2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

未知非线性零和博弈最优跟踪的事件触发控制设计

王鼎 胡凌治 赵明明 哈明鸣 乔俊飞

王鼎, 胡凌治, 赵明明, 哈明鸣, 乔俊飞. 未知非线性零和博弈最优跟踪的事件触发控制设计. 自动化学报, 2023, 49(1): 91−101 doi: 10.16383/j.aas.c220378
引用本文: 王鼎, 胡凌治, 赵明明, 哈明鸣, 乔俊飞. 未知非线性零和博弈最优跟踪的事件触发控制设计. 自动化学报, 2023, 49(1): 91−101 doi: 10.16383/j.aas.c220378
Wang Ding, Hu Ling-Zhi, Zhao Ming-Ming, Ha Ming-Ming, Qiao Jun-Fei. Event-triggered control design for optimal tracking of unknown nonlinear zero-sum games. Acta Automatica Sinica, 2023, 49(1): 91−101 doi: 10.16383/j.aas.c220378
Citation: Wang Ding, Hu Ling-Zhi, Zhao Ming-Ming, Ha Ming-Ming, Qiao Jun-Fei. Event-triggered control design for optimal tracking of unknown nonlinear zero-sum games. Acta Automatica Sinica, 2023, 49(1): 91−101 doi: 10.16383/j.aas.c220378

未知非线性零和博弈最优跟踪的事件触发控制设计

doi: 10.16383/j.aas.c220378
基金项目: 科技创新2030—“新一代人工智能”重大项目(2021ZD0112302), 北京市自然科学基金(JQ19013), 国家自然科学基金(62222301, 61890930-5, 62021003)资助
详细信息
    作者简介:

    王鼎:北京工业大学信息学部教授. 2009年获得东北大学硕士学位, 2012年获得中国科学院自动化研究所博士学位. 主要研究方向为强化学习与智能控制. 本文通信作者. E-mail: dingwang@bjut.edu.cn

    胡凌治:北京工业大学信息学部硕士研究生. 主要研究方向为强化学习和智能控制. E-mail: hulingzhi@email s.bjut.edu.cn

    赵明明:北京工业大学信息学部博士研究生. 主要研究方向为强化学习和智能控制. E-mail: zhaomm@emails.bjut.edu.cn

    哈明鸣:北京科技大学自动化与电气工程学院博士研究生. 分别于2016年和2019年获得北京科技大学学士和硕士学位. 主要研究方向为最优控制, 自适应动态规划和强化学习. E-mail: hamingming_0705@foxmail.com

    乔俊飞:北京工业大学信息学部教授. 主要研究方向为污水处理过程智能控制和神经网络结构设计与优化. E-mail: adqiao@bjut.edu.cn

Event-triggered Control Design for Optimal Tracking of Unknown Nonlinear Zero-sum Games

Funds: Supported by National Key Research and Development Program of China (2021ZD0112302), Beijing Natural Science Foundation (JQ19013), and National Natural Science Foundation of China (62222301, 61890930-5, 62021003)
More Information
    Author Bio:

    WANG Ding Professor at the Faculty of Information Technology, Beijing University of Technology. He received his master degree from Northeastern University in 2009 and received his Ph.D. degree from Institute of Automation, Chinese Academy of Sciences in 2012. His research interest covers reinforcement learning and intelligent control. Corresponding author of this paper

    HU Ling-Zhi Master student at the Faculty of Information Technology, Beijing University of Technology. His research interest covers reinforcement learning and intelligent control

    ZHAO Ming-Ming Ph.D. candidate at the Faculty of Information Technology, Beijing University of Technology. His research interest covers reinforcement learning and intelligent control

    HA Ming-Ming Ph.D. candidate at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. He received his bachelor and master degrees from University of Science and Technology Beijing in 2016 and 2019, respectively. His research interest covers optimal control, adaptive dynamic programming, and reinforcement learning

    QIAO Jun-Fei Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent control of wastewater treatment processes, structure design and optimization of neural networks

  • 摘要: 设计了一种基于事件的迭代自适应评判算法, 用于解决一类非仿射系统的零和博弈最优跟踪控制问题. 通过数值求解方法得到参考轨迹的稳定控制, 进而将未知非线性系统的零和博弈最优跟踪控制问题转化为误差系统的最优调节问题. 为了保证闭环系统在具有良好控制性能的基础上有效地提高资源利用率, 引入一个合适的事件触发条件来获得阶段性更新的跟踪策略对. 然后, 根据设计的触发条件, 采用Lyapunov方法证明误差系统的渐近稳定性. 接着, 通过构建四个神经网络, 来促进所提算法的实现. 为了提高目标轨迹对应稳定控制的精度, 采用模型网络直接逼近未知系统函数而不是误差动态系统. 构建评判网络、执行网络和扰动网络用于近似迭代代价函数和迭代跟踪策略对. 最后, 通过两个仿真实例, 验证该控制方法的可行性和有效性.
  • 图  1  基于事件的零和博弈跟踪控制方法示意图

