    表  2  诊断方法对比

    Table  2  Comparison of diagnostic methods

    诊断方法 是否检测转子
    断条故障
    是否检测速度
    传感器故障
    数据量 检测时间 复杂度
    文献[23]中
    方法
    小于$ 10 \text{ ms} $
    文献[32]中
    方法
    大于$ 10 \text{ ms} $
    文献[33]中
    方法
    小于$ 10 \text{ ms} $
    文献[34]中
    方法
    大于$ 15 \text{ ms} $
    本文方法 小于$ 8 \text{ ms} $
    下载: 导出CSV
  • [1] 周东华, 纪洪泉, 何潇. 高速列车信息控制系统的故障诊断技术. 自动化学报, 2018, 44(7): 1153-1164

    Zhou Dong-Hua, Ji Hong-Quan, He Xiao. Fault diagnosis technology for high-speed train information control system. Acta Automatica Sinica, 2018, 44(7): 1153-1164
    [2] 杨超, 彭涛, 阳春华, 陈志文, 桂卫华. 高速列车牵引传动系统故障测试与验证仿真平台研究. 自动化学报, 2019, 45(12): 2218-2232

    Yang Chao, Peng Tao, Yang Chun-Hua, Chen Zhi-Wen, Gui Wei-Hua. Research on a simulation platform for fault testing and verification of high-speed train traction drive systems. Acta Automatica Sinica, 2019, 45(12): 2218-2232
    [3] 姜斌, 吴云凯, 陆宁云, 冒泽慧. 高速列车牵引系统故障诊断与预测技术综述. 控制与决策, 2018, 33(05): 841-855

    Jiang Bin, Wu Yun-Kai, Lu Ning-Yun, Mao Ze-Hui. Review of fault diagnosis and prediction technology of high-speed train traction system. Control and Decision, 2018, 33(05): 841-855
    [4] Manohar M, Das S. Current sensor fault-tolerant control for direct torque control of induction motor drive using flux-linkage observer. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2824-2833 doi: 10.1109/TII.2017.2714675
    [5] Comanescu M. Design and implementation of a highly robust sensorless sliding mode observer for the flux magnitude of the induction motor. IEEE Transactions on Energy Conversion, 2016, 31(2): 649-657 doi: 10.1109/TEC.2016.2516951
    [6] De Angelo C H, Bossio G R, Giaccone S J, MI Valla, GO Garcia. Online model-based stator-fault detection and identification in induction motors. IEEE Transactions on Industrial Electronics, 2009, 56(11): 4671-4680 doi: 10.1109/TIE.2009.2012468
    [7] Panagiotou P A, Arvanitakis I, Lophitis N, J Antonino-Daviu, KN Gyftakis. A new approach for broken rotor bar detection in induction motors using frequency extraction in stray flux signals. IEEE Transactions on Industry Applications, 2019, 55(4): 3501-3511 doi: 10.1109/TIA.2019.2905803
    [8] Iglesias-Martínez M E, de Córdoba P F, Antonino-Daviu J A, Conejero CA. Detection of nonadjacent rotor faults in induction motors via spectral subtraction and autocorrelation of stray flux signals. IEEE Transactions on Industry Applications, 2019, 55(5): 4585-4594 doi: 10.1109/TIA.2019.2917861
    [9] Soleimani Y, Cruz S M A, Haghjoo F. Broken rotor bar detection in induction motors based on air-gap rotational magnetic field measurement. IEEE Transactions on Instrumentation and Measurement, 2018, 68(8): 2916-2925
    [10] Yang Xiao-Yue, Yang Chun-Hua, Yang Chao, Peng Tao, Chen Zhi-Wen, Wu Zhi-Liang. Transient fault diagnosis for traction control system based on optimal fractional-order method. ISA transactions, 2020, 102: 365-375 doi: 10.1016/j.isatra.2020.03.006
    [11] Li B, Zhang P L, Wang Z J, Mi S S, Lui D S. A weighted multi-scale morphological gradient filter for rolling element bearing fault detection. ISA transactions, 2011, 50(4): 599-608
    [12] 李睿彧, 刘飞, 梁霖, 罗爱玲, 徐光华. 基于参数优化变分模态分解的交流变频电机转子断条故障识别方法. 电工技术学报, 2021, 36(18): 3922-3933

    Li Rui-Yu, Liu Fei, Liang Lin, Luo Ai-Ling, Xu Guang-Hua. A fault identification method for broken bars of AC variable frequency motor rotor based on parameter optimization variational modal decomposition. Transactions of China Electrotechnical Society, 2021, 36(18): 3922-3933
    [13] Pablo M, Otero M, Schallschmidt T, GR Bossio, R Leidhold. Active broken rotor bar diagnosis in induction motor drives. IEEE Transactions on Industrial Electronics, 2020, 68(8): 7556-7566
    [14] Morales-Perez C, Rangel-Magdaleno J, Peregrina-Barreto H, JP Amezquita-Sanchez, M Valtierra-Rodriguez. Incipient broken rotor bar detection in induction motors using vibration signals and the orthogonal matching pursuit algorithm. IEEE Transactions on Instrumentation and Measurement, 2018, 67(9): 2058-2068 doi: 10.1109/TIM.2018.2813820
    [15] Chen Hong-Tian, Jiang Bin, Liu Ning-Yun. A newly robust fault detection and diagnosis method for high-speed trains. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2198-2208
    [16] Hajary A, Kianinezhad R, Seifossadat S G, SS Mortazavi, A Saffarian. Detection and localization of open-phase fault in three-phase induction motor drives using second order rotational park transformation. IEEE Transactions on Power Electronics, 2019, 34(11): 11241-11252 doi: 10.1109/TPEL.2019.2901598
    [17] Nguyen V, Wang Dan-Wei, Seshadrinath J, A Ukil, MS Krishna, S Nadarajan. A method for incipient interturn fault detection and severity estimation of induction motors under inherent asymmetry and voltage imbalance. IEEE Transactions on Transportation Electrification, 2017, 3(3): 703-715 doi: 10.1109/TTE.2017.2726351
    [18] Tian Yang, Zhang Ke, Jiang Bin, Yang Xing-Gang. Interval observer and unknown input observer-based sensor fault estimation for high-speed railway traction motor. Journal of the Franklin Institute, 2020, 357(2): 1137-1154 doi: 10.1016/j.jfranklin.2019.11.062
    [19] Li Shan-Zhi, Wang Hao-Ping, Tian Yang, Abdel Aitouch, John-Klein. Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control. ISA transactions, 2016, 64: 431-439 doi: 10.1016/j.isatra.2016.06.003
    [20] 陶宏伟, 彭涛, 杨超, 陈志文, 桂卫华. 高速列车牵引整流器多类故障联合诊断方法. 自动化学报, 2019, 45(12): 2294-2302

