2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一步张量学习的多视图子空间聚类

赵晓佳 徐婷婷 陈勇勇 徐勇

赵晓佳, 徐婷婷, 陈勇勇, 徐勇. 基于一步张量学习的多视图子空间聚类. 自动化学报, 2023, 49(1): 40−53 doi: 10.16383/j.aas.c220138
引用本文: 赵晓佳, 徐婷婷, 陈勇勇, 徐勇. 基于一步张量学习的多视图子空间聚类. 自动化学报, 2023, 49(1): 40−53 doi: 10.16383/j.aas.c220138
Zhao Xiao-Jia, Xu Ting-Ting, Chen Yong-Yong, Xu Yong. One-step tensor learning for multi-view subspace clustering. Acta Automatica Sinica, 2023, 49(1): 40−53 doi: 10.16383/j.aas.c220138
Citation: Zhao Xiao-Jia, Xu Ting-Ting, Chen Yong-Yong, Xu Yong. One-step tensor learning for multi-view subspace clustering. Acta Automatica Sinica, 2023, 49(1): 40−53 doi: 10.16383/j.aas.c220138

基于一步张量学习的多视图子空间聚类

doi: 10.16383/j.aas.c220138
基金项目: 广东省自然科学基金 (2022A1515010819), 国家自然科学基金 (62106063), 深圳市科技创新委员会 (GJHZ20210705141812038) 资助
详细信息
    作者简介:

    赵晓佳:哈尔滨工业大学(深圳)计算机科学与技术学院硕士研究生. 主要研究方向为多视图聚类. E-mail: 21S151152@stu.hit.edu.cn

    徐婷婷:哈尔滨工业大学(深圳)计算机科学与技术学院硕士研究生. 主要研究方向为低秩张量近似. E-mail: 21S151168@stu.hit.edu.cn

    陈勇勇:哈尔滨工业大学(深圳)计算机科学与技术学院助理教授. 主要研究方向为机器学习和模式识别. 本文通信作者. E-mail: YongyongChen.cn@gmail.com

    徐勇:哈尔滨工业大学(深圳)计算机科学与技术学院教授. 主要研究方向为机器学习, 模式学习, 生物信息学和视频分析. E-mail: yongxu@ymail.com

One-step Tensor Learning for Multi-view Subspace Clustering

Funds: Supported by Guangdong Natural Science Foundation (2022A1515010819), National Natural Science Foundation of China (62106063), Shenzhen Science and Technology Innovation Committee (GJHZ20210705141812038)
More Information
    Author Bio:

    ZHAO Xiao-Jia Master student at School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen. Her main research interest is multi-view clustering

    XU Ting-Ting Master student at School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen. Her main research interest is low-rank tensor approximation

    CHEN Yong-Yong Assistant professor at School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen. His research interest covers machine learning and pattern recognition. Corresponding author of this paper

    XU Yong Professor at School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen. His research interest covers machine learning, pattern recognition, biometrics, and video analysis

  • 摘要: 现有多视图子空间聚类算法通常先进行张量表示学习, 进而将学习到的表示张量融合为统一的亲和度矩阵. 然而, 因其独立地学习表示张量和亲和度矩阵, 忽略了两者之间的高度相关性. 为了解决此问题, 提出一种基于一步张量学习的多视图子空间聚类方法, 联合学习表示张量和亲和度矩阵. 具体地, 该方法对表示张量施加低秩张量约束, 以挖掘视图的高阶相关性. 利用自适应最近邻法对亲和度矩阵进行灵活重建. 使用交替方向乘子法对模型进行优化求解, 通过对真实多视图数据的实验表明, 较于最新的多视图聚类方法, 提出的算法具有更好的聚类准确性.
  • 图  1  多视图数据示例

    Fig.  1  Examples of multi-view data

    图  2  张量奇异值分解示例

    Fig.  2  Examples of t-SVD

    图  3  基于一步张量学习的多视图子空间聚类结构图

    Fig.  3  The framework of the one-step tensor learning for multi-view subspace clustering (OTSC)

    图  4  OTSC性能的消融实验

    Fig.  4  Ablation experiment of OTSC performance

    图  5  根据$ACC$$NMI$调整数据集ORL参数$\alpha$$\gamma$

    Fig.  5  Parameters tuning in terms of $ACC$ and $NMI$ on ORL

    图  6  参数$K$对数据集ORL的$ACC$影响

    Fig.  6  The effect of parameter $K$ on the $ACC$ of ORL.

    图  7  收敛性曲线 ((a) BBCSport; (b) Extended YaleB)

    Fig.  7  The convergence curves and ACC versus iterations on ((a) BBCSport; (b) Extended YaleB)

    表  1  符号与定义

    Table  1  Notations and definitions

    符号定义
    $\boldsymbol{x}, X, {\cal{X}}$向量, 矩阵, 张量
    1单位向量
    $I$单位矩阵
    ${\cal{I}}$单位张量
    $n$样本个数
    $V$视图个数
    $d_v$第$v$个视图的特征维度
    $X^v\in {\bf{R}}^{d_v \times n}$第$v$个视图的特征矩阵
    ${\cal{Z}}\in{\bf{R}}^{n\times n\times V}$表示张量
    $A\in {\bf{R}}^{n \times n}$亲和度矩阵
    $E^v\in {\bf{R}}^{n \times n}$噪声矩阵
    $\|\cdot\|_{2,1}$$l_{2,1}$范数
    $\|\cdot\|_{\rm{F}}$Frobenius范数
    $\|\cdot\|_\infty$无穷范数
    $\|\cdot\|_{*}$矩阵核范数
    $\|\cdot\|_{\circledast}$张量核范数
    ${\rm{FFT}}$快速傅里叶分解
    下载: 导出CSV

    表  2  真实多视图数据集信息

    Table  2  Summary of all real-world multi-view databases

    数据集样本数量类别视图种类
    Extended YaleB640383面部图像
    ORL400403面部图像
    3Sources16963新闻故事
    BBCSport54452新闻故事
    UCI-Digits2000103手写数字
    COIL_201440203通用对象
    下载: 导出CSV

    表  3  参数设置

    Table  3  Parameter setting

    数据集$\alpha$$\gamma$$K$
    Extended YaleB10.0055
    ORL0.10.0512
    3Sources0.1508
    BBCSport0.0558
    UCI-Digits0.2215
    COIL_200.0515
    下载: 导出CSV

    表  4  数据集Extended YaleB、ORL的聚类结果

    Table  4  Clustering results (mean$ \pm $standard deviation) on Extended YaleB and ORL

    数据类型方法$ACC$$NMI$$AR$$F$-$score$$Precision$$Recall$
    Extended YaleB单视图方法SSCbest0.587±0.0030.534±0.0030.430±0.0050.487±0.0040.451±0.0020.509±0.007
    LRRbest0.615±0.0130.627±0.0400.451±0.0020.508±0.0040.481±0.0020.539±0.001
    RSSbest0.742±0.0010.787±0.0000.685±0.0010.717±0.0010.704±0.0010.730±0.000
    多视图方法RMSC0.210±0.0130.157±0.0190.060±0.0140.155±0.0120.151±0.0120.159±0.013
    DiMSC0.615±0.0030.636±0.0020.453±0.0050.504±0.0060.481±0.0040.534±0.004
    LT-MSC0.626±0.0100.637±0.0030.459±0.0300.521±0.0060.485±0.0010.539±0.002
    MLAN0.346±0.0110.352±0.0150.093±0.0090.213±0.0230.159±0.0180.321±0.013
    t-SVD0.652±0.0000.667±0.0040.500±0.0030.550±0.0020.514±0.0040.590±0.004
    GMC0.434±0.0000.449±0.0000.157±0.0000.265±0.0000.204±0.0000.378±0.000
    LMSC0.598±0.0050.568±0.0040.354±0.0070.423±0.0060.390±0.0060.463±0.005
    SCMV-3DT0.410±0.0010.413±0.0020.185±0.0020.276±0.0010.244±0.0020.318±0.001
    LRTG0.954±0.0000.905±0.0000.899±0.0000.909±0.0000.908±0.0000.911±0.000
    WTNNM0.648±0.0050.661±0.0020.501±0.0000.552±0.0000.533±0.0000.573±0.000
    GLTA0.571±0.0020.630±0.0050.510±0.0050.560±0.0040.544±0.0040.576±0.006
    本方法OTSC0.969±0.0010.934±0.0010.931±0.0020.937±0.0020.935±0.0020.939±0.002
    WOTSC0.972±0.0000.943±0.0000.938±0.0000.944±0.0000.942±0.0000.946±0.000
    ORL单视图方法SSCbest0.765±0.0080.893±0.0070.694±0.0130.682±0.0120.673±0.0070.764±0.005
    LRRbest0.773±0.0030.895±0.0060.724±0.0200.731±0.0040.701±0.0010.754±0.002
    RSSbest0.846±0.0240.938±0.0070.798±0.0230.803±0.0230.759±0.0300.852±0.017
    多视图方法RMSC0.723±0.0070.872±0.0120.645±0.0030.654±0.0070.607±0.0090.709±0.004
    DiMSC0.838±0.0010.940±0.0030.802±0.0000.807±0.0030.764±0.0120.856±0.004
    LT-MSC0.795±0.0070.930±0.0030.750±0.0030.768±0.0040.766±0.0090.837±0.005
    MLAN0.705±0.020.854±0.0180.384±0.0100.376±0.0150.254±0.0210.721±0.020
    t-SVD0.970±0.0030.993±0.0020.967±0.0020.968±0.0030.946±0.0040.991±0.003
    GMC0.633±0.0000.857±0.0000.337±0.0000.360±0.0000.232±0.0000.801±0.000
    LMSC0.877±0.0240.949±0.0060.839±0.0220.843±0.0210.806±0.0270.884±0.017
    SCMV-3DT0.839±0.0120.908±0.0070.763±0.0180.769±0.0170.747±0.0200.792±0.016
    LRTG0.933±0.0030.970±0.0020.905±0.0050.908±0.0050.888±0.0040.928±0.007
    WTNNM0.967±0.0000.992±0.0000.960±0.0000.952±0.0000.946±0.0000.968±0.000
    GLTA0.976±0.0020.994±0.0060.958±0.0240.963±0.0190.952±0.0350.989±0.012
    本方法OTSC0.983±0.0020.988±0.0010.964±0.0030.965±0.0030.958±0.0040.972±0.001
    WOTSC0.938±0.0000.972±0.0000.907±0.0000.909±0.0000.885±0.0000.936±0.000
    下载: 导出CSV

    表  5  数据集3Sources、UCI-Digits的聚类结果

    Table  5  Clustering results (mean $ \pm $ standard deviation) on 3Sources and UCI-Digits

    数据类型方法$ACC$$NMI$$AR$$F$-$score$$Precision$$Recall$
    3Sources单视图方法SSCbest0.762±0.0030.694±0.0030.658±0.0040.743±0.0030.769±0.0010.719±0.005
    LRRbest0.647±0.0330.542±0.0180.486±0.0280.608±0.0330.594±0.0310.636±0.096
    RSSbest0.722±0.0000.601±0.0000.533±0.0000.634±0.0000.679±0.0000.595±0.000
    多视图方法RMSC0.583±0.0220.630±0.0110.455±0.0310.557±0.0250.635±0.0290.497±0.028
    DiMSC0.795±0.0040.727±0.0100.661±0.0050.748±0.0040.711±0.0050.788±0.003
    LT-MSC0.781±0.0000.698±0.0030.651±0.0030.734±0.0020.716±0.0080.754±0.005
    MLAN0.775±0.0150.676±0.0050.580±0.0080.666±0.0070.756±0.0030.594±0.009
    t-SVD0.781±0.0000.678±0.0000.658±0.0000.745±0.0000.683±0.0000.818±0.000
    GMC0.693±0.0000.622±0.0000.443±0.0000.605±0.0000.484±0.0000.804±0.000
    LMSC0.912±0.0060.826±0.0070.842±0.0110.887±0.0080.873±0.0070.877±0.012
    SCMV-3DT0.440±0.0200.386±0.0090.226±0.0120.411±0.0090.399±0.0120.425±0.016
    LRTG0.947±0.0000.865±0.0000.881±0.0000.909±0.0000.911±0.0000.906±0.000
    WTNNM0.793±0.0000.692±0.0000.679±0.0000.761±0.0100.693±0.0000.845±0.000
    GLTA0.859±0.0080.753±0.0150.713±0.0140.775±0.0110.827±0.0090.730±0.013
    本方法OTSC0.953±0.0000.880±0.0000.893±0.0000.918±0.0000.914±0.0000.922±0.000
    WOTSC0.947±0.0000.867±0.0000.888±0.0000.914±0.0000.909±0.0000.920±0.000
    UCI-Digits单视图方法SSCbest0.815±0.0110.840±0.0010.770±0.0050.794±0.0040.747±0.0100.848±0.004
    LRRbest0.871±0.0010.768±0.0020.736±0.0020.763±0.0020.759±0.0020.767±0.002
    RSSbest0.819±0.0000.863±0.0000.787±0.0000.810±0.0000.756±0.0000.872±0.000
    多视图方法RMSC0.915±0.0240.822±0.0080.789±0.0140.811±0.0120.797±0.0170.826±0.006
    DiMSC0.703±0.0100.772±0.0060.652±0.0060.695±0.0060.673±0.0050.718±0.007
    LT-MSC0.803±0.0010.775±0.0010.725±0.0010.753±0.0010.739±0.0010.767±0.001
    MLAN0.874±0.0000.910±0.0000.847±0.0000.864±0.0000.797±0.0000.943±0.000
    t-SVD0.955±0.0000.932±0.0000.924±0.0000.932±0.0000.930±0.0000.934±0.000
    GMC0.736±0.0000.815±0.0000.678±0.0000.713±0.0000.644±0.0000.799±0.000
    LMSC0.893±0.0000.815±0.0000.783±0.0000.805±0.0000.798±0.0000.812±0.000
    SCMV-3DT0.930±0.0010.861±0.0010.846±0.0010.861±0.0010.859±0.0010.864±0.001
    LRTG0.981±0.0000.953±0.0000.957±0.0000.961±0.0000.961±0.0000.962±0.000
    WTNNM0.998±0.0000.993±0.0000.994±0.0000.995±0.0100.998±0.0000.995±0.000
    GLTA0.997±0.0000.992±0.0000.993±0.0000.994±0.0000.994±0.0000.994±0.000
    本方法OTSC0.983±0.0010.958±0.0010.962±0.0010.966±0.0010.965±0.0000.966±0.002
    WOTSC0.983±0.0000.958±0.0000.962±0.0000.966±0.0000.965±0.0000.966±0.000
    下载: 导出CSV

    表  6  数据集BBCSport、COIL-20的聚类结果

    Table  6  Clustering results (mean $ \pm $ standard deviation) on BBCSport and COIL-20

    数据类型方法$ACC$$NMI$$AR$$F$-$score$$Precision$$Recall$
    BBCSport单视图方法SSCbest0.627±0.0030.534±0.0080.364±0.0070.565±0.0050.427±0.0040.834±0.004
    LRRbest0.836±0.0010.698±0.0020.705±0.0010.776±0.0010.768±0.0010.784±0.001
    RSSbest0.878±0.0000.714±0.0000.717±0.0000.784±0.0000.787±0.0000.782±0.000
    多视图方法RMSC0.826±0.0010.666±0.0010.637±0.0010.719±0.0010.766±0.0010.677±0.001
    DiMSC0.922±0.0000.785±0.0000.813±0.0000.858±0.0000.846±0.0000.872±0.000
    LT-MSC0.460±0.0460.222±0.0280.167±0.0430.428±0.0140.328±0.0280.629±0.053
    MLAN0.721±0.0000.779±0.0000.591±0.0000.714±0.0000.567±0.0000.962±0.000
    t-SVD0.879±0.0000.765±0.0000.784±0.0000.834±0.0000.863±0.0000.807±0.000
    GMC0.807±0.0000.760±0.0000.722±0.0000.794±0.0000.727±0.0000.875±0.000
    LMSC0.847±0.0030.739±0.0010.749±0.0010.810±0.0010.799±0.0010.822±0.001
    SCMV-3DT0.980±0.0000.929±0.0000.935±0.0000.950±0.0000.959±0.0000.942±0.000
    LRTG0.943±0.0050.869±0.0090.840±0.0120.879±0.0000.866±0.0060.892±0.014
    WTNNM0.963±0.0000.900±0.0000.908±0.0000.930±0.0000.950±0.0000.911±0.000
    GLTA1.000±0.0001.000±0.0001.000±0.0001.000±0.0001.000±0.0001.000±0.000
    本方法OTSC0.970±0.0000.914±0.0000.911±0.0000.933±0.0000.928±0.0000.937±0.000
    WOTSC0.985±0.0000.950±0.0000.957±0.0000.967±0.0000.963±0.0000.971±0.000
    COIL-20单视图方法SSCbest0.803±0.0220.935±0.0090.798±0.0220.809±0.0130.734±0.0270.804±0.028
    LRRbest0.761±0.0030.829±0.0060.720±0.0200.734±0.0060.717±0.0030.751±0.002
    RSSbest0.837±0.0120.930±0.0060.789±0.0050.800±0.0050.717±0.0120.897±0.017
    多视图方法RMSC0.685±0.0450.800±0.0170.637±0.0440.656±0.0420.620±0.0570.698±0.026
    DiMSC0.778±0.0220.846±0.0020.732±0.0050.745±0.0050.739±0.0070.751±0.003
    LT-MSC0.804±0.0110.860±0.0020.748±0.0040.760±0.0070.741±0.0090.776±0.006
    MLAN0.862±0.0110.961±0.0040.835±0.0060.844±0.0130.758±0.0080.953±0.007
    t-SVD0.830±0.0000.884±0.0050.786±0.0030.800±0.0040.785±0.0070.808±0.001
    GMC0.791±0.0010.941±0.0000.782±0.0000.794±0.0000.694±0.0000.929±0.000
    LMSC0.806±0.0130.862±0.0070.765±0.0140.776±0.0130.770±0.0130.783±0.013
    SCMV-3DT0.701±0.0280.810±0.0090.635±0.0030.654±0.0290.614±0.0390.702±0.018
    LRTG0.927±0.0000.976±0.0000.928±0.0000.932±0.0000.905±0.0000.961±0.000
    WTNNM0.902±0.0000.945±0.0000.893±0.0000.898±0.0100.897±0.0000.900±0.000
    GLTA0.903±0.0060.946±0.0010.891±0.0070.897±0.0060.893±0.0130.900±0.001
    本方法OTSC0.936±0.0040.983±0.0040.938±0.0060.941±0.0060.906±0.0070.979±0.006
    WOTSC0.960±0.0260.976±0.0040.934±0.0250.938±0.0240.918±0.0420.959±0.004
    下载: 导出CSV
  • [1] Du G W, Zhou L H, Yang Y D, Lü K, Wang L Z. Deep multiple auto-encoder-based multi-view clustering. Data Science and Engineering, 2021, 6(3): 323-338 doi: 10.1007/s41019-021-00159-z
    [2] Fu L L, Chen Z L, Chen Y Y, Wang S P. Unified low-rank tensor learning and spectral embedding for multi-view subspace clustering. IEEE Transactions on Multimedia, DOI: 10.1109/TMM.2022.3185886
    [3] Wang X Y, Han T X, Yan S C. An HOG-LBP human detector with partial occlusion handling. In: Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV). Kyoto, Japan: IEEE, 2009. 32−39
    [4] Lades M, Vorbruggen J C, Buhmann J, Lang J, von der Malsburg C, Wurtz R P, et al. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 1993, 42(3): 300-311 doi: 10.1109/12.210173
    [5] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). San Diego, USA: IEEE, 2005. 886−893
    [6] Zhang C Q, Fu H Z, Liu S, Liu G C, Cao X C. Low-rank tensor constrained multiview subspace clustering. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 1582−1590
    [7] Xie Y, Tao D C, Zhang W S, Liu Y, Zhang L, Qu Y Y. On unifying multi-view self-representations for clustering by tensor multi-rank minimization. International Journal of Computer Vision, 2018, 126(11): 1157-1179 doi: 10.1007/s11263-018-1086-2
    [8] Shi D, Zhu L, Li J J, Cheng Z Y, Zhang Z. Flexible multiview spectral clustering with self-adaptation. IEEE Transactions on Cybernetics, DOI: 10.1109/TCYB.2021.3131749
    [9] 赵博宇, 张长青, 陈蕾, 刘新旺, 李泽超, 胡清华. 生成式不完整多视图数据聚类. 自动化学报, 2021, 47(8): 1867-1875 doi: 10.16383/j.aas.c200121

    Zhao Bo-Yu, Zhang Chang-Qing, Chen Lei, Liu Xin-Wang, Li Ze-Chao, Hu Qing-Hua. Generative model for partial multi-view clustering. Acta Automatica Sinica, 2021, 47(8): 1867-1875 doi: 10.16383/j.aas.c200121
    [10] Qin Y L, Wu H Z, Zhang X P, Feng G R. Semi-supervised structured subspace learning for multi-view clustering. IEEE Transactions on Image Processing, 2022, 31: 1-14 doi: 10.1109/TIP.2021.3128325
    [11] Han Z B, Zhang C Q, Fu H Z, Zhou J Y. Trusted multi-view classification with dynamic evidential fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, DOI: 10.1109/TPAMI.2022.3171983
    [12] An J F, Luo H Y, Zhang Z, Zhu L, Lu G M. Cognitive multi-modal consistent hashing with flexible semantic transformation. Information Processing & Management, 2022, 59(1): Article No. 102743
    [13] Peng Z H, Liu H, Jia Y H, Hou J H. Adaptive attribute and structure subspace clustering network. IEEE Transactions on Image Processing, 2022, 31: 3430-3439 doi: 10.1109/TIP.2022.3171421
    [14] Huang Z Y, Zhou J T, Zhu H Y, Zhang C, Lv J C, Peng X. Deep spectral representation learning from multi-view data. IEEE Transactions on Image Processing, 2021, 30: 5352-5362 doi: 10.1109/TIP.2021.3083072
    [15] Liang Y W, Huang D, Wang C D, Yu P S. Multi-view graph learning by joint modeling of consistency and inconsistency. IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2022.3192445
    [16] Wang H, Yang Y, Liu B. GMC: Graph-based multi-view clustering. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1116-1129 doi: 10.1109/TKDE.2019.2903810
    [17] Patel V M, Vidal R. Kernel sparse subspace clustering. In: Proceedings of the IEEE International Conference on Image Processing (ICIP). Paris, France: IEEE, 2014. 2849−2853
    [18] Yin M, Guo Y, Gao J B, He Z S, Xie S L. Kernel sparse subspace clustering on symmetric positive definite manifolds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 5157−5164
    [19] Wang S Q, Chen Y Y, Zhang L N, Cen Y G, Voronin V. Hyper-laplacian regularized nonconvex low-rank representation for multi-view subspace clustering. IEEE Transactions on Signal and Information Processing over Networks, 2022, 8: 376-388 doi: 10.1109/TSIPN.2022.3169633
    [20] Li Z L, Tang C, Zheng X, Liu X W, Zhang W, Zhu E. High-order correlation preserved incomplete multi-view subspace clustering. IEEE Transactions on Image Processing, 2022, 31: 2067-2080 doi: 10.1109/TIP.2022.3147046
    [21] Liu G C, Lin Z C, Yan S C, Sun J, Yu Y, Ma Y. Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184 doi: 10.1109/TPAMI.2012.88
    [22] Elhamifar E, Vidal R. Sparse subspace clustering: Algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781 doi: 10.1109/TPAMI.2013.57
    [23] 尹明, 吴浩杨, 谢胜利, 杨其宇. 基于自注意力对抗的深度子空间聚类. 自动化学报, 2022, 48(1): 271-281

    Yin Ming, Wu Hao-Yang, Xie Sheng-Li, Yang Qi-Yu. Self-attention adversarial based deep subspace clustering. Acta Automatica Sinica, 2022, 48(1): 271-281
    [24] Gao H C, Nie F P, Li X L, Huang H. Multi-view subspace clustering. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 4238−4246
    [25] Chen Y Y, Xiao X L, Zhou Y C. Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix. Pattern Recognition, 2020, 106: 107441 doi: 10.1016/j.patcog.2020.107441
    [26] Zhang G Y, Zhou Y R, Wang C D, Huang D, He X Y. Joint representation learning for multi-view subspace clustering. Expert Systems with Applications, 2021, 166: 113913 doi: 10.1016/j.eswa.2020.113913
    [27] Wu J L, Xie X Y, Nie L Q, Lin Z C, Zha H B. Unified graