2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯广义双曲混合分布的非线性卡尔曼滤波

王国庆 杨春雨 马磊 代伟

王国庆, 杨春雨, 马磊, 代伟. 基于高斯–广义双曲混合分布的非线性卡尔曼滤波. 自动化学报, 2023, 49(2): 448−460 doi: 10.16383/j.aas.c220400
引用本文: 王国庆, 杨春雨, 马磊, 代伟. 基于高斯广义双曲混合分布的非线性卡尔曼滤波. 自动化学报, 2023, 49(2): 448−460 doi: 10.16383/j.aas.c220400
Wang Guo-Qing, Yang Chun-Yu, Ma Lei, Dai Wei. Nonlinear Kalman filter based on Gaussian-generalized-hyperbolic mixing distribution. Acta Automatica Sinica, 2023, 49(2): 448−460 doi: 10.16383/j.aas.c220400
Citation: Wang Guo-Qing, Yang Chun-Yu, Ma Lei, Dai Wei. Nonlinear Kalman filter based on Gaussian-generalized-hyperbolic mixing distribution. Acta Automatica Sinica, 2023, 49(2): 448−460 doi: 10.16383/j.aas.c220400

基于高斯广义双曲混合分布的非线性卡尔曼滤波

doi: 10.16383/j.aas.c220400
基金项目: 国家自然科学基金 (62003348, 62073327, 62203448, 61973306, 61873272), 江苏省自然科学基金 (BK20200633, BK20200631, BK20200086) 资助
详细信息
    作者简介:

    王国庆:中国矿业大学信息与控制工程学院副教授. 分别于2014年和2019年获得中国矿业大学学士学位和哈尔滨工程大学博士学位. 主要研究方向为鲁棒状态估计, 分布式信息融合及其在导航中的应用. E-mail: wangguoqing0632@163.com

    杨春雨:中国矿业大学信息与控制工程学院教授. 2009年获得东北大学博士学位. 主要研究方向为奇异摄动系统, 工业过程运行控制, 物理信息系统和鲁棒控制. 本文通信作者. E-mail: chunyuyang@cumt.edu.cn

    马磊:中国矿业大学信息与控制工程学院副教授. 2019年获得南京理工大学博士学位. 主要研究方向为奇异摄动系统, 切换系统和网络控制系统. E-mail: maleinjust@126.com

    代伟:中国矿业大学信息与控制工程学院教授. 2015年获得东北大学博士学位. 主要研究方向为复杂工业过程建模、优化与控制, 数据挖掘和机器学习. E-mail: weidai@cumt.edu.cn

Nonlinear Kalman Filter Based on Gaussian-generalized-hyperbolic Mixing Distribution

Funds: Supported by National Natural Science Foundation of China (62003348, 62073327, 62203448, 61973306, 61873272) and Natural Science Foundation of Jiangsu Province (BK20200633, BK20200631, BK20200086)
More Information
    Author Bio:

    WANG Guo-Qing Associate professor at the School of Information and Control Engineering, China University of Mining and Technology. He received his bachelor degree from China University of Mining and Technology in 2014, and Ph.D. degree from Harbin Engineering University in 2019. His research interest covers robust state estimation, distributed information fusion and applications in navigation technology

    YANG Chun-Yu Professor at the School of Information and Control Engineering, China University of Mining and Technology. He received his Ph.D. degree from Northeastern University in 2009. His research interest covers singularly perturbed systems, industrial process operational control, cyber-physical systems, and robust control. Corresponding author of this paper

    MA Lei Associate professor at the School of Information and Control Engineering, China University of Mining and Technology. He received his Ph.D. degree from Nanjing University of Science and Technology in 2019. His research interest covers singularly perturbed systems, switched systems, and networked control systems

    DAI Wei Professor at the School of Information and Control Engineering, China University of Mining and Technology. He received his Ph.D. degree from Northeastern University in 2015. His research interest covers modeling, optimization and control of the complex industrial process, data mining, and machine learning

  • 摘要: 本文研究带非平稳厚尾非高斯量测噪声的非线性系统状态估计问题. 考虑到广义双曲分布包含多种常见厚尾分布特例, 且其混合分布为共轭的广义逆高斯分布, 选用广义双曲分布建模厚尾噪声; 进而引入伯努利变量构建高斯–广义双曲混合分布来建模非平稳厚尾噪声, 并利用该分布的高斯分层结构得到系统的概率模型. 随后采用变分贝叶斯方法实现对系统状态以及噪声参数的后验估计, 得到针对此类噪声系统的卡尔曼滤波 (Kalman filter, KF) 框架, 现有的几种鲁棒滤波算法均是本文算法的特例. 机器人跟踪仿真实验表明, 所提算法与同类算法相比具有更好的估计精度和数值稳定性, 且对于初始参数具有较好的鲁棒性.
  • 图  1  本文系统的图模型

    Fig.  1  Graph model of the system used in this paper

    图  2  基于传感器网络的机器人跟踪示意图

    Fig.  2  The illustration of tracking a robot with the sensor network

    图  3  仿真中产生一维噪声的幅值以及概率密度函数

    Fig.  3  The amplitude and probability density functions of the one-dimensional noise used in the simulation

    图  4  本文所提算法与同类方法的${{\rm{RMSE}}}_{\rm pos}$

    Fig.  4  The ${{\rm{RMSE}}}_{\rm pos}$ of the proposed algorithms and related ones

    图  5  本文所提算法与同类方法的${{\rm{RMSE}}}_{\rm vel}$

    Fig.  5  The ${{\rm{RMSE}}}_{\rm vel}$ of the proposed algorithms and related ones

    图  6  本文算法在迭代次数$ N$不同时的$ {{\rm{RMSE}}}_{\rm pos}$

    Fig.  6  The $ {{\rm{RMSE}}}_{ \rm pos}$ of the proposed algorithms with different iteration number $ N$

    图  7  本文算法在迭代次数$N$不同时的$ {{\rm{RMSE}}}_{\rm vel}$

    Fig.  7  The $ {{\rm{RMSE}}}_{\rm vel}$ of the proposed algorithms with different iteration number $N$

    图  8  本文算法在$\omega_0$$\eta_0$不同时的${{\rm{RMSE}}}_{\rm {pos}}$

    Fig.  8  The ${{\rm{RMSE}}}_{\rm {pos}}$ of the proposed algorithms with different $\omega_0$ and $\eta_0$

    图  9  本文算法在$\omega_0$$\eta_0$不同时的$ {{\rm{RMSE}}}_{\rm vel}$

    Fig.  9  The $ {{\rm{RMSE}}}_{\rm vel}$ of the proposed algorithms with different $\omega_0$ and $\eta_0$

    图  10  本文算法在$\delta_0$不同时的$ {{\rm{RMSE}}}_{\rm pos}$

    Fig.  10  The $ {{\rm{RMSE}}}_{\rm pos}$ of the proposed algorithms with different $\delta_0$

    图  11  本文算法在$\delta_0$不同时的$ {{\rm{RMSE}}}_{\rm vel}$

    Fig.  11  The ${{\rm{RMSE}}}_{\rm vel}$ of the proposed algorithms with different $\delta_0$

    表  1  广义双曲分布的几种特殊分布

    Table  1  Several special cases of generalized hyperbolic distribution

    分布名称关键参数
    高斯分布$\delta\rightarrow+\infty$或者$\delta\rightarrow-\infty$
    正态逆高斯分布$\delta=-0.5$
    双曲分布$\delta=1$
    K 分布$\omega=0$
    广义双曲学生 t 分布$\eta=0$
    下载: 导出CSV

    表  2  不同算法总运行时间

    Table  2  The total simulation time of different algorithms

    算法名称仿真时间 (s)
    UKF15.28
    STUKF139.66
    MCUKF22.51
    RSE-ML151.75
    SEUKF146.92
    OUKF14.67
    G-GHUKF1167.36
    G-GHUKF2165.32
    G-GHUKF3166.65
    G-GHUKF4145.77
    下载: 导出CSV
  • [1] 潘泉, 胡玉梅, 兰华, 孙帅, 王增福, 杨峰. 信息融合理论研究进展: 基于变分贝叶斯的联合优化. 自动化学报, 2019, 45(7): 1207-1223

    Pan Quan, Hu Yu-Mei, Lan Hua, Sun Shuai, Wang Zeng-Fu, Yang Feng. Information fusion progress: Joint optimization based on variational Bayesian theory. Acta Automatica Sinica, 2019, 45(7): 1207-1223
    [2] 罗小元, 潘雪扬, 王新宇, 关新平. 基于自适应 Kalman 滤波的智能电网假数据注入攻击检测. 自动化学报, 2022, 48(12): 2960−2971

    Luo Xiao-Yuan, Pan Xue-Yang, Wang Xin-Yu, Guan Xin-Ping. Detection of false data injection attack in smart grid via adaptive Kalman filtering. Acta Automatica Sinica, 2022, 48(12): 2960−2971
    [3] Wang G Q, Wang X D, Zhang Y G. Variational Bayesian IMM-filter for JMSs with unknown noise covariances. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1652-1661 doi: 10.1109/TAES.2019.2929975
    [4] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269 doi: 10.1109/TAC.2009.2019800
    [5] Dang L J, Chen B D, Wang S Y, Ma W T, Ren P J. Robust power system state estimation with minimum error entropy unscented Kalman filter. IEEE Transactions on Instrumentation and Measurement, 2020, 69(11): 8797-8808 doi: 10.1109/TIM.2020.2999757
    [6] 葛泉波, 王贺彬, 杨秦敏, 张兴国, 刘华平. 基于改进高斯混合模型的机器人运动状态估计. 自动化学报, 2022, 48(8): 1972-1983

    Ge Quan-Bo, Wang He-Bin, Yang Qin-Min, Zhang Xing-Guo, Liu Hua-Ping. Estimation of robot motion state based on improved Gaussian mixture model. Acta Automatica Sinica, 2022, 48(8): 1972-1983
    [7] Huang Y L, Zhang Y G, Xu B, Wu Z M, Chambers J A. A new outlier-robust student's t based Gaussian approximate filter for cooperative localization. IEEE-ASME Transactions on Mechatronics, 2017, 22(5): 2380-2386 doi: 10.1109/TMECH.2017.2744651
    [8] Bai M M, Huang Y L, Zhang Y G, Chen F. A novel heavy-tailed mixture distribution based robust Kalman filter for cooperative localization. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3671-3681 doi: 10.1109/TII.2020.3015001
    [9] 朱兵, 李星, 刘强, 李作虎. 鲁棒Kalman滤波及其在水下组合导航中的应用. 导航定位与授时, 2021, 8(1): 96-103 doi: 10.19306/j.cnki.2095-8110.2021.01.010

    Zhu Bing, Li Xing, Liu Qiang, Li Zuo-Hu. Robust Kalman filter and its application in underwater intergrated navigation. Navigation Positioning and Timing, 2021, 8(1): 96-103 doi: 10.19306/j.cnki.2095-8110.2021.01.010
    [10] Huang Y L, Zhang Y G, Shi P, Wu Z M, Qian J H, Chambers J A. Robust Kalman filters based on Gaussian scale mixture distributions with application to target tracking. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(10): 2082-2096 doi: 10.1109/TSMC.2017.2778269
    [11] 王国庆, 杨春雨, 马磊. 基于多变量 Laplace 分布的非线性系统分布式鲁棒状态估计. 电子学报, 2022, 50(11): 2610−2618

    Wang Guo-Qing, Yang Chun-Yu, Ma Lei. Distributed robust state estimation for nonlinear systems based on multivariate Laplace distribution. Acta Electronica Sinica, 2022, 50(11): 2610−2618
    [12] Chen B D, Liu X, Zhao H Q, Principe J C. Maximum correntropy Kalman filter. Automatica, 2017, 76: 70-77 doi: 10.1016/j.automatica.2016.10.004
    [13] Chen B D, Dang L J, Gu Y T, Zheng N N, Principe J C. Minimum error entropy Kalman filter. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(9): 5819-5829 doi: 10.1109/TSMC.2019.2957269
    [14] Huang Y L, Zhang Y G, Zhao Y X, Shi P, Chambers J A. A novel outlier-robust Kalman filtering framework based on statistical similarity measure. IEEE Transactions on Automatic Control, 2021, 66(6): 2677-2692 doi: 10.1109/TAC.2020.3011443
    [15] Bai M M, Huang Y L, Zhang Y G, Chambers J A. Statistical similarity measure-based adaptive outlier-robust state estimator with applications. IEEE Transactions on Automatic Control, 2022, 67(8): 4354-4361 doi: 10.1109/TAC.2022.3176837
    [16] Wang G Q, Zhang Y G, Wang X D. Maximum correntropy Rauch-Tung-Striebel smoother for nonlinear and non-Gaussian systems. IEEE Transactions on Automatic Control, 2021, 66(3): 1270-1277 doi: 10.1109/TAC.2020.2997315
    [17] Wang G Q, Zhang Y G, Wang X D. Iterated maximum correntropy unscented Kalman filters for non-Gaussian systems. Signal Processing, 2019, 163: 87-94 doi: 10.1016/j.sigpro.2019.05.015
    [18] Wang G Q, Li N, Zhang Y G. Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise. Journal of the Franklin Institute, 2017, 354(18): 8659-8677 doi: 10.1016/j.jfranklin.2017.10.023
    [19] Wang G Q, Li N, Zhang Y G. Distributed maximum correntropy linear and nonlinear filters for systems with non-Gaussian noises. Signal Processing, 2021, 182: Article No. 107937 doi: 10.1016/j.sigpro.2020.107937
    [20] 王健, 鲁金瑞, 郑栋, 李璇, 张涛. 水下复杂环境下基于 SINS/USBL/DVL 多源信息融合的组合导航算法. 导航定位与授时, 2022, 9(1): 76-84