    Fig.  1  The simple structure of the event-based zero-sum game tracking control method

    图  2  模型网络训练误差 (例1)

    Fig.  2  The training errors of the model network(Example 1)

    图  3  系统状态、控制律和扰动律轨迹(例1)

    Fig.  3  Trajectories of the state, the control law, and the disturbance law (Example 1)

    图  4  跟踪误差、跟踪控制律和跟踪扰动律轨迹(例1)

    Fig.  4  Trajectories of the tracking error, the tracking control law, and the tracking disturbance law (Example 1)

    图  5  稳定控制$ v(\xi_k) $(例1)

    Fig.  5  The steady control $ v(\xi_k) $ (Example 1)

    图  6  触发阈值$ \sigma_T $(例1)

    Fig.  6  The triggering threshold $ \sigma_T $ (Example 1)

    图  7  模型网络训练误差(例2)

    Fig.  7  The training errors of the model network(Example 2)

    图  8  系统状态、控制律和扰动律轨迹(例2)

    Fig.  8  Trajectories of the state, the control law, and the disturbance law (Example 2)

    图  9  跟踪误差、跟踪控制律和跟踪扰动律轨迹(例2)

    Fig.  9  Trajectories of the tracking error, the tracking control law, and the tracking disturbance law (Example 2)

    图  10  触发阈值$ \sigma_T $(例2)

    Fig.  10  The triggering threshold $ \sigma_T $ (Example 2)

    表  1  两个仿真实验的主要参数

    Table  1  Main parameters of two experimental examples

    符号 例 1 例 2
    $ {\cal{Q}} $ $ 0.01I_2 $ $ 0.1I_2 $
    $ {\cal{R}} $ $ I $ $ I $
    $ \gamma $ $ 0.01 $ $ 0.1 $
    $ \Gamma $ $ 0.2 $ $ 0.35 $
    $ \beta $ $ 1/6 $ $ 7/27 $
    $ \epsilon $ $ 10^{-5} $ $ 10^{-5} $
    下载: 导出CSV
  • [1] Li C D, Yi J Q, Lv Y S, Duan P Y. A hybrid learning method for the data-driven design of linguistic dynamic systems. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1487-1498
    [2] Basar T, Bernhard P. $H_{\infty}$ optimal control and related minimax design problems: A dynamic game approach. IEEE Transactions on Automatic Control, 1996, 41(9): 1397-1399 doi: 10.1109/TAC.1996.536519
    [3] Dong J X, Hou Q H, Ren M M. Control synthesis for discrete-time T-S fuzzy systems based on membership function-dependent $H_{\infty}$ performance. IEEE Transactions on Fuzzy Systems, 2020, 28(12): 3360-3366 doi: 10.1109/TFUZZ.2019.2950879
    [4] Qian D W, Li C D, Lee S G, Ma C. Robust formation maneuvers through sliding mode for multi-agent systems with uncertainties. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1): 342-351
    [5] Mathiyalagan K, Su H Y, Shi P, Sakthivel R. Exponential $H_{\infty}$ filtering for discrete-time switched neural networks with random delays. IEEE Transactions on Cybernetics, 2015, 45(4): 676-687 doi: 10.1109/TCYB.2014.2332356
    [6] Werbos P J. Approximate dynamic programming for real-time control and neural modeling. In: Proceedings of the Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches. New York, USA: 1992.
    [7] Heydari A. Stability analysis of optimal adaptive control under value iteration using a stabilizing initial policy. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9): 4522-4527 doi: 10.1109/TNNLS.2017.2755501
    [8] Al-Tamimi A, Lewis F L, Abu-Khalaf M. Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008, 38(4): 943-949 doi: 10.1109/TSMCB.2008.926614
    [9] Liu D R, Wei Q L. Generalized policy iteration adaptive dynamic programming for discrete-time nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(12): 1577-1591 doi: 10.1109/TSMC.2015.2417510
    [10] Guo W T, Si J N, Liu F, Mei S W. Policy approximation in policy iteration approximate dynamic programming for discrete-time nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(7): 2794-2807
    [11] Modares H, Lewis F L, Naghibi-Sistani M-B. Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(10): 1513-1525 doi: 10.1109/TNNLS.2013.2276571
    [12] Kiumarsi B, Lewis F L. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(1): 140-151 doi: 10.1109/TNNLS.2014.2358227
    [13] 王鼎. 基于学习的鲁棒自适应评判控制研究进展. 自动化学报, 2019, 45(6): 1031-1043 doi: 10.16383/j.aas.c170701