    Tao Hong-Wei, Peng Tao, Yang Chao, Chen Zhi-Wen, Gui Wei-Hua. Joint diagnosis method for multi-type faults of high-speed train traction rectifiers. Acta Automatica Sinica, 2019, 45(12): 2294-2302
    [21] Zhang Kang-Kang, Jiang inB, Yan Xing-Gang, Mao Ze-Hui. Incipient fault detection for traction motors of high-speed railways using an interval sliding mode observer. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(7): 2703-2714
    [22] Wu Yun-Kai, Jiang Bin, Lu Ning-Yun. A descriptor system approach for estimation of incipient faults with application to high-speed railway traction devices. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49(10): 2108-2118
    [23] Wu Yun-Kai, Jiang Bin, Wang Yu-Long. Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains. ISA transactions, 2020, 99: 488-495 doi: 10.1016/j.isatra.2019.09.020
    [24] Raoufi R, Marquez H J, Zinober A S I. H sliding mode observers for uncertain nonlinear Lipschitz systems with fault estimation synthesis. International Journal of Robust and Nonlinear Control, 2010, 20(16): 1785-1801 doi: 10.1002/rnc.1545
    [25] Ziyabari S, Shoorehdeli M A. Robust fault diagnosis scheme in a class of nonlinear system based on UIO and fuzzy residual. International Journal of Control, Automation and Systems, 2017, 15(3): 1145-1154 doi: 10.1007/s12555-016-0145-0
    [26] Guzinski J, Diguet M, Krzeminski Z, A Lewicki, H Abu-Rub. Application of speed and load torque observers in high-speed train drive for diagnostic purposes. IEEE transactions on Industrial Electronics, 2008, 56(1): 248-256
    [27] Wang Hui-Ming, Ge Xing-Lai, Liu Yang-Chao. Second-order sliding-mode MRAS observer-based sensorless vector control of linear induction motor drives for medium-low speed maglev applications. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9938-9952 doi: 10.1109/TIE.2018.2818664
    [28] Sahin I, Keysan O. Model predictive controller utilized as an observer for inter-turn short circuit detection in induction motors. IEEE transactions on Energy Conversion, 2021, 36(2): 1449-1458 doi: 10.1109/TEC.2020.3048071
    [29] 文传博, 邓露, 吴兰. 基于滑模观测器和广义观测器的故障估计方法. 自动化学报, 2018, 44(9): 1698-1705

    Wen Chuan-Bo, Deng Lu, Wu Lan Fault estimation method based on sliding mode observer and generalized observer Acta Automatica Sinica, 2018, 44 (9): 1698-1705
    [30] Efimov D, Rassi T, Zolghadri A. Control of nonlinear and LPV systems: Interval observer-based framework. IEEE Transactions on Automatic Control, 2013, 58(3): 773-778 doi: 10.1109/TAC.2013.2241476
    [31] Yang Chun-Hua, Yang Chao, Peng Tao, Yang Xiao-Yue, Gui Wei-Hua. A fault-injection strategy for traction drive control systems. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5719-5727 doi: 10.1109/TIE.2017.2674610
    [32] Abd-el-Malek M B, Abdelsalam A K, Hassan O E. Novel approach using Hilbert Transform for multiple broken rotor bars fault location detection for three phase induction motor. ISA transactions, 2018, 80: 439-457 doi: 10.1016/j.isatra.2018.07.020
    [33] Gou Bin, Yan Xu, Yang Xia, Gary Wilson Liu Shu-Yong. An intelligent time-adaptive data-driven method for sensor fault diagnosis in induction motor drive system. IEEE Transactions on Industrial Electronics, 2018, 66(12): 9817-9827
    [34] 杨泽斌, 许婷, 孙晓东, 贾晶荆, 朱熀秋. 基于BPNN的无轴承异步电机传感器故障诊断及容错控制.中国电机工程学报, 2022, 42(11): 4218-4226

    Yang Ze-Bin, Xu Ting, Sun Xiao-Dong, Jia Jing-Jing, Zhu Xi-Qiu. Sensor Fault Diagnosis and Fault-Tolerant Control of a Bearingless Induction Motor Based on BPNN. Proceedings of the CSEE, 2022, 42(11): 4218-4226
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1276
  • HTML全文浏览量:  132
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 录用日期:  2022-12-01
  • 网络出版日期:  2023-03-09
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回