2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X射线工业CT成像过程复杂伪影抑制方法综述

杨富强 杨瑶 李志翔 黄魁东

李庆忠, 白文秀, 牛炯. 基于改进CycleGAN的水下图像颜色校正与增强. 自动化学报, 2023, 49(4): 820−829 doi: 10.16383/j.aas.c200510
引用本文: 杨富强, 杨瑶, 李志翔, 黄魁东. X射线工业CT成像过程复杂伪影抑制方法综述. 自动化学报, 2023, 49(4): 687−704 doi: 10.16383/j.aas.c220352
Li Qing-Zhong, Bai Wen-Xiu, Niu Jiong. Underwater image color correction and enhancement based on improved cycle-consistent generative adversarial networks. Acta Automatica Sinica, 2023, 49(4): 820−829 doi: 10.16383/j.aas.c200510
Citation: Yang Fu-Qiang, Yang Yao, Li Zhi-Xiang, Huang Kui-Dong. The review of complex artifact reduction methods for industrial X-ray imaging. Acta Automatica Sinica, 2023, 49(4): 687−704 doi: 10.16383/j.aas.c220352

X射线工业CT成像过程复杂伪影抑制方法综述

doi: 10.16383/j.aas.c220352
基金项目: 国家自然科学基金青年基金 (52005415), 国家科技重大专项(J2019-Ⅶ-0013-0153), 航空发动机及燃气轮机基础科学中心项目(P2022-B-IV-013-001), 中国航空发动机集团产学研合作项目(HFZL2022CXY024), 中央高校基本科研业务费专项资金 (HXGJXM202216)资助
详细信息
    作者简介:

    杨富强:西北工业大学航空发动机高性能制造工业和信息化部重点实验室副研究员. 主要研究方向为先进CT无损检测, CT智能装备和图像处理算法. E-mail: fqyang@nwpu.edu.cn

    杨瑶:西北工业大学航空发动机高性能制造工业和信息化部重点实验室硕士研究生. 主要研究方向为深度学习, 超分辨率成像. E-mail: yy2694102389@163.com

    李志翔:西北工业大学航空发动机高性能制造工业和信息化部重点实验室硕士研究生. 主要研究方向为模式识别, 图像分割. E-mail: 2020201497@mail.nwpu.edu.cn

    黄魁东:西北工业大学航空发动机高性能制造工业和信息化部重点实验室副教授. 主要研究方向为数字化检测与评估, CT智能装备和图像处理算法. 本文通信作者. E-mail: kdhuang@nwpu.edu.cn

Review of Complex Artifact Reduction Methods for Industrial Computerized Tomography Imaging

Funds: Supported by National Natural Science Foundation of China (52005415), National Science and Technology Major Project (J2019-Ⅶ-0013-0153), Science Center for Gas Turbine Project (P2022-B-IV-013-001), Industry-University-Research Cooperation Project of Aero Engine Corporation of China (HFZL2022CXY024), and Fundamental Research Funds for the Central Universities (HXGJXM202216)
More Information
    Author Bio:

    YANG Fu-Qiang Associate researcher at the Key Laboratory of High Performance Manufacturing for Aero Engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University. His research interest covers advanced CT nondestructive testing, CT intelligent equipment, and image processing

    YANG Yao Master student at the Key Laboratory of High Performance Manufacturing for Aero Engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University. Her research interest covers deep learning and super-resolution image reconstruction

    LI Zhi-Xiang Master student at the Key Laboratory of High Performance Manufacturing for Aero Engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University. His research interest covers pattern recognition and image segmentation

    HUANG Kui-Dong Associate professor at the Key Laboratory of High Performance Manufacturing for Aero Engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University. His research interest covers digital inspection and evaluation, CT intelligent equipment, and image processing. Corresponding author of this paper

  • 摘要: X射线工业计算机断层(Computerized tomography, CT)技术是一种先进的非接触式无损三维检测技术, 能在无损伤情况下以灰度图像的形式对物体内部结构进行全面、详细地分析, 在航空航天、工业生产、安检等领域发挥着重要的作用. 针对工业CT伪影严重降低图像质量问题, 对工业CT成像过程复杂伪影形成机理进行分析, 对不同类型伪影抑制方法进行归纳总结. 阐述了基于射线衰减、探测器及高密度差异、采样数据及重建等不同过程伪影成因及伪影消除相关算法的最新技术进展, 并对近年来人工智能深度学习背景下新兴的基于深度学习及神经网络的工业CT无损检测研究与发展方向进行了总结和展望.
  • 云资源的按使用付费模式以及弹性扩展能力, 为大规模科学应用的分布式管理与高效执行提供了快速、灵活、可扩展的部署环境[1-3]. 科学应用的分布式管理与高效执行的关键在于工作流调度, 而调度算法的设计、调度性能的优劣以及调度方案的可实施性, 直接取决于任务执行时间的估计精度[4-5].

    在实际云数据中心环境下, 大量、频繁的用户服务请求与响应, 使数据中心的运行数据规模呈指数级增长. 其中, 工作流执行日志数据包含了大量的任务执行时间历史及其相关影响因素数据, 并在数据驱动的任务执行时间预测中发挥着重要作用. 任务执行时间的影响因素数据, 可根据其特征划分为类别型数据和数值型数据. 类别型数据与任务和资源的多样性、异构性相关, 其数值离散且取值范围广, 如任务名称和机器ID等; 数值型数据则与云环境的动态特性相关, 其数值连续, 且在一定范围内波动, 如资源利用率和网络带宽等. 在大数据环境下, 类别型数据的高维稀疏特性会扩大模型的搜索空间, 数值型数据的低维稠密特性会降低部分特征之间的差异性, 从而加大了模型寻优和学习的难度, 给任务执行时间预测带来了巨大挑战[6].

    本文提出了一种基于多维度特征融合(Multi-dimensional feature fusion, MDFF)的云工作流任务执行时间预测算法. 针对类别型数据和数值型数据的特点, 设计不同的特征提取方法, 分别提取类别型和数值型特征. 同时, 通过将提取的特征和原始数据特征进行有选择地融合, 并采用轻量梯度提升机算法对融合特征进行挖掘与利用, 实现云工作流任务执行时间的精准预测.

    本文的主要贡献如下:

    1)构建具有注意力机制的堆叠残差循环网络, 将类别型数据从高维稀疏空间映射到低维稠密空间, 通过减小搜索空间, 提升模型对类别型数据的解析能力, 同时增强模型对类别型特征的关注度, 以有效提取类别型特征, 提高预测精度.

    2)引入极限梯度提升算法, 对数值型数据进行离散化编码, 通过将过于稠密的数值型数据稀疏化, 突出特征之间的差异性, 避免模型训练陷入局部最优的可能, 提升模型的非线性信息表达能力, 有效提取数值型特征, 改善预测精度.

    3)设计多维异质特征融合策略, 将具有注意力机制的堆叠残差循环网络提取的类别型特征、极限梯度提升(Extreme gradient boosting, XGB)模型提取的数值型特征与原始样本数据进行选择性融合, 以充分挖掘与利用任务执行时间的多维度特征, 学习更全面的任务执行时间知识, 降低预测误差.

    传统的云计算任务执行时间估计方法, 大多基于微分测量[7]、相似性分析[8-9]以及数学表达式[10-11]等统计学习算法, 忽略了云资源的动态变化以及云环境的复杂特性, 难以实现任务执行时间的准确估计. 随着机器学习的不断发展, 数据驱动的执行时间预测方法被广泛应用于各种云应用场景. 近年来, 研究人员一直在探索如何将各种机器学习算法(如传统机器学习、深度学习与集成学习算法)应用于云计算任务执行时间预测, 以从海量、异构、复杂和多维的工作流任务执行数据中挖掘出更有效的信息.

    基于传统机器学习的云工作流任务执行时间预测, 大多采用多元线性回归、支持向量回归等早期机器学习算法. Nouri等[12]和Tahvili等[13]建立了任务执行时间及其影响因素的多元回归模型, 实现任务执行时间的估计. 可是, 多元线性回归模型更适合捕捉线性关系, 难以学习工作流任务执行时间及其影响因素之间的非线性关系. Park等[14]与郑婷婷等[15]利用支持向量回归, 进行任务执行时间预测. 但是, 支持向量回归采用二次规划计算支持向量, 导致很大的内存和时间开销, 特别是在大数据样本时, 其模型训练时间过长.

    深度学习具有超强的特征映射能力, 能够从海量数据中学习并挖掘数据之间的非线性关系, 为数据驱动的任务执行时间预测提供了新思路[16-17]. 伍章俊等[18]和Nadeem等[19]采用径向基函数(Radial basis function, RBF)神经网络, 构建了云工作流活动执行时间预测模型. 但是, RBF网络是一种单隐含层的前馈网络, 难以有效学习序列数据驱动的任务执行时间变化趋势相关的知识, 不适用于云环境下的任务执行时间预测. 因此, Rehse等[20]引入循环神经网络(Recurrent neural network, RNN), 通过捕捉任务执行时间的变化趋势来进行任务运行时间预测. Zhu等[21]提出了基于长短时记忆网络(Long short-term memory, LSTM)的预测方法, 解决RNN因梯度爆炸/消失而引起的预测精度降低问题. Bi等[22]选择Savitzky-Golay滤波器, 滤除原始数据序列的极值点和噪声干扰, 并利用LSTM进行任务执行时间预测.

    神经网络(Neural network, NN)强大的非线性拟合能力和大数据学习能力, 使基于深度学习的任务执行时间预测效果得到了明显改善, 但是, NN固有的层级连接结构和大量神经元计算, 不仅使优化超平面变得十分复杂, 也大大增加了模型寻优的难度, 从而影响预测精度. 此外, 这些研究工作大多基于单一机器学习算法, 即使特征空间包含非常有效的信息, 但是单一模型有限的学习能力, 很难找到最优解, 直接影响预测精度[23].

    集成学习可以综合相同/不同模型的学习能力, 为云计算任务执行时间预测开辟了新的途径. 一些学者将多个单一模型有机结合, 通过不同模型的优势互补来增强集成模型的学习能力, 并减少预测误差. 郑顾平等[24]综合线性、非线性和多项式回归等拟合技术, 搭建了基于参数变化的云应用程序执行时间预估模型. 类似地, 李帅标等[25]将朴素贝叶斯、支持向量回归和LSTM有机结合, 通过Stacking策略进行模型融合, 提出了一种业务过程剩余时间预测算法. Nadeem等[26]通过集成局部学习和进化计算, 实现了对e-Science工作流执行时间的预测. Hilman等[27]基于LSTM和K最近邻技术, 设计了在线增量学习方法, 用于工作流任务运行时间预测. Gao等[28]采用基于受限玻尔兹曼机(Restricted Boltzmann machine, RBM)堆叠的深度置信网络(Deep belief network, DBN), 建立了并发请求云服务响应时间与虚拟机资源之间的映射模型. Pham等[29]提出了基于随机森林(Random forest, RF)的两阶段预测算法, 实现对云工作流任务执行时间的估计. 实践证明, 在大多数情况下, 集成方法的预测精度优于单一机器学习算法. 因此, 本文利用集成学习方法解决大数据驱动的云工作流任务执行时间预测问题.

    集成学习在大数据驱动的云计算任务执行时间预测方面取得了一定效果, 但它们大多基于仿真数据, 且仿真环境难以模拟云环境下资源的动态接入、撤离以及网络的不稳定性. 因此, 仿真数据给出的离散型或者连续型任务执行时间的影响因素数据, 其取值都在一定范围内, 使得类别型数据和数值型数据难以区分. 也就是说, 仿真数据与实际云数据中心环境下的工作流执行日志数据存在很大差异. 然而, 现有采用仿真数据的集成学习方法往往忽略了这种差异性, 在对类别型和数值型数据进行相似处理的基础上, 进行云计算任务执行时间预测. 现有的集成学习方法存在以下问题: 1)对类别型数据的解析能力不足, 即类别型数据的高维稀疏特性使搜索空间过大, 模型很难找到最优解, 从而影响预测精度; 2)缺乏足够的非线性表达能力, 且模型学习困难、易于陷入局部最优, 难以应对数值型数据的低维稠密特性所带来的特征差异性降低问题, 影响预测效果; 3)直接对提取到的特征进行学习, 导致学习效率低甚至学到无效或错误信息, 影响预测结果的准确性.

    本节介绍本文算法涉及的主要理论基础, 即XGB算法[30]和轻量梯度提升机(Light gradient boosting machine, LGBM)算法[31].

    作为梯度提升机(Gradient boosting machine, GBM)的一种高效实现, XGB利用梯度提升技术, 通过迭代生成残差下降的决策树(即基学习器), 将低精度的基学习器组合成一个较高精度的强学习器, 并利用正则化和二阶泰勒展开防止过拟合, 提高了模型的泛化能力. 因此, XGB模型能获得较好且不同的特征表达, 适合处理取值范围固定、数值连续的数值型数据.

    数据集$D = \{ ({X_i},{Y_i})\} $含有n个样本和m个特征, 其中${X_i}$为第i个样本的输入向量, ${Y_i}$${X_i}$对应的输出, ${Y_i} \in {{\bf{R}}}$, $i = 1,2, \cdots ,n$. 假设XGB模型由K棵树集成, 其预测函数如下:

    $${\hat Y_i} = \varphi ({X_i}) = \sum\limits_{k = 1}^K {{f_k}({X_i})} ,\;\;\;{f_k} \in F$$ (1)

    式中, $F =\{ {f(X) = {\omega _{q(X)}}} \}\;( q:\,{{\bf{R}}^m} \to \{1,2,\cdots,T\},$ $\omega \in {{\bf{R}}^T})$为一组回归树, ${\hat Y_i}$为样本$X_i $的预测值, q表示每棵树的结构, $\omega $表示叶子权重, T为叶子节点的数量, ${f_k}$对应第k棵树的结构和叶子权重, $f _k(X_i) $为第k棵树对样本$X_i $的预测分数. 目标函数可定义为:

    $$L(\varphi ) = \sum\limits_{i = 1}^n {l({{\hat Y}_i},{Y_i})} + \sum\limits_{k = 1}^K {\Omega ({f_k})} $$ (2)

    式中, l为可导凸函数, 表示预测值${\hat Y_i}$和真实值${Y_i}$的差异. $ \Omega ( \cdot )$是正则化惩罚项, 用以避免树的结构过于复杂、平滑学习权重并缓解过拟合.

    在XGB模型迭代添加树的过程中, 第t次的目标函数可表示为:

    $${L^t} = \sum\limits_{i = 1}^n {l\left( {{Y_i},\;{{\hat Y}_i}^{t - 1} + {f_t}({X_i})} \right)} + \Omega ({f_t})$$ (3)

    式中, $\hat Y_i^{t - 1}$为第t−1次迭代时第i个样本的预测值. 对式(3)进行二阶泰勒级数展开并去掉常数项, 可得:

    $${L^t} \simeq \sum\limits_{i = 1}^n {\left[ {{g_i}{f_t}(X{}_i) + \frac{1}{2}{h_i}{f_t}^2(X{}_i)} \right]} + \Omega ({f_t})$$ (4)

    式中, $\Omega ({f_t}) \;=\; \gamma T \;+\; ({1}/{2})\lambda \sum\nolimits_{j = 1}^T {\omega _j^2},$ ${f_t}(X{}_i) = {\omega _{{q_t}({X_i})}},$$\gamma $$\lambda$为自然系数, ${g_i} = {\partial _{{{\hat Y}_i^{t - 1}}}}l( {{Y_i},{{\hat Y}_i^{t - 1}}} )$${h_i} = \partial _{{{\hat Y}_i^{t - 1}}}^2l( {{Y_i},{{\hat Y}_i^{t - 1}}} )$分别为损失函数的一阶和二阶泰勒展开. 定义${I_j} = \left\{ {i|q({X_i}) = j} \right\}$为叶子节点j上样本的集合, 对于一个固定的结构$q\left( X \right)$, 可按式(5)和(6)计算最优权重$\omega _j^ * $和最优目标函数值${L^ * }$:

    $$\omega _j^ * = - \frac{{\sum\limits_{i \in {I_j}} {{g_i}} }}{{\sum\limits_{i \in {I_j}} {{h_i}} + \lambda }}$$ (5)
    $${L^*} = - \frac{1}{2}\sum\limits_{j = 1}^T {\frac{{{{\bigg( {\sum\limits_{i \in {I_j}} {{g_i}} } \bigg)}^2}}}{{\sum\limits_{i \in {I_j}} {{h_i}} + \lambda }}} + \gamma T$$ (6)

    LGBM基于单边梯度采样(Gradient-based one-side sampling, GOSS)和互斥特征捆绑技术(Exclusive feature bundling, EFB), 能够在不损失预测精度的情况下加速梯度提升过程, 提高模型训练效率. 因此, 相比于XGB模型, LGBM模型易于扩展、训练效率高, 更适合处理特征维度高、数据量大的数据, 满足云工作流任务执行时间预测问题的需求.

    作为一种在保证精度的前提下能减少数据量的算法, GOSS在决策树迭代生成过程中根据梯度绝对值对数据进行排序, 选取前$a \%$个样本, 并在剩余的样本数据中随机采样b个样本. 在计算信息增益时, 通过对采样的小梯度数据乘以系数(1−a)/b, 来缓解甚至消除数据分布的影响, 使算法更加关注训练不足的实例. 在分割点d分割特征j的信息增益的计算如式(7)所示:

    $$\begin{split} {{\hat V}_j}(d) = \;& \frac{1}{I}\left[ \frac{{{{\left( {\sum\limits_{{X_i} \in {A_l}} {{\vartheta _i}} + \frac{{1 - a}}{b}\sum\limits_{{X_i} \in {B_l}} {{\vartheta _i}} } \right)}^2}}}{{I_l^j(d)}} +\right.\\ &\left. \frac{{{{\left( {\sum\limits_{{X_i} \in {A_r}} {{\vartheta _i}} + \frac{{1 - a}}{b}\sum\limits_{{X_i} \in {B_r}} {{\vartheta _i}} } \right)}^2}}}{{I_r^j(d)}} \right] \end{split} $$ (7)

    式中, I$ I_l^j\left( d \right) $$I_r^j\left( d \right) $分别为叶子节点d及其左右两个子节点上的样本个数; ${A_l}$${A_r}$分别为d的左、右两个子节点上的大梯度样本集合; ${B_l}$${B_r}$分别为d的左、右两个子节点上的小梯度样本集合; ${\vartheta _i}$为第i个样本${X_i}$的梯度.

    通过将互斥的特征绑定为单一特征, EFB从捆绑的特征中构建直方图, 达到了在不损失精度的情况进行特征降维的目的. 首先, EFB计算并判断特征之间的互斥程度, 若两个特征之间的互斥程度之和小于设定的阈值, 则绑定它们的特征, 减少参与训练的特征数, 提高模型训练效率. 其中, 两个特征是否互斥及其互斥程度, 可按式(8)和式(9)进行判断:

    $$ {E}_{i}^{u,v}=\left\{\begin{aligned} &0,\;\;\;{X}_{i}^{u}\ne 0\;{\text{且}\;}{X}_{i}^{v}\ne 0\\ &1,\;\;\;{\text{其他}} \end{aligned}\right.$$ (8)
    $$\sum\limits_{i = 1}^n {E_i^{u,v}} \leq E$$ (9)

    式中, $X_i^u$$X_i^v$分别为样本i的第u和第v个特征的数值, E为判断两个特征互斥程度的阈值.

    现有的任务执行时间预测算法缺乏有效的非线性表达能力和高维稀疏数据解析能力, 导致任务执行时间预测精度低, 难以满足大数据环境下的云工作流任务执行时间预测要求. 为此, 本文提出了一种基于多维度特征融合的云工作流任务执行时间预测算法. 首先, 针对类别型数据${x_{Ca}}$和数值型数据${x_{Nu}}$, 设计异质特征提取器, 实现对类别型特征${\tilde x_{Ca}}$和数值型特征${\tilde x_{Nu}}$的有效提取. 其次, 有选择地融合原始数据特征和提取到的特征, 为预测模型提供更全面、更深层的融合知识. 最后, 基于融合特征数据${\tilde x_{Fu}}$构建预测模型, 实现对云工作流任务执行时间的精准预测. 本文基于多维度特征融合的云工作流任务执行时间预测模型如图1所示, 主要包括特征提取、特征融合和预测3个部分.

    图 1  基于多维度特征融合的云工作流任务执行时间预测模型
    Fig. 1  The multi-dimensional feature fusion-based runtime prediction model for cloud workflow tasks

    基于神经网络的预测任务, 通常包括特征提取和预测两个步骤. 为充分挖掘类别型数据相关的知识, 本文MDFF算法采用具有注意力机制的堆叠残差循环网络(Stacked attention residual recurrent neural network, SARR)提取类别型特征. 在RNN网络的基础上, 通过引入注意力机制和添加残差连接, 构建堆叠残差循环网络, 设计基于SARR的类别型特征提取器.

    SARR包括Embedding模块、门控循环单元(Gate recurrent unit, GRU)模块和LSTM模块三个部分, 如图2所示. 图2中, Embedding模块包含基于RNN的Embedding单元; GRU模块包括GRU单元、Attention单元以及残差连接; LSTM模块包含LSTM单元、Attention单元以及残差连接.

    图 2  基于SARR的类别型特征提取器
    Fig. 2  The SARR-based Categorical feature extractor

    图2所示, 样本影响因素数据中的类别型向量${x_{Ca}}$, ${x_{Ca}} \in {{\bf{R}}^{1 \times {N_{Ca}}}}$, 依次经过SARR的Embedding模块、GRU模块和LSTM模块处理, 最终提取到相应的类别型特征向量$\tilde x_{Ca}$, ${\tilde x_{Ca}} \in {{\bf{R}}^{1 \times {N_{SARR}}}}$. 图2中, LSTM模块输出的特征向量即为SARR提取到的类别型特征. 在SARR模型中, Embedding 模 块、GRU模块和LSTM模块的计算过程分别如式(10) ~ (12)所示:

    $$ y_{E}=W_{e} x_{C a}+b_{e} $$ (10)
    $$ y_{G R U}=W_{g r u} y_{E}+b_{g r u} $$ (11)
    $$ \tilde{x}_{C a}=y_{L S T M}=W_{l s t m} y_{G R U}+b_{l s t m} $$ (12)

    式中, $y_{E} $$ y_{G R U}$$y_{L S T M} $分别为Embedding模块、GRU模块和LSTM模块的输出向量, $W_e $$b_e $$W_{g r u} $$b_{g r u} $$W_{l s t m} $$b_{l s t m} $分别为Embedding模块、GRU模块和LSTM模块的线性权值矩阵和偏差.

    SARR在不增加网络层数的情况下, 解决了梯度消失可能引起的网络退化问题, 能够提取与任务执行时间显著相关的特征, 并通过为最终的预测器提供更有效的特征, 改善预测精度.

    基于梯度提升机的预测方法, 通常包括特征提取和预测两个步骤. 为充分挖掘数值型数据相关的知识, 本文设计了基于XGB的数值型特征提取器, 如图3所示. 其中, 从每一个XGB基学习器的根节点到叶子节点所进行的运算为特征提取过程, 从所有基学习器的叶子节点到输出节点的计算属于预测过程.

    图 3  基于XGB的数值型特征提取器
    Fig. 3  The XGB-based Numerical feature extractor

    图3所示, 本文利用XGB提取样本影响因素数据中数值型向量$ x_{Nu} $对应的特征向量$\tilde x_{Nu} $, 其中${x_{Nu}} \in {{\bf{R}}^{1 \times {N_{Nu}}}}$, ${\tilde x_{Nu}} \in {{\bf{R}}^{1 \times {N_{XGB}}}}$. 首先, 计算$ x_{Nu}$在每棵树的每个叶子节点上分裂后的损失减少值$L_{split} $, 根据该损失减少值判断是否需继续分裂, 并最终确定XGB模型中每棵树的结构. 其中, 分裂损失的计算公式如下:

    $$ {L_{{{split }}}} = \frac{1}{2}\left| {\frac{{G_L^2}}{{{H_L} + \lambda }} + \frac{{G_R^2}}{{{H_R} + \lambda }} - \frac{{G_j^2}}{{{H_j} + \lambda }}} \right| - \gamma $$ (13)

    式中, $G_j $$H_j$分别为在叶子$j $上所有数值型数据集合$I_j $的损失函数的一阶、二阶梯度统计量之和; ${G_L} = \sum\nolimits_{i \in {I_L}} {{g_i}} $$ {H_L} = \sum\nolimits_{i \in {I_L}} {{h_i}} $${G_R} = \sum\nolimits_{i \in {I_R}} {{g_i}} $${H_R} = \sum\nolimits_{i \in {I_R}} {{h_i}} $分别为叶子节点j分裂后的左、右叶子节点的一阶、二阶梯度统计量之和; $I_R $$I_L $分别为当前叶子节点分裂后的左、右叶子节点上的数值型数据集合, $\gamma $为常数.

    然后, 通过树的结构函数$q\left( \cdot \right) $寻找每个数值型向量在每棵树的每个分支最深一层中所属叶子的下标, 并标记为1, 对每个数值型向量进行离散化编码. 结构函数$q\left( \cdot \right) $如式(14)所示:

    $${q_k}\left( {{x_{Nu}}} \right):\;{\bf R}^{{N_{Nu}}} \to {T_k}$$ (14)

    式中, $T_k $为第k棵树的叶子节点数量. 利用XGB对数值型向量进行离散化编码后获得的新向量, 即为数值型特征向量${\tilde x_{Nu}} $.

    在提取的类别型特征和数值型特征基础上, 本文进一步提出了多维异质特征融合策略, 旨在同时收集低维和高维特征信息之间的交互信息, 使预测模型学习到更全面且有效的任务执行时间知识, 降低预测误差.

    本文提出的多维异质特征融合策略, 包含特征拼接、特征重要性计算、特征排序和筛选几个步骤. 首先, 将SARR与XGB模型提取到的特征向量与原始输入向量进行拼接, 得到一个式(15)所示的新输入向量${x_{fu1}}$, 且${x_{fu1}} \in {{\bf{R}}^{1 \times ({N_{Ca}} + {N_{Nu}} + {N_{SARR}} + {N_{XGB}})}}$:

    $${x_{fu1}} = \left( {{x_{Ca}},\;{x_{Nu}},\;{{\tilde x}_{Ca}},\;{{\tilde x}_{Nu}}} \right)$$ (15)

    然后, 利用${x_{fu1}}$训练LGBM模型, 用于计算不同特征的重要性, 并按重要性对特征进行排序:

    $$ {f_{imp}}\left( {{x_i}} \right) = {\rm{rank}}\left( {{N_{split}}\left( {{x_i}} \right)} \right),{x_i} \in {x_{fu1}} $$ (16)

    式中, $x_i $为拼接向量$x_{fu1} $中的第i维特征, ${f_{imp}}\left( \cdot \right) $为特征重要性计算与排序函数, ${N_{split}}\left( {{x_i}} \right)$为整个特征重要性排序模型生成过程中${x_i}$被选取为分裂节点的次数. 最后, 从排序表中筛选出更具判别力的特征, 构成用于任务执行时间预测的多维度融合输入特征向量${\tilde x_{Fu}} $:

    $$ {\tilde x_{Fu}} = \left(x_i | {{f_{imp}}\left( {{x_i}} \right) \ge {\rm{ }}threshold{\rm{ }}} ,\;{x_i} \in {x_{fu1}}\right) $$ (17)

    式中, $threshold $为特征筛选阈值, 且${x_i}$被选为分裂点的次数越多, 说明${x_i}$对预测结果的贡献越大.

    多维度融合特征$ {\tilde x_{Fu}}$舍弃了部分信息含量少或者与输出关联性弱的特征, 在保证预测精度的同时降低了特征空间的维度, 进一步减少了预测所需的计算开销.

    在获得多维异质融合特征的基础上, 本文采用LGBM模型对多维异质特征进行充分挖掘与利用, 以精准地预测任务执行时间, 为大数据环境下的云工作流调度提供决策支持.

    本文基于多维度特征融合的云工作流任务执行时间预测方法, 包括3个部分: 1)针对类别型数据和数值型数据, 设计不同的特征提取方法, 分别提取类别型和数值型特征; 2)将提取到的特征数据与原始数据进行选择性融合, 为预测模型提供更全面的特征输入; 3)构建基于融合特征的预测模型, 获得云工作流任务执行时间预测结果. 整体流程如下:

    步骤1. 输入云工作流任务执行时间数据集$D = \{ ({X_i},{Y_i})\} $, 其中, ${X_i}$为第i个样本的任务执行时间影响因素向量; ${Y_i}$为第i个样本的任务执行时间.

    步骤2. 将一个输入数据向量${X_i}$划分为类别型数据向量$x_{Ca} $和数值型数据向量$x_{Nu} $, 即${X_i} = \{ {x_{Ca}}, {x_{Nu}}\}$.

    步骤3. 利用类别型数据向量$ x_{Ca}$, 训练SARR模型, 不断调整参数, 直至获得误差最小的SARR模型.

    步骤4. 对训练好的SARR模型, 去掉其输出层以及输出层的所有连接参数, 得到类别型特征提取器, 并对$x_{Ca} $进行特征提取, 获得类别型特征向量${\tilde x_{Ca}}$.

    步骤5. 利用数值型数据向量$x_{Nu} $, 训练XGB模型, 并对$x_{Nu} $进行特征提取, 获得初始数值型特征向量${\tilde x_{Nu\_1}}$.

    步骤6. 利用类别型特征向量${\tilde x_{Ca}}$和初始数值型特征向量${\tilde x_{Nu\_1}} $, 训练LGBM评判模型.

    步骤7. 调整XGB模型参数, 重复步骤5 ~ 6, 直至LGBM评判模型的误差稳定在一定范围内, 且波动不超过5%; 挑选出使LGBM评判模型误差最小的XGB模型参数, 并基于该组参数训练XGB模型.

    步骤8. 对训练好的XGB模型, 去掉其输出层以及输出层的所有连接参数, 获得数值型特征提取器, 并对$x_{Nu} $进行特征提取, 获得最终数值型特征向量$\tilde x_{Nu} $.

    步骤9. 构建多维异质特征融合器, 将类别型数据向量$ x_{Ca}$、数值型数据向量$x_{Nu} $、类别型特征向量${\tilde x_{Ca}}$和数值型特征向量$\tilde x_{Nu} $进行融合, 获得融合后的特征向量$\tilde x_{Fu}$.

    步骤10. 基于融合特征向量$ \tilde x_{Fu}$, 利用网格寻优算法训练LGBM预测模型, 直至获得误差最小的LGBM模型, 并将其作为预测器.

    步骤11. 取出类别型特征提取器、数值型特征提取器、多维异质特征融合器和预测器, 构建基于多维度特征融合的云工作流任务执行时间预测模型.

    步骤12. 输出云工作流任务执行时间预测模型.

    为了验证所提出的基于多维度特征融合的云工作流任务执行时间预测模型的有效性, 本文选择2018年阿里巴巴集群数据集行进行仿真实验, 通过在不同指标下与6种基线预测方法进行对比说明本文方法的优越性.

    4.1.1   数据集

    本文实验数据来源于阿里巴巴2018年集群运行日志数据集Cluster-trace-v2018[32]. Cluster-trace-v2018记录了阿里巴巴某个生产集群中约4000台服务器8天的运行详细日志, 具体可查阅https://github.com/alibaba/clusterdata/blob/master/Cluster-trace-v2018.

    在进行云工作流任务执行时间预测前, 本文对Cluster-trace-v2018数据集进行了预处理. 首先, 分析Cluster-trace-v2018数据集, 寻找任务执行时间相关的关键属性, 并根据这些关键属性匹配不同数据表中的数据, 获得包含任务执行时间和相关影响因素的数据集. 其次, 对该数据集存在的异常值和缺失值进行处理, 获得包含22155组云工作流任务的执行时间及其对应的所有影响因素数据, 即最终可用于检验算法的云工作流任务执行时间数据集. 最后, 在获取的数据集上随机抽取17724组数据构成训练集, 将剩余的4431组数据作为测试集.

    4.1.2   对比算法

    为了验证MDFF的有效性和优越性, 本文选取了六种对比算法, 包括深度兴趣网络(Deep interest network, DIN)[33]、深度交叉网络(Deep & cross network, DCN)[34]、深度因子分解机(Deep factorization machine, DeepFM)[35]、宽度与深度模型(Wide & Deep, W&D)[36]、两阶段预测方法(Two stage approach, TSA)[37]和梯度提升树与线性回归的结合方法(Gradient boosting decision tr-ee + linear regression, GBDT$+ $LR)[38]. 其中, DI-N和DCN侧重于类别型数据的处理, 其数值型特征提取能力弱; TSA以及GBDT$+ $LR偏向于数值型数据的处理, 类别型特征的提取能力弱; DeepFM和W&D能同时提取类别型特征和数值型特征. 所有方法采用的参数组合均为使预测效果最好的参数组合, 其具体模型结构或参数设置如下:

    在DIN中, 嵌入单元1和2的维度分别为82和80, Dense单元的神经元个数为16, 隐含神经元个数为32, 激活函数为Relu, 输出层神经元个数为1, 激活函数为Relu; 最大迭代次数为500, 批量大小为100, 优化器为Adam.

    DCN的嵌入维度为8, 网络的随机失活(Dropout)比例均为0.5, 隐含层的神经元个数为64-64, 领域维度设为原始特征维度, 交叉宽度设为领域维度与嵌入维度的乘积; 最大迭代次数为450, 批量大小为100, 批量标准化因子为1, 批量标准化衰减因子为0.95, 学习率为0.01, L2正则化系数为0.01, 优化器为Adam.

    DeepFM的嵌入维度为80, 其因子分解机和网络的随机失活(Dropout)比例分别为1和0.5, 网络部分的神经元个数为32-32, 激活函数为Relu; 最大迭代次数为500, 批量大小为100, 批量标准化因子为1, 批量标准化衰减因子为0.995, 学习率为0.01, L2正则化系数为0.01, 优化器为Adam.

    在W&D中, Wide部分采用线性回归方法, 并选用默认参数. Deep部分采用含两个隐含层的神经网络, 其结构为325-100-50-1, 网络部分神经元个数为32-32, 激活函数为Relu. 最大迭代次数为500, 批量大小为100, 优化器为Adam.

    在TSA中, 第1阶段预测采用随机森林, 基学习器数量为200, 最大树深度为7; 第2阶段采用线性回归, 且选用默认参数.

    在GBDT$+ $LR中, GBDT部分的基学习器数量为150, LR部分采用线性回归, 且选取默认参数.

    在MDFF中, 类别型特征提取模型SARR的嵌入单元1和2的维度分别为82和80, Dense单元神经元个数为16, GRU单元和LSTM单元的神经元个数均为32, 最大迭代次数为400, 批量大小为100, 随机失活(Dropout)比例为0.15, 激活函数为Relu, 优化器为Adam. 数值型特征提取模型XGB的基学习器数量为30, 学习率为0.15, 最大树深度为8, 列采样比例为0.4. 任务执行时间预测模型LGBM的学习率为0.15, 基学习器数量为1000, 最大树深度为9, 最多叶子结点个数为31, 列采样比例为0.4.

    4.1.3   评价指标

    为了检验本文MDFF算法的预测精度, 本文选取了平均绝对误差(Mean absolute error, MAE)、均方根误差(Root mean square error, RMSE)、均方根对数误差(Root mean square log error, RMS-LE)和决定系数(R square, R2)四种评价指标[39-40], 并在这些评价指标的基础上, 设计了预测精度差值$\delta $和预测精度改善比例$\eta $两个指标, 分别用于反映MDFF算法的预测精度提升的数值大小以及提升程度.

    1) MAE表示目标真实值和预测值之差的平均绝对值, 用于度量两个变量之间的差异. MAE具有较强的可解释性和鲁棒性, 且MAE的值越小, 说明预测模型的性能越好. MAE的具体计算如式(18)所示:

    $$MAE = \frac{1}{n}\sum\limits_{i = 1}^n {|{Y_i} - {{\hat Y}_i}} |$$ (18)

    式中, n为样本数量, ${Y_i}$${\hat Y_i}$分别为第i个样本的真实值和预测值.

    2) RMSE表示目标真实值和预测值的样本标准差, 用于度量模型的预测误差大小. RMSE与数值范围紧密相关, 相对于MAE来说, RMSE对数值预测的错误更加敏感, 但鲁棒性较弱. RMSE的值越小, 说明预测模型的性能越好. 计算公式如下:

    $$RMSE = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {({Y_i} - {{\hat Y}_i}} {)^2}} $$ (19)

    3) RMSLE. 鉴于RMSE容易被数值较大的样本所主导, RMSLE在RMSE的基础上增加了取对数操作, 以便在保持RMSE敏感性的基础上, 对模型进行公平地评价. RMSLE的值越小, 说明预测模型的性能越好. 计算公式如下:

    $$RMSLE = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {{{\left[ {\lg ({Y_i} + 1) - \lg ({{\hat Y}_i} + 1)} \right]}^2}} } $$ (20)

    4) R2通过数据的变化来表征一个预测算法的拟合程度. R2的值越大, 说明预测模型的性能越好. 计算公式如下:

    $$R2 = 1 - \frac{{\sum\limits_{i = 1}^n {({Y_i} - {{\hat Y}_i}} {)^2}}}{{\sum\limits_{i = 1}^n {({Y_i} - \bar Y} {)^2}}}$$ (21)

    式中, $\bar Y$为所有样本真实值的平均值. $\sum\nolimits_{i = 1}^n {{{( {{Y_i} - \bar Y} )}^2}}$表示原始数据的离散程度, $\sum\nolimits_{i = 1}^n {{{( {{Y_i} - {{\hat Y}_i}} )}^2}}$反映预测数据与真实数据的误差. R2越接近1, 说明模型对输出的解释能力越强, 即对数据的拟合性能越好; 反之亦然.

    5)预测精度差值$\delta $用于表示本文MDFF算法预测精度提升的数值大小. 计算公式如下:

    $$ {\delta }_{i}^{j}=\left\{\begin{aligned} &{e}_{MDFF}^{j}-{e}_{i}^{j},\;\;j=R2 \\ &{e}_{i}^{j}-{e}_{MDFF}^{j},\;\;{\text{其他}} \end{aligned}\right.$$ (22)

    式中, ${\delta }_{i}^{j} $为MDFF算法与第$i $个对比算法在评价指标$j $下的预测精度差值, 且j$ \in ${MAE, RMSE, RMSLE, R2}; i为不同的对比算法, 即i$ \in ${DIN, DCN, DeepFM, W&D, TSA, GBDT+LR}. ${e}_{i}^{j} $为第i个对比算法在评价指标j下的数值, ${e}_{MDFF}^{j} $为MDFF在评价指标$j $下的数值. $\delta _i^j$越大, 说明在第j个评价指标下, 本文MDFF算法与第i个对比算法预测精度的差值越大, 即MDFF算法对预测性能的改善越多.

    6)预测精度提升比例$\eta $表示MDFF算法的预测精度改善程度. 计算公式如下:

    $$ {\eta }_{i}^{j}=\left\{\begin{aligned} &\frac{{e}_{MDFF}^{j}-{e}_{i}^{j}}{{e}_{i}^{j}},\;\;\;j=R2\\ &\frac{{e}_{i}^{j}-{e}_{MDFF}^{j}}{{e}_{i}^{j}},\;\;\;{\text{其他}}\end{aligned}\right.$$ (23)

    式中, ${\eta }_{i}^{j} $为MDFF比第$i $个对比算法在评价指标$j $下的预测精度改善程度. ${\eta }_{i}^{j} $越大, 说明在第j个评价指标下, 本文MDFF算法比第i个对比算法预测精度的提升比例越高.

    为了避免随机性, 本文采用10次实验结果的平均值进行性能比较. 针对不同的评价指标, 分别计算所有方法的MAE、RMSE、RMSLE和R2值, 如图4 ~ 7所示. 由图4 ~ 图6可知, 本文MDFF算法的MAE、RMSE、RMSLE值达到了最小, 说明其预测结果的平均绝对误差和均方根误差更小, 且对大数值样本的偏向性最小. 由图7可知, M-DFF的R2值最大, 说明该算法的拟合程度最好.

    图 4  不同方法的MAE
    Fig. 4  MAE comparisons among different methods
    图 6  不同方法的RMSLE
    Fig. 6  RMSLE comparisons among different methods
    图 7  不同方法的R2
    Fig. 7  R2 comparisons among different methods

    图4 ~ 7结果, 可以得出以下结论:

    1)由于DIN、DCN、TSA和GBDT$+ $LR要么侧重提取类别型特征, 要么侧重提取数值型特征, 而忽略另外一类特征, 使模型很难获得全面的特征知识. 因此, 其模型对特征的非线性表达能力和解析能力不足. 在本文提出的MDFF算法中, 针对类别型数据和数值型数据的特点, 分别设计不同的特征提取器, 有效地从原始数据中提取类别型特征和数值型特征, 挖掘更全面的任务执行时间知识, 提高了工作流任务执行时间的预测精度. 在上述四类评价指标下, MDFF算法的预测性能均优于四类对比算法, 即DIN、DCN、TSA和GBDT$+ $LR.

    值得注意的是, 注意力机制的引入, 使得DIN的RMSE和R2仅次于MDFF, 预测误差波动相对较小且获得了较好的拟合效果. 这也说明了本文采用具有注意力机制的SARR模型, 在提取类别型特征方面的有效性. 由于梯度提升算法对数值型数据进行了离散化编码, 所以GBDT$+ $LR的RMSE和R2值仅次于DIN, 且预测误差较小, 达到了较好的拟合效果, 这说明本文设计的基于XGB的特征提取算法, 能够有效地提取数值型特征.

    图 5  不同方法的RMSE
    Fig. 5  RMSE comparisons among different methods

    2)虽然DeepFM和W&D算法能同时提取类别型特征和数值型特征, 但是与本文MDFF算法相比, 其预测结果相对较差. 主要原因如下: a)本文提出的MDFF算法, 通过具有堆叠循环网络结构、注意力机制和残差连接的SARR模型, 将类别型数据从高维稀疏的特征空间映射到低维稠密的特征空间, 提高了模型对类别型特征的关注度. 因此, 与DeepFM和W&D采用DNN进行类别型特征提取相比, MDFF算法能够更有效地提取类别型特征; b) DeepFM和W&D分别采用因子分解机和线性回归模型提取数值型特征, 而本文MDFF算法利用XGB对数值型数据进行离散化编码, 通过对过于稠密的输入向量空间进行稀疏化处理, 提高了特征之间的差异性, 从而能更有效地提取数值型特征. 此外, 通过异质多维度特征融合策略, 本文MDFF算法能够有效避免因直接使用类别型特征和数值型特征而引入冗余信息或者噪声的可能性. 总的来说, SARR和XGB的使用, 使得MDFF具有更强的提取类别型和数值型特征的能力, 结合多维异质特征融合策略, MDFF不仅能够提取有效的深层特征, 还能学习更全面的任务执行时间知识, 使预测性能得到了明显改善.

    为了进一步说明本文提出的MDFF算法与对比算法在不同指标上的精度提升程度, 表1表2给出了MDFF与其他对比算法在四种性能指标下的差值和性能提升比例.

    表 1  预测精度的差值
    Table 1  The difference of prediction performance
    i$ \delta _i^{MAE}$$\delta _i^{RMSE} $$ \delta _i^{RMSLE}$$\delta _i^{R2} $
    DIN1.4391.8250.6790.006
    DCN0.2864.0430.0480.014
    DeepFM0.3731.8110.0430.009
    W&D0.8103.5760.1410.012
    TSA0.9426.4080.0300.025
    GBDT + LR1.2572.1430.1170.007
    下载: 导出CSV 
    | 显示表格
    表 2  预测精度提升的比例(%)
    Table 2  The proportion of performance improvement (%)
    i$ \eta _i^{MAE}$$\eta _i^{RMSE} $$ \eta _i^{RMSLE}$$\eta _i^{R2} $
    DIN36.9422.0682.600.61
    DCN10.4336.9516.491.43
    DeepFM13.1818.8515.030.92
    W&D24.8034.1436.721.22
    TSA27.7248.1610.992.59
    GBDT + LR33.8523.7032.500.71
    下载: 导出CSV 
    | 显示表格

    表1表2可以看出, 不同算法在不同性能指标下具有不同的性能表现, 且MDFF与对比算法的性能差值以及MDFF算法的性能提升比例也不相同, 但相对来说, 本文提出的MDFF算法在不同性能指标下的表现更优. 这也说明了MDFF具有更强的类别型和数值型特征提取能力, 同时对特征进行重要性排序并有选择性地融合, 大大提高了预测性能.

    在上述性能指标的对比中, 本文提出的MDFF算法都能取得良好的性能表现, 即MDFF算法具有较强的异质特征提取与融合能力, 获得了更高的预测精度. 与各类对比算法相比, MDFF算法主要有以下3个方面的优势: 1) MDFF算法采用SARR提取类别型特征, 将类别型数据从高维稀疏的特征空间映射到低维稠密的特征空间, 避免了搜索空间过大的问题, 提高了模型对类别型特征的关注度. 因此, 相对于普通DNN网络, MDFF算法能更有效地、更具针对性地提取类别型特征; 2) MDFF采用XGB提取数值型特征, 即借助于XGB对数值型数据进行离散化编码, 并对过于稠密的输入向量空间进行稀疏化处理, 提高了特征之间的差异性, 实现了数值型特征的有效提取; 3) MDFF采取多维异质特征融合策略, 对SARR和XGB提取到的特征进行有选择性地融合, 以充分挖掘与利用多维度特征, 为任务执行时间的预测提供更全面有效的知识, 改善了预测性能. 由此可见, 通过类别型特征和数值型特征的有效提取与融合, MDFF算法的预测精度得到了明显提升.

    综上所述, 本文提出的基于多维度特征融合的预测算法预测平均误差、预测误差波动和预测偏向性更小, 不仅对类别型特征和数值型特征有较强的解析和表达能力, 而且能够对异质特征进行充分地挖掘与利用, 实现了对云工作流任务执行时间的精准预测, 可以满足大数据环境下的云工作流任务执行时间估计需求.

    云计算中的工作流调度和资源配置依赖于任务执行时间的准确估计. 本文针对工作流任务执行时间预测问题, 提出了一种基于多维度特征融合的预测方法. 首先, 构建具有注意力机制的堆叠残差循环网络, 对类别型数据进行特征提取, 增强了模型对类别型数据的解析能力. 其次, 引入XGB对数值型数据进行离散化编码, 提取数值型特征, 提高了模型的非线性表达能力. 然后, 融合提取到的特征和原始样本特征, 获得多维异质特征, 给预测模型提供了更全面的任务执行时间知识. 最后, 利用LGBM对多维异质特征进行充分挖掘, 构建预测模型, 实现对云工作流任务执行时间的精准预测, 并采用阿里巴巴的集群数据集进行了实验验证. 实验结果表明, 该方法优于现有的基线预测算法, 在MAE、RMSE、RMSLE以及R2四种评价指标下, 均达到了更好的性能. 因此, 本文所提出的基于多维度特征融合的预测方法, 能够满足大数据环境下云工作流任务执行时间预测的需求. 然而, 本文仅在集群数据集上进行了预测模型的搭建, 如何将预测模型部署到实际云数据中心, 实现工作流任务执行时间的在线预测, 仍需进一步探索研究.

  • 图  1  涡轮叶片工业CT锥束扫描成像过程

    Fig.  1  Cone beam CT imaging process of turbine blades

    图  2  不同能量康普顿散射微分散射截面示意图[22]

    Fig.  2  Schematic diagram of differential scattering cross section of Compton scattering with different energies[22]

    图  3  散射影响示意图

    Fig.  3  Schematic diagram of the effect of scattering

    图  4  一次调制板掩模及几何细节[38]

    Fig.  4  Primary modulation plate mask and geometric details[38]

    图  5  均匀分布和优化后光束阻滞示意图

    Fig.  5  Schematic diagram of the beam block after uniform distribution and optimization

    图  6  软件算法散射校正[47]

    Fig.  6  Software algorithm for scatter correction[47]

    图  7  残差学习模块

    Fig.  7  Residual learning module

    图  8  神经网络训练框架

    Fig.  8  Neural network training framework

    图  9  多能谱衰减过程产生硬化射束

    Fig.  9  Hardened beam produced by multi-energy spectral attenuation process

    图  10  工业CT成像引起的杯状伪影

    Fig.  10  Cupping artifacts caused by industrial CT imaging

    图  11  不同材料的硬化曲线侦测

    Fig.  11  Hardening curve detection of different materials

    图  12  能量积分(间接)和光子计数(直接)对比[69]

    Fig.  12  Comparison of energy integration (indirect) and photon counting (direct)[69]

    图  13  不同物体重建切片环形伪影示意图

    Fig.  13  Schematic diagram of ring artifacts in reconstructed slices of different objects

    图  14  投影域环形伪影校正

    Fig.  14  Correction of ring artifact in projection domain

    图  15  投影域环形伪影校正

    Fig.  15  Correction of ring artifact in projection domain

    图  16  金属伪影示意图

    Fig.  16  Schematic diagram of metal artifacts

    图  17  条件生成对抗网络金属伪影校正流程

    Fig.  17  Conditional generative adversarial network metal artifact correction process

    图  18  光子饥饿引起的条形伪影

    Fig.  18  Artifacts caused by photon starvation

    图  19  投影数据的带状伪影[102]

    Fig.  19  Banding artifacts of projection data[102]

    图  20  块状伪影图像对比

    Fig.  20  Image comparison of blocky artifacts

    图  21  航空发动机叶片区域缺陷

    Fig.  21  Defects in aeroengine blade area

    表  1  不同伪影的表现和产生原因及对应特征示意图

    Table  1  Types of manifestations and causes corresponding to the characteristics of different artifacts

    类型 成因 影响因素 特征 示例
    散射伪影 射线强度空间频率较低,
    散射光子干扰
    探测器接收到的光子并不
    全是初始光子, 还包括散射
    光子偏振干扰
    图像出现模糊, 边界
    出现质量退化
    硬化伪影 (杯状伪影) 射线能谱发生变化,
    射线光子吸收不均衡,
    高能射线比重较大
    不同密度材料对射线能
    量衰减程度不同
    图像出现外亮内暗的
    灰度不均匀分布
    杯状伪影 探测器受潮, 探测器不稳定 探测器的余晖效应、探测器
    的响应不一致
    图像上出现圆圈状伪影环
    金属伪影 被检测物体中仅有单个金属 被扫描物中类似金属的
    高衰减物质
    图像中呈现出明暗相间
    的放射状伪影
    条状伪影 投影数据的不连续或中断 检测对象的移动和数据损失 重建图像存在线条状亮线区域
    带状伪影 光源的空间非均匀性 面源辐射波动性或光源不稳定性 图像局部偏亮或者偏暗
    块状伪影 重建方法及数据结构 反映图像结构的字典训练不足 图像边缘细小结构扭曲
    下载: 导出CSV

    表  2  工业CT散射伪影抑制方法研究现状

    Table  2  Research status of scattering artifact suppression methods for industrial CT

    方法 主要贡献 实验结果 方法来源
    主调制器掩模 补偿掩模影响的校正矩阵, 基于 B 样条曲线
    的散射模型
    光谱 CT 对能谱先验信息依赖性比较强, 存在适应性问题 文献[38]
    分段估计投影生成 提出一种最优的阻挡器分布, 以最小化缺失数据 将平均 CT 数误差从 86 个 Hounsfield 单位(HU) 减少到 9 HU, 并将图像对比度提高了 1.45 倍 文献[39]
    增加距离减小散射 使用蒙特卡洛计算机模拟来计算散射投影比 (SPR) SPR 随着 X 射线能量的增加、材料密度的降低或 SID 的增加而降低 文献[40]
    基于投影的等心和非等心成像法 构建了一个深度卷积自动编码器 (DCAE) 在非等中心患者 CT 采集中得到了成功运用 文献[48]
    路径采样的散射估计 以规划 CT 图像的精确 CT 值作为先验信息, 自动控制每个粒子路径, 最终加速收敛 图像对比度提高, 散射伪影消除, 但是大量光子在传输过程中无法到达探测器, 使得估算不准确 文献[33]
    卷积神经网络的散射校正 将深度卷积神经网络 (DCNN) 和残差学习框架 (RLF) 相结合 与没有 RLF 的网络相比, 所提出的方法具有更高的散射校正精度 文献[51]
    下载: 导出CSV

    表  3  工业CT硬化伪影/杯状伪影抑制方法研究现状

    Table  3  Research status of cupping artifact suppression methods for industrial CT

    方法 主要贡献 实验结果 方法来源
    投影数据一致性条件约束 通过最小化一组投影对的不一致性, 迭代估计用于减少伪影的最佳多项式系数 减少了其他物理测量和几何误差对模型系数的干扰, 不需要校准也不需要先验信息 文献[61]
    一种多项式射束硬化校正 利用三项式拟合构造一种多色投影模型, 并应用该模型来逼近实际投影数据 该模型能够有效地去除 X 射线硬化伪影, 但对于高密度物体往往效果有限, 且多项式系数获取过程复杂, 计算效率低 文献[63]
    基于泰勒公式的曲线补偿 提出了一种获取光线穿过二值图像长度的方法, 构建了一种新的加权补偿校正模型 多色投影的伪影得到了有效的抑制, 该算法有望在工业无损检测中得到应用 文献[66]
    基于光子计数探测器硬件 使用基于能量判别的 PCD 可以从本质上减少散射和射束硬化对图像质量的影响 与传统探测器相比, 能够在减少散射和波束硬化方面改善CT图像质量 文献[69]
    下载: 导出CSV

    表  4  工业CT金属伪影抑制方法研究现状

    Table  4  Research status of metal artifact suppression methods for industrial CT

    方法 主要贡献 实验结果  方法来源
    基于投影校正 建立对金属区域投影值的校正模型, 采用单纯
    形法迭代求解熵最小
    对多金属伪影的校正起到了良好的效果, 且校正后的图像质量优于插值校正法 文献[83]
    基于先验图像校正 获得不含金属信息的先验图像, 后将先验数据与含金属投影进行插值 校正图像均方根误差最小、峰值信噪比最大, 保留图像边缘的同时, 可有效地抑制金属伪影 文献[85]
    基于局部模型迭代校正 描述了一种将重建体自动划分为金属和非金属区域的方法 与常规重建相比, 该方案可使金属内部的硬化杯状伪影更少 文献[86]
    基于残差编解码网络、混合GAN网络校正 利用投影数据开发了一种混合生成对抗网络
    (GANs)的新组合掩模金字塔网络
    解决金属伪影校正研究中伪影消除不彻底、组织结构缺失等问题, 与传统重建算法相比, 结合迁移学习提高了学习网络的泛化性能 文献[88, 90]
    下载: 导出CSV
  • [1] 戚俊成, 刘宾, 陈荣昌, 夏正德, 肖体乔. X射线光场成像技术研究. 物理学报, 2019, 68(2): Article No. 024202 doi: 10.7498/aps.68.20181555

    Qi Jun-Cheng, Liu Bin, Chen Rong-Chang, Xia Zheng-De, Xiao Ti-Qiao. X-ray three-dimensional imaging based on light field imaging technology. Acta Physica Sinica, 2019, 68(2): Article No. 024202 doi: 10.7498/aps.68.20181555
    [2] 王林元, 刘宏奎, 李磊, 闫镔, 张瀚铭, 蔡爱龙, 等. 基于稀疏优化的计算机断层成像图像不完全角度重建综述. 物理学报, 2014, 63(20): Article No. 208702 doi: 10.7498/aps.63.208702

    Wang Lin-Yuan, Liu Hong-Kui, Li Lei, Yan Bin, Zhang Han-Ming, Cai Ai-Long, et al. Review of sparse optimization-based computed tomography image reconstruction from few-view projections. Acta Physica Sinica, 2014, 63(20): Article No. 208702 doi: 10.7498/aps.63.208702
    [3] Jin S, Liu C H, Lai X M, Li F, He B. Bayesian network approach for ceramic shell deformation fault diagnosis in the investment casting process. The International Journal of Advanced Manufacturing Technology, 2017, 88(1-4): 663-674 doi: 10.1007/s00170-016-8795-x
    [4] du Plessis A, Rossouw P. X-ray computed tomography of a titanium aerospace investment casting. Case Studies in Nondestructive Testing and Evaluation, 2015, 3: 21-26 doi: 10.1016/j.csndt.2015.03.001
    [5] Gameros A, De Chiffre L, Siller H R, Hiller J, Genta G. A reverse engineering methodology for nickel alloy turbine blades with internal features. CIRP Journal of Manufacturing Science and Technology, 2015, 9: 116-124 doi: 10.1016/j.cirpj.2014.12.001
    [6] Li B, Chen L, Wang Y G, Gao M Q. 3D detection of internal defects for gas turbine blades. Insight-Non-Destructive Testing and Condition Monitoring, 2017, 59(7): 364-370 doi: 10.1784/insi.2017.59.7.364
    [7] Przysowa R, Chalimoniuk M, Grzelka-Gajek D, Shakalo R, Karpenko A. CT inspection of cooled turbine blades. Journal of KONBiN, 2020, 50(3): 307-331 doi: 10.2478/jok-2020-0064
    [8] 张辉, 张邹铨, 陈煜嵘, 吴天月, 钟杭, 王耀南. 工业铸件缺陷无损检测技术的应用进展与展望. 自动化学报, 2022, 48(4): 935-956

    Zhang Hui, Zhang Zou-Quan, Chen Yu-Rong, Wu Tian-Yue, Zhong Hang, Wang Yao-Nan. Application advance and prospect of nondestructive testing technology for industrial casting defects. Acta Automatica Sinica, 2022, 48(4): 935-956
    [9] 朱雄泳, 吴炆芳, 陆许明, 谭洪舟, 邹兵兵. 基于一致性敏感哈希块匹配的HDR图像去伪影融合方法. 自动化学报, 2020, 46(7): 1496-1506

    Zhu Xiong-Yong, Wu Wen-Fang, Lu Xu-Ming, Tan Hong-Zhou, Zou Bing-Bing. High-dynamic-range image de-ghosting fusion method based on coherency sensitive hashing patch-match. Acta Automatica Sinica, 2020, 46(7): 1496-1506
    [10] 李阳, 赵于前, 廖苗, 廖胜辉, 杨振. 基于水平集和形状描述符的腹部CT序列肝脏自动分割. 自动化学报, 2021, 47(2): 327-337

    Li Yang, Zhao Yu-Qian, Liao Miao, Liao Sheng-Hui, Yang Zhen. Automatic liver segmentation from CT volumes based on level set and shape descriptor. Acta Automatica Sinica, 2021, 47(2): 327-337
    [11] 张朋, 张慧滔, 赵云松. X射线CT成像的数学模型及其有关问题. 数学建模及其应用, 2012, 1(1): 1-12 doi: 10.3969/j.issn.2095-3070.2012.01.001

    Zhang Peng, Zhang Hui-Tao, Zhao Yun-Song. The mathematical models on X-ray CT and their related issues. Mathematical Modeling and its Applications, 2012, 1(1): 1-12 doi: 10.3969/j.issn.2095-3070.2012.01.001
    [12] Yang F Q, Zhang D H, Zhang H, Huang K D, Du Y, Teng M X. Streaking artifacts suppression for cone-beam computed tomography with the residual learning in neural network. Neurocomputing, 2020, 378: 65-78 doi: 10.1016/j.neucom.2019.09.087
    [13] 袁翠云, 齐宏亮, 陈梓嘉, 吴书裕, 徐圆, 周凌宏. 基于投影域校正的CT图像环形伪影去除方法. 计算机工程与设计, 2017, 38(3): 735-738

    Yuan Cui-Yun, Qi Hong-Liang, Chen Zi-Jia, Wu Shu-Yu, Xu Yuan, Zhou Ling-Hong. CT image ring artifact reduction based on projection correction. Computer Engineering and Design, 2017, 38(3): 735-738
    [14] Hu D L, Liu J, Lv T L, Zhao Q L, Zhang Y K, Quan G T, et al. Hybrid-domain neural network processing for sparse-view CT reconstruction. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(1): 88-98 doi: 10.1109/TRPMS.2020.3011413
    [15] Xu M R, Hu D L, Luo F L, Liu F L, Wang S Y, Wu W W. Limited-angle X-ray CT reconstruction using Image gradient _0-norm with dictionary learning. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(1): 78-87 doi: 10.1109/TRPMS.2020.2991887
    [16] 沈康, 刘松德, 施钧辉, 田超. 基于双域神经网络的稀疏视角光声图像重建. 中国激光, 2022, 49(5): Article No. 0507017

    Shen Kang, Liu Song-De, Shi Jun-Hui, Tian Chao. Dual-domain neural network for sparse-view photoacoustic image reconstruction. Chinese Journal of Lasers, 2022, 49(5): Article No. 0507017
    [17] Greffier J, Frandon J, Larbi A, Beregi J P, Pereira J. CT iterative reconstruction algorithms: A task-based image quality assessment. European Radiology, 2020, 30(1): 487-500 doi: 10.1007/s00330-019-06359-6
    [18] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器. 物理学报, 2019, 68(12): Article No. 120701 doi: 10.7498/aps.68.20190281

    Hu Wei-Da, Li Qing, Chen Xiao-Shuang, Lu Wei. Recent progress on advanced infrared photodetectors. Acta Physica Sinica, 2019, 68(12): Article No. 120701 doi: 10.7498/aps.68.20190281
    [19] 沈百飞, 吉亮亮, 张晓梅, 步志刚, 徐建彩. 强场X射线激光物理. 物理学报, 2021, 70(8): Article No. 084101

    Shen Bai-Fei, Ji Liang-Liang, Zhang Xiao-Mei, Bu Zhi-Gang, Xu Jian-Cai. High field X-ray laser physics. Acta Physica Sinica, 2021, 70(8): Article No. 084101
    [20] Kak A C, Slaney M, Wang G. Principles of computerized tomographic imaging. Medical Physics, 2002, 29(1): Article No. 107
    [21] Ito S, Toda N. Improvement of CT reconstruction using scattered X-rays. IEICE Transactions on Information and Systems, 2021, E104.D(8): 1378-1385 doi: 10.1587/transinf.2020EDP7241
    [22] Wiegert D I J, Ohm U D I J R. Scattered Radiation in Cone-beam Computed Tomography: Analysis, Quantification and Compensation. Germany: Publication Server of RWTH Aachen University, 2007. 12−19
    [23] 刘建邦, 席晓琦, 韩玉, 李磊, 卜海兵, 闫镔. 基于K-N模型的锥束CT散射伪影校正方法. 光学学报, 2018, 38(11): Article No. 1134001 doi: 10.3788/AOS201838.1134001

    Liu Jian-Bang, Xi Xiao-Qi, Han Yu, Li Lei, Bu Hai-Bing, Yan Bin. A new scattering artifact correction method based on K-N formula for cone-beam computed tomography. Acta Optica Sinica, 2018, 38(11): Article No. 1134001 doi: 10.3788/AOS201838.1134001
    [24] 张定华, 胡栋材, 黄魁东, 孔永茂. 基于射束衰减网格的锥束CT散射校正方法. 中国机械工程, 2009, 20(6): 639-643 doi: 10.3321/j.issn:1004-132X.2009.06.003

    Zhang Ding-Hua, Hu Dong-Cai, Huang Kui-Dong, Kong Yong-Mao. Beam attenuation grid-based scatter correction method for cone beam CT. China Mechanical Engineering, 2009, 20(6): 639-643 doi: 10.3321/j.issn:1004-132X.2009.06.003
    [25] 胡栋材, 陈浩, 张定华. 基于平板探测器的锥束CT散射校正方法. CT理论与应用研究, 2009, 18(1): 16-22

    Hu Dong-Cai, Chen Hao, Zhang Ding-Hua. Scatter correction method for flat-panel detector-based cone beam CT. CT Theory and Applications, 2009, 18(1): 16-22
    [26] Bootsma G J, Verhaegen F, Jaffray D A. The effects of compensator and imaging geometry on the distribution of X-ray scatter in CBCT. Medical Physics, 2011, 38(2): 897-914 doi: 10.1118/1.3539575
    [27] 谢世朋, 罗立民. 基于衰减板的锥束CT散射校正. 电子学报, 2011, 39(7): 1708-1711

    Xie Shi-Peng, Luo Li-Min. Scatter correction for cone beam CT using attenuation baffle. Acta Electronica Sinica, 2011, 39(7): 1708-1711
    [28] Maier J, Sawall S, Knaup M, Kachelrieß M. Deep scatter estimation (DSE): Accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network. Journal of Nondestructive Evaluation, 2018, 37(3): Article No. 57 doi: 10.1007/s10921-018-0507-z
    [29] Zhou X, Sun J F, Jiang P, Liu D, Wang Q. Effect of optical-scattering characteristics with modified kernel-based model on the triggering probability of Gm-APD. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 243: Article No. 106814 doi: 10.1016/j.jqsrt.2019.106814
    [30] Ouyang L, Song K, Wang J. A moving blocker system for cone-beam computed tomography scatter correction. Medical Physics, 2013, 40(7): Article No. 071903
    [31] Ritschl L, Fahrig R, Knaup M, Maier J, Kachelrieß M. Robust primary modulation-based scatter estimation for cone-beam CT. Medical Physics, 2015, 42(1): 469-478 doi: 10.1118/1.4903261
    [32] Bier B, Berger M, Maier A, Kachelrieß M, Ritschl L, Müller K, et al. Scatter correction using a primary modulator on a clinical angiography C-arm CT system. Medical Physics, 2017, 44(9): e125-e137 doi: 10.1002/mp.12094
    [33] Zhang Y M, Chen Y S, Zhong A N. Jia X, Wu S Y, Qi H L, et al. Scatter correction based on adaptive photon path-based Monte Carlo simulation method in multi-GPU platform. Computer Methods and Programs in Biomedicine, 2020, 194: Article No. 105487 doi: 10.1016/j.cmpb.2020.105487
    [34] Xiang H W, Lim H, Fessler J A, Dewaraja Y K. A deep neural network for fast and accurate scatter estimation in quantitative SPECT/CT under challenging scatter conditions. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47(13): 2956-2967 doi: 10.1007/s00259-020-04840-9
    [35] Iskender B, Bresler Y. A physics-motivated DNN for X-ray CT scatter correction. In: Proceedings of the 17th International Symposium on Biomedical Imaging. Iowa, USA: IEEE, 2019. 609−613
    [36] Tien H J, Yang H C, Shueng P W, Chen J C. Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients. Scientific Reports, 2021, 11(1): Article No. 1133 doi: 10.1038/s41598-020-80803-2
    [37] Liang X K, Li N, Zhang Z C, Yu S D, Qin W J, Li Y F, et al. Shading correction for volumetric CT using deep convolutional neural network and adaptive filter. Quantitative Imaging in Medicine and Surgery, 2019, 9(7): 1242-1254 doi: 10.21037/qims.2019.05.19
    [38] Pivot O, Fournier C, Tabary J, Letang J M, Rit S. Scatter correction for spectral CT using a primary modulator mask. IEEE Transactions on Medical Imaging, 2020, 39(6): 2267-2276 doi: 10.1109/TMI.2020.2970296
    [39] Liang X K, Jiang Y K, Zhao W, Zhang Z C, Luo C, Xiong J, et al. Scatter correction for a clinical cone-beam CT system using an optimized stationary beam blocker in a single scan. Medical physics, 2019, 46(7): 3165-3179 doi: 10.1002/mp.13568
    [40] Tu S J. Scatter-to-primary ratio in cone beam computed tomography with extended source to image-receptor distance for image-guided proton beam therapy system. Radiation Physics and Chemistry, 2020, 170: Article No. 108667 doi: 10.1016/j.radphyschem.2019.108667
    [41] Siewerdsen J H, Moseley D J, Bakhtiar B, Richard S, Jaffray D A. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors. Medical Physics, 2004, 31(12): 3506-3520 doi: 10.1118/1.1819789
    [42] Yang F Q, Zhang D H, Zhang H, Huang K D. Scattering measurement and estimation in angular sequence for cone-beam CT based on projection structural tensor and modeling. Journal of X-Ray Science and Technology, 2019, 27(5): 965-979 doi: 10.3233/XST-190528
    [43] Yang F Q, Zhang D H, Huang K D, Shi W L, Wang X Y. Scattering estimation for cone-beam CT using local measurement based on compressed sensing. IEEE Transactions on Nuclear Science, 2018, 65(3): 941-949 doi: 10.1109/TNS.2018.2803739
    [44] Sun M, Star-Lack J M. Improved scatter correction using adaptive scatter kernel superposition. Physics in Medicine & Biology, 2010, 55(22): 6695-6720
    [45] Bootsma G J, Verhaegen F, Jaffray D A. Efficient scatter distribution estimation and correction in CBCT using concurrent Monte Carlo fitting. Medical Physics, 2015, 42(1): 54-68
    [46] Yan H, Mou X Q, Tang S J, Xu Q, Zankl M. Projection correlation based view interpolation for cone beam CT: Primary fluence restoration in scatter measurement with a moving beam stop array. Physics in Medicine & Biology, 2010, 55(21): 6353-6375
    [47] 戎军艳, 刘文磊, 高鹏, 廖琪梅, 卢虹冰. 锥束CT散射抑制方法综述. CT理论与应用研究, 2016, 25(2): 235-250 doi: 10.15953/j.1004-4140.2016.25.02.15

    Rong Jun-Yan, Liu Wen-Lei, Gao Peng, Liao Qi-Mei, Lu Hong-Bing. The review of scatter suppression methods in cone beam CT. CT Theory and Applications, 2016, 25(2): 235-250 doi: 10.15953/j.1004-4140.2016.25.02.15
    [48] van der Heyden B, Uray M, Fonseca G P, Huber P, Us D, Messner I, et al. A Monte Carlo based scatter removal method for non-isocentric cone-beam CT acquisitions using a deep convolutional autoencoder. Physics in Medicine & Biology, 2020, 65(14): Article No. 145002
    [49] 施俊, 汪琳琳, 王珊珊, 陈艳霞, 王乾, 魏冬铭, 等. 深度学习在医学影像中的应用综述. 中国图象图形学报, 2020, 25(10): 1953-1981 doi: 10.11834/jig.200255

    Shi Jun, Wang Lin-Lin, Wang Shan-Shan, Chen Yan-Xia, Wang Qian, Wei Dong-Ming, et al. Applications of deep learning in medical imaging: A survey. Journal of Image and Graphics, 2020, 25(10): 1953-1981 doi: 10.11834/jig.200255
    [50] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 770−778
    [51] Jiang Y K, Yang C L, Yang P F, Hu X, Luo C, Xue Y, et al. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN). Physics in Medicine & Biology, 2019, 64(14): Article No. 145003
    [52] Hansen D C, Landry G, Kamp F, Li M L, Belka C, Parodi K, et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction. Medical Physics, 2018, 45(11): 4916-4926 doi: 10.1002/mp.13175
    [53] Nomura Y, Xu Q, Shirato H, Shimizu S, Xing L. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Medical Physics, 2019, 46(7): 3142-3155 doi: 10.1002/mp.13583
    [54] Cao W C, Hawker S, Fardell G, Price B, Dewulf W. An improved segmentation method for multi-material beam hardening correction in industrial X-ray computed tomography. Measurement Science and Technology, 2019, 30(12): Article No. 125403 doi: 10.1088/1361-6501/ab30bb
    [55] Tang S J, Huang K D, Cheng Y Y, Mou X Q, Tang X Y. Optimization based beam-hardening correction in CT under data integral invariant constraint. Physics in Medicine & Biology, 2018, 63(13): Article No. 135015
    [56] Sarkar S, Wahi P, Munshi P. An empirical correction method for beam-hardening artifact in computerized tomography (CT) images. NDT & E International, 2019, 102: 104-113
    [57] Ahmed O M H, Song Y S. A review of common beam hardening correction methods for industrial X-ray computed tomography. Sains Malaysiana, 2018, 47(8): 1883-1890 doi: 10.17576/jsm-2018-4708-29
    [58] Yang Q, Fullagar W K, Myers G R, Latham S J, Varslot T, Sheppard A P, et al. X-ray attenuation models to account for beam hardening in computed tomography. Applied Optics, 2020, 59(29): 9126-9136 doi: 10.1364/AO.402304
    [59] Shi H L, Yang Z, Luo S Q. Reduce beam hardening artifacts of polychromatic X-ray computed tomography by an iterative approximation approach. Journal of X-Ray Science and Technology, 2017, 25(3): 417-428 doi: 10.3233/XST-16187
    [60] Luo S H, Wu H Z, Sun Y, Li J, Li G, Gu N. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm. Physics in Medicine & Biology, 2017, 62(5): 1810-1830
    [61] Abdurahman S, Frysch R, Bismark R, Melnik S, Beuing O, Rose G. Beam hardening correction using cone beam consistency conditions. IEEE Transactions on Medical Imaging, 2018, 37(10): 2266-2277 doi: 10.1109/TMI.2018.2840343
    [62] Levi J, Wu H, Eck B L, Fahmi R, Vembar M, Dhanantwar A, et al. Comparison of automated beam hardening correction (ABHC) algorithms for myocardial perfusion imaging using computed tomography. Medical Physics, 2021, 48(1): 287-299 doi: 10.1002/mp.14599
    [63] Xiu G Y, Yuan C Y, Chen X H, Li X S. An innovative beam hardening correction method for computed tomography systems. Traitement du Signal, 2019, 36(6): 515-520 doi: 10.18280/ts.360606
    [64] Ahmed O M H, Song Y S, Xie Z Y, Ayoub A A T. Calculation of beam hardening in industrial X-ray computed tomography and its correction using filtration and linearization methods. IOP Conference Series: Earth and Environmental Science, 2020, 461: Article No. 012082
    [65] Lifton J J. Multi-material linearization beam hardening correction for computed tomography. Journal of X-Ray Science and Technology, 2017, 25(4): 629−640
    [66] Yang F Q, Zhang D H, Zhang H, Huang K D. Cupping artifacts correction for polychromatic X-ray cone-beam computed tomography based on projection compensation and hardening behavior. Biomedical Signal Processing and Control, 2020, 57: Article No. 101823 doi: 10.1016/j.bspc.2019.101823
    [67] Bismark R N K, Frysch R, Abdurahman S, Beuing O, Blessing M, Rose G. Reduction of beam hardening artifacts on real C-arm CT data using polychromatic statistical image reconstruction. Zeitschrift Für Medizinische Physik, 2020, 30(1): 40-50
    [68] Abella M, Martínez C, Desco M, Vaquero J J, Fessler J A. Simplified statistical image reconstruction for X-ray CT with beam-hardening artifact compensation. IEEE Transactions on Medical Imaging, 2020, 39(1): 111-118 doi: 10.1109/TMI.2019.2921929
    [69] Schumacher D, Sharma R, Grager J C, Schrapp M. Scatter and beam hardening reduction in industrial computed tomography using photon counting detectors. Measurement Science and Technology, 2018, 29(7): Article No. 075101
    [70] Kimoto N, Hayashi H, Asakawa T, Lee C, Asahara T, Maeda T, et al. Effective atomic number image determination with an energy-resolving photon-counting detector using polychromatic X-ray attenuation by correcting for the beam hardening effect and detector response. Applied Radiation and Isotopes, 2021, 170: Article No. 109617 doi: 10.1016/j.apradiso.2021.109617
    [71] Watanabe M, Sato E, Yoshida S, Yoshioka K, Oda Y, Moriyama H, et al. Photon-counting X-ray computed tomography using a YAP(Ce)-PMT detector and beam hardening. In: Proceedings of SPIE 11114, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXI. San Diego, USA: SPIE, 2019. Article No. 111141D
    [72] Šalplachta J, Zikmund T, Zemek M, Břínek A, Takeda Y, Omote K, et al. Complete ring artifacts reduction procedure for lab-based X-ray nano CT systems. Sensors, 2021, 21(1): Article No. 238
    [73] Sadi F, Lee S Y, Hasan K. Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter. Computers in Biology and Medicine, 2010, 40(1): 109-118 doi: 10.1016/j.compbiomed.2009.11.007
    [74] Hasan K, Sadi F, Lee S Y. Removal of ring artifacts in micro-CT imaging using iterative morphological filters. Signal, Image and Video Processing, 2012, 6(1): 41-53 doi: 10.1007/s11760-010-0170-z
    [75] Prell D, Kyriakou Y, Kalender W A. Comparison of ring artifact correction methods for flat-detector CT. Physics in Medicine & Biology, 2009, 54(12): 3881-3895
    [76] Wei Z P, Wiebe S, Chapman D. Ring artifacts removal from synchrotron CT image slices. Journal of Instrumentation, 2013, 8: Article No. C06006
    [77] Anas E M A, Kim J G, Lee S Y, Hasan K. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging. Physics in Medicine & Biology, 2011, 56(19): 6495-6519
    [78] Eldib M E, Hegazy M, Mun Y J, Cho M H, Cho M H, Lee S Y. A ring artifact correction method: Validation by micro-CT imaging with flat-panel detectors and a 2D photon-counting detector. Sensors, 2017, 17(2): Article No. 269 doi: 10.3390/s17020269
    [79] 王珏, 黄苏红, 蔡玉芳. 工业CT图像环形伪影校正. 光学 精密工程, 2010, 18(5): 1226-1233

    Wang Jue, Huang Su-Hong, Cai Yu-Fang. Ring artifact correction for ICT images. Optics and Precision Engineering, 2010, 18(5): 1226-1233
    [80] 霍其润, 李建武, 陆耀, 秦明. 基于变分的CT图像环形伪影校正. 自动化学报, 2019, 45(9): 1713-1726 doi: 10.16383/j.aas.c180258

    Huo Qi-Run, Li Jian-Wu, Lu Yao, Qin Ming. Variation-based ring artifact correction in CT images. Acta Automatica Sinica, 2019, 45(9): 1713-1726 doi: 10.16383/j.aas.c180258
    [81] Yang Y F, Zhang D H, Yang F Q, Teng M X, Du Y, Huang K D. Post-processing method for the removal of mixed ring artifacts in CT images. Optics Express, 2020, 28(21): 30362-30378 doi: 10.1364/OE.401088
    [82] 汪涛, 夏文军, 赵云松, 张意. CT金属伪影去除研究进展. 中国体视学与图像分析, 2020, 25(3): 207-223 doi: 10.13505/j.1007-1482.2020.25.03.001

    Wang Tao, Xia Wen-Jun, Zhao Yun-Song, Zhang Yi. Review of metal artifact reduction in computed tomography. Chinese Journal of Stereology and Image Analysis, 2020, 25(3): 207-223 doi: 10.13505/j.1007-1482.2020.25.03.001
    [83] 魏星, 闫镔, 张峰, 李永丽, 席晓琦, 李磊. 多金属物体CT图像的金属伪影校正. 物理学报, 2014, 63(5): Article No. 058702

    Wei Xing, Yan Bin, Zhang Feng, Li Yong-Li, Xi Xiao-Qi, Li Lei. Reduction of metal artifacts caused by multiple metallic objects in computed tomography. Acta Physica Sinica, 2014, 63(5): Article No. 058702
    [84] 李磊, 韩玉, 席晓琦, 王敬雨, 闫镔. 基于能谱滤波和图像残差重投影的CT图像金属伪影校正方法. 信息工程大学学报, 2017, 18(3): 288-293 doi: 10.3969/j.issn.1671-0673.2017.03.007

    Li Lei, Han Yu, Xi Xiao-Qi, Wang Jing-Yu, Yan Bin. Metal artifact correction method in computed tomography based on spectra filtering and image residual reprojection. Journal of Information Engineering University, 2017, 18(3): 288-293 doi: 10.3969/j.issn.1671-0673.2017.03.007
    [85] 刘仰川, 高鹏, 朱叶晨, 高欣. 一种基于先验图像的锥束CT金属伪影校正算法. 图学学报, 2020, 41(4): 529-538

    Liu Yang-Chuan, Gao Peng, Zhu Ye-Chen, Gao Xin. A prior-image-based metal artifact reduction method for cone beam CT. Journal of Graphics, 2020, 41(4): 529-538
    [86] Van Slambrouck K, Nuyts J. Metal artifact reduction in computed tomography using local models in an image block-iterative scheme. Medical Physics, 2012, 39(11): 7080-7093 doi: 10.1118/1.4762567
    [87] Hegazy M A A, Cho M H, Cho M H, Lee S Y. U-net based metal segmentation on projection domain for metal artifact reduction in dental CT. Biomedical Engineering Letters, 2019, 9(3): 375-385 doi: 10.1007/s13534-019-00110-2
    [88] 马燕, 余海军, 钟发生, 刘丰林. 基于残差编解码网络的CT图像金属伪影校正. 仪器仪表学报, 2020, 41(8): 160-169 doi: 10.19650/j.cnki.cjsi.J2006503

    Ma Yan, Yu Hai-Jun, Zhong Fa-Sheng, Liu Feng-Lin. CT metal artifact reduction based on the residual encoder-decoder network. Chinese Journal of Scientific Instrument, 2020, 41(8): 160-169 doi: 10.19650/j.cnki.cjsi.J2006503
    [89] Zhang Y B, Yu H Y. Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Transactions on Medical Imaging, 2018, 37(6): 1370-1381 doi: 10.1109/TMI.2018.2823083
    [90] Gomi T, Sakai R, Hara H, Watanabe Y, Mizukami S. Usefulness of a metal artifact reduction algorithm in digital tomosynthesis using a combination of hybrid generative adversarial networks. Diagnostics, 2021, 11(9): Article No. 1629 doi: 10.3390/diagnostics11091629
    [91] Hao S L, Liu J, Chen Y, Liu B D, Wei C F, Zhu J, et al. A wavelet transform-based photon starvation artifacts suppression algorithm in CT imaging. Physics in Medicine & Biology, 2020, 65(23): Article No. 235039
    [92] Yazdi M, Beaulieu L. Artifacts in spiral X-ray CT scanners: Problems and solutions. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2007, 1(11): 1599−1603
    [93] 李保磊, 莫阳, 张萍宇, 李斌, 张耀军. X射线CT成像条状伪影校正. 原子能科学技术, 2017, 51(11): 2075-2078 doi: 10.7538/yzk.2017.youxian.0225

    Li Bao-Lei, Mo Yang, Zhang Ping-Yu, Li Bin, Zhang Yao-Jun. Streak artifact correction in X-ray CT imaging. Atomic Energy Science and Technology, 2017, 51(11): 2075-2078 doi: 10.7538/yzk.2017.youxian.0225
    [94] Yang F Q, Zhang D H, Zhang H, Huang K D, Du Y. Fusion reconstruction algorithm to ill-posed projection (FRAiPP) for artifacts suppression on X-ray computed tomography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 976: Article No. 164263 doi: 10.1016/j.nima.2020.164263
    [95] 康慧, 高红霞, 胡跃明, 郭琪伟. 基于Bregman迭代的CT图像重建算法. 自动化学报, 2013, 39(9): 1570-1575

    Kang Hui, Gao Hong-Xia, Hu Yue-Ming, Guo Qi-Wei. Reconstruction algorithm based on Bregman iteration. Acta Automatica Sinica, 2013, 39(9): 1570-1575
    [96] 王娜, 张权, 刘祎, 贾丽娜, 桂志国. 基于可变阶变分模型的医用低剂量CT图像去噪. 北京航空航天大学学报, 2019, 45(9): 1757-1764 doi: 10.13700/j.bh.1001-5965.2018.0775

    Wang Na, Zhang Quan, Liu Yi, Jia Li-Na, Gui Zhi-Guo. Medical low-dose CT image denoising based on variable order variational model. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1757-1764 doi: 10.13700/j.bh.1001-5965.2018.0775
    [97] 卢洪义, 陈庆贵, 周红梅, 赵汝岩, 张宗伟, 喻舟. 固体火箭发动机CT图像条状伪影校正. 航空动力学报, 2016, 31(10): 2515-2521 doi: 10.13224/j.cnki.jasp.2016.10.027

    Lu Hong-Yi, Chen Qing-Gui, Zhou Hong-Mei, Zhao Ru-Yan, Zhang Zong-Wei, Yu Zhou. Streak artifacts correction of solid rocket motor's CT image. Journal of Aerospace Power, 2016, 31(10): 2515-2521 doi: 10.13224/j.cnki.jasp.2016.10.027
    [98] Xu Q, Yu H Y, Mou X Q, Zhang L, Hsieh J, Wang G. Low-dose X-ray CT reconstruction via dictionary learning. IEEE Transactions on Medical Imaging, 2012, 31(9): 1682-1697 doi: 10.1109/TMI.2012.2195669
    [99] Karimi D, Ward R. Reducing streak artifacts in computed tomography via sparse representation in coupled dictionaries. Medical Physics, 2016, 43(3): 1473-1486 doi: 10.1118/1.4942376
    [100] Yang F Q, Zhang D H, Huang K D, Gao Z Z, Yang Y F. Incomplete projection reconstruction of computed tomography based on the modified discrete algebraic reconstruction technique. Measurement Science and Technology, 2018, 29(2): Article No. 025405
    [101] Mori I, Machida Y, Osanai M, Iinuma K. Photon starvation artifacts of X-ray CT: Their true cause and a solution. Radiological Physics and Technology, 2013, 6(1): 130-141 doi: 10.1007/s12194-012-0179-9
    [102] 孔慧华, 杨玉双. 同步辐射CT投影数据中的带状伪影及重建误差分析. 中北大学学报(自然科学版), 2016, 37(1): 61-66, 75

    Kong Hui-Hua, Yang Yu-Shuang. Analysis on reconstructed errors and band-artifacts in projections for synchrotron radiation computed tomography. Journal of North University of China (Natural Science Edition), 2016, 37(1): 61-66, 75
    [103] Sun B Y, Hayakawa Y. Impact of statistical reconstruction and compressed sensing algorithms on projection data elimination during X-ray CT image reconstruction. Oral Radiology, 2018, 34(3): 237-244 doi: 10.1007/s11282-017-0308-6
    [104] Sun L Y, Fan Z W, Fu X Y, Huang Y, Ding X H, Paisley J. A deep information sharing network for multi-contrast compressed sensing MRI reconstruction. IEEE Transactions on Image Processing, 2019, 28(12): 6141-6153 doi: 10.1109/TIP.2019.2925288
    [105] Dinh K Q, Shim H J, Jeon B. Weighted overlapped recovery for blocking artefacts reduction in block-based compressive sensing of images. Electronics Letters, 2015, 51(1): 48-50 doi: 10.1049/el.2014.3200
    [106] He G, Huang N J. A new particle swarm optimization algorithm with an application. Applied Mathematics and Computation, 2014, 232: 521-528 doi: 10.1016/j.amc.2014.01.028
    [107] Singh A, Singh J. A content adaptive method of de-blocking and super-resolution of compressed images. Multimedia Tools and Applications, 2021, 80(7): 11095-11131 doi: 10.1007/s11042-020-10112-3
    [108] 张娜, 曹琨, 刘亚轩. 基于块分割的新型压缩感知算法. 东北大学学报(自然科学版), 2017, 38(4): 486-491, 496 doi: 10.12068/j.issn.1005-3026.2017.04.007

    Zhang Na, Cao Kun, Liu Ya-Xuan. New compressive sensing algorithm based on block segmentation. Journal of Northeastern University (Natural Science), 2017, 38(4): 486-491, 496 doi: 10.12068/j.issn.1005-3026.2017.04.007
    [109] Cavigelli L, Hager P, Benini L. CAS-CNN: A deep convolutional neural network for image compression artifact suppression. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN). Anchorage, AK, USA: IEEE, 2017. 752−759
    [110] Lin M H, Yeh C H, Lin C H, Huang C H, Kang L W. Deep multi-scale residual learning-based blocking artifacts reduction for compressed images. In: Proceedings of the IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). Hsinchu, Taiwan, China: IEEE, 2019. 18−19
    [111] Xiao Y S, Han F D, Chen Z Q. Correct block artifacts by differential projection for a dynamic computed tomography system. Measurement Science and Technology, 2017, 28(9): Article No. 094001
    [112] Wang B, Chen Z Q, Dewulf W, Pauwels R, Yao Z Y, Hou Q H, et al. U-net-based blocked artifacts removal method for dynamic computed tomography. Applied Optics, 2019, 58(14): 3748-3753 doi: 10.1364/AO.58.003748
    [113] Zhao Z S, Sun Q, Yang H R, Qiao H, Wang Z G, Wu D O. Compression artifacts reduction by improved generative adversarial networks. EURASIP Journal on Image and Video Processing, 2019, 2019(1): Article No. 62 doi: 10.1186/s13640-019-0465-0
    [114] 李少波, 杨静, 王铮, 朱书德, 杨观赐. 缺陷检测技术的发展与应用研究综述. 自动化学报, 2020, 46(11): 2319-2336 doi: 10.16383/j.aas.c180538

    Li Shao-Bo, Yang Jing, Wang Zheng, Zhu Shu-De, Yang Guan-Ci. Review of development and application of defect detection technology. Acta Automatica Sinica, 2020, 46(11): 2319-2336 doi: 10.16383/j.aas.c180538
    [115] Podgorsak A R, Bhurwani M M S, Ionita C N. CT artifact correction for sparse and truncated projection data using generative adversarial networks. Medical Physics, 2021, 48(2): 615-626 doi: 10.1002/mp.14504
    [116] Lu Y H, Zheng K, Li W J, Wang Y R, Harrison A P, Lin C, et al. Contour transformer network for one-shot segmentation of anatomical structures. IEEE Transactions on Medical Imaging, 2021, 40(10): 2672-2684 doi: 10.1109/TMI.2020.3043375
    [117] Gabbar H A, Chahid A, Khan J A, Adegboro O G, Samson M I. CTIMS: Automated defect detection framework using computed tomography. Applied Sciences, 2022, 12(4): Article No. 2175 doi: 10.3390/app12042175
    [118] Anvari P, Ashrafkhorasani M, Habibi A, Falavarjani K G. Artifacts in optical coherence tomography angiography. Journal of Ophthalmic & Vision Research, 2021, 16(2): 271-286
    [119] 柴天佑. 工业人工智能发展方向. 自动化学报, 2020, 46(10): 2005-2012 doi: 10.16383/j.aas.c200796

    Chai Tian-You. Development directions of industrial artificial intelligence. Acta Automatica Sinica, 2020, 46(10): 2005-2012 doi: 10.16383/j.aas.c200796
  • 期刊类型引用(8)

    1. 郑俊,申铁. 利用帕累托原理推断细胞为适应特定环境代谢流的权衡与代谢途径的调控. 自动化应用. 2025(02): 57-61+71 . 百度学术
    2. 李鑫,余墨多,姜庆超,范勤勤. 基于分区搜索和强化学习的多模态多目标头脑风暴优化算法. 计算机应用研究. 2024(08): 2374-2383 . 百度学术
    3. 闵芬,董文波,丁炜超. 基于决策变量时域变化特征分类的动态多目标进化算法. 自动化学报. 2024(11): 2154-2176 . 本站查看
    4. Wenhua Li,Xingyi Yao,Kaiwen Li,Rui Wang,Tao Zhang,Ling Wang. Coevolutionary Framework for Generalized Multimodal Multi-Objective Optimization. IEEE/CAA Journal of Automatica Sinica. 2023(07): 1544-1567 . 必应学术
    5. 章恩泽,赵哲萱,韦静月,葛蕤,蒋超. 基于环形拓扑结构和动态邻域的多模态多目标粒子群优化算法. 扬州大学学报(自然科学版). 2023(04): 19-24 . 百度学术
    6. 孙铁军,王明瑞,刘斌,崔文超,李鹏威,曲丽萍. 基于大数据挖掘技术的热轧板带钢轧后冷却多目标优化. 北华大学学报(自然科学版). 2023(06): 820-827 . 百度学术
    7. 张东旭,李永华,白肖宁,王裕沣. 基于RBF-CLNSGA-Ⅱ算法的转向架构架多目标优化. 铁道科学与工程学报. 2023(11): 4311-4320 . 百度学术
    8. 王卓,孔祥韶,吴卫国. 基于遗传算法的邮轮舷侧开口结构补强技术研究. 中国造船. 2023(06): 86-100 . 百度学术

    其他类型引用(22)

  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  1283
  • HTML全文浏览量:  1058
  • PDF下载量:  459
  • 被引次数: 30
出版历程
  • 收稿日期:  2022-04-29
  • 录用日期:  2022-08-22
  • 网络出版日期:  2023-01-31
  • 刊出日期:  2023-04-20

目录

/

返回文章
返回