    Wang Ding. Research progress on learning-based robust adaptive critic control. Acta Automatica Sinica, 2019, 45(6): 1031-1043 doi: 10.16383/j.aas.c170701
    [14] Zhao F Y, Gao W N, Liu T F, Jiang Z P. Adaptive optimal output regulation of linear discrete-time systems based on event-triggered output-feedback. Automatica, 2022, 137: 10103
    [15] Wang D, Qiao J F, Cheng L. An approximate neuro-optimal solution of discounted guaranteed cost control design. IEEE Transactions on Cybernetics, 2022, 52(1): 77-86 doi: 10.1109/TCYB.2020.2977318
    [16] Niu B, Liu J D, Wang D, Zhao X D, Wang H Q. Adaptive decentralized asymptotic tracking control for large-scale nonlinear systems with unknown strong interconnections. IEEE/CAA Journal of Automatica Sinica, 2022, 9(1): 173-186 doi: 10.1109/JAS.2021.1004246
    [17] Wang D, Ha M M, Zhao M M. The intelligent critic framework for advanced optimal control. Artificial Intelligence Review, 2022, 55(1): 1-22
    [18] Zhang H G, Wei Q L, Luo Y H. A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics, 2008, 38(4): 937-942
    [19] Li C, Ding J L, Lewis F L, Chai T Y. A novel adaptive dynamic programming based on tracking error for nonlinear discrete-time systems. Automatica, 2021, 129: 109687 doi: 10.1016/j.automatica.2021.109687
    [20] Wang D, Hu L Z, Zhao M M, Qiao J F. Adaptive critic for event-triggered unknown nonlinear optimal tracking design with wastewater treatment applications. IEEE Transactions on Neural Networks and Learning Systems, 2021. DOI: 10.1109/TNNLS.2021.3135405
    [21] 王鼎, 赵明明, 哈明鸣, 乔俊飞. 基于折扣广义值迭代的智能最优跟踪及应用验证. 自动化学报, 2022, 48(1): 182-193 doi: 10.16383/j.aas.c210658

    Wang Ding, Zhao Ming-Ming, Ha Ming-Ming, Qiao Jun-Fei. Intelligent optimal tracking with application verifications via discounted generalized value iteration. Acta Automatica Sinica, 2022, 48(1): 182-193 doi: 10.16383/j.aas.c210658
    [22] Postoyan R, Tabuada P, Nesic D, Anta A. A framework for the event-triggered stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 2015, 60(4): 982-996 doi: 10.1109/TAC.2014.2363603
    [23] Ha M M, Wang D, Liu D R. Event-triggered constrained control with DHP implementation for nonaffine discrete-time systems. Information Sciences, 2020, 519: 110–123 doi: 10.1016/j.ins.2020.01.020
    [24] Sahoo A, Xu H, Jagannathan S. Near optimal event-triggered control of nonlinear discrete-time systems using neurodynamic programming. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(9): 1801-1815 doi: 10.1109/TNNLS.2015.2453320
    [25] Wang D, Ha M M, Qiao J F. Self-learning optimal regulation for discrete-time nonlinear systems under event-driven formulation. IEEE Transactions on Automatic Control, 2020, 65(3): 1272-1279 doi: 10.1109/TAC.2019.2926167
    [26] Dong L, Zhong X N, Sun C Y, He H B. Adaptive event-triggered control based on heuristic dynamic programming for nonlinear discrete-time systems. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(7): 1594-1605 doi: 10.1109/TNNLS.2016.2541020
    [27] Dong L, Zhong X N, Sun C Y, He H B. Event-triggered adaptive dynamic programming for continuous-time systems with control constraints. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(8): 1941-1952 doi: 10.1109/TNNLS.2016.2586303
    [28] Zhang H G, Luo Y H, Liu D R. Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Transactions on Neural Networks, 2009, 20(9): 1490-1503 doi: 10.1109/TNN.2009.2027233
    [29] Jiang Z P, Wang Y. Input-to-state stability for discrete-time nonlinear systems. Automatica, 2001, 37(6): 857-869
    [30] Zhang Y W, Zhao B, Liu D R. Deterministic policy gradient adaptive dynamic programming for model-free optimal control. Neurocomputing, 2020, 387: 40–50 doi: 10.1016/j.neucom.2019.11.032
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1777
  • HTML全文浏览量:  212
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 录用日期:  2022-07-13
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2023-01-07

目录

    /

    返回文章
    返回