    Wang Jian, Lu Jin-Rui, Zheng Dong, Li Xuan, Zhang Tao. Integrated navigation algorithm based on SINS/USBL/DVL multi-souce information fusion in underwater complex environment. Navigation Positioning and Timing, 2022, 9(1): 76-84
    [21] Huang Y L, Zhang Y G, Li N, Wu Z M, Chambers J A. A novel robust student's t-based Kalman filter. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1545-1554 doi: 10.1109/TAES.2017.2651684
    [22] Huang Y L, Zhang Y G, Li N, Chambers J A. A robust Gaussian approximate filter for nonlinear systems with heavy tailed measurement noises. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China: IEEE, 2016. 4209−4213
    [23] Wang G Q, Yang C Y, Ma X P. A novel robust nonlinear Kalman filter based on multivariate Laplace distribution. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(7): 2705-2709 doi: 10.1109/TCSII.2021.3052351
    [24] Xue C, Huang Y L, Zhu F C, Zhang Y G, Chambers J A. An outlier-robust Kalman filter with adaptive selection of elliptically contoured distributions. IEEE Transactions on Signal Processing, 2022, 70: 994-1009 doi: 10.1109/TSP.2022.3151199
    [25] Wang G Q, Yang C Y, Ma L, Dai W. Centralized and distributed robust state estimation over sensor networks using elliptical distribution. IEEE Internet of Things Journal, 2022, 9(21): 21825−21837
    [26] Huang Y L, Zhang Y G, Zhao Y, Chambers J A. A novel robust Gaussian-student's t mixture distribution based Kalman filter. IEEE Transactions on Signal Processing, 2019, 67(13): 3606-3620 doi: 10.1109/TSP.2019.2916755
    [27] Zhu H, Zhang G R, Li Y F, Leung H. A novel robust Kalman filter with unknown non-stationary heavy-tailed noise. Automatica, 2021, 127: Article No. 109511 doi: 10.1016/j.automatica.2021.109511
    [28] Bai M M, Huang Y L, Chen B D, Zhang Y G. A movel robust Kalman filtering framework based on normal-skew mixture distribution. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(11): 6789−6805
    [29] Nakabayashi A, Ueno G. Nonlinear filtering method using a switching error model for outlier-contaminated observations. IEEE Transactions on Automatic Control, 2020, 65(7): 3150-3156 doi: 10.1109/TAC.2019.2947649
    [30] Breymann W, Lüthi D. ghyp: A package on generalized hyperbolic distributions [Online], available: https://cran.microsoft.com/snapshot/2015-09-28/web/packages/ghyp/vignettes/Generalized_Hyperbolic_Distribution.pdf, May 16, 2022
    [31] Babacan S D, Nakajima S. Do M N. Bayesian group-sparse modeling and variational inference. IEEE Transactions on Signal Processing, 2014, 62(11): 2906-2921 doi: 10.1109/TSP.2014.2319775
    [32] Zhang Y, Chu J, Chan S, Chan B. The generalised hyperbolic distribution and its subclass in the analysis of a new era of cryptocurrencies: Ethereum and its financial risk. Physica A: Statistical Mechanics and its Applications, 2019, 526: Article No. 120900. doi: 10.1016/j.physa.2019.04.136
    [33] Särkkä S, Hartikainen J. Non-linear noise adaptive Kalman filtering via variational Bayes. In: Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP). Southampton, UK: IEEE, 2013. 1−6
    [34] Yang X S, Zhang W A, Yu L, Yang F W. Sequential Gaussian approximation filter for target tracking with nonsynchronous measurements. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 407-418 doi: 10.1109/TAES.2018.2852398
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  792
  • HTML全文浏览量:  321
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 录用日期:  2022-08-07
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2023-02-20

目录

    /

    返回文章
    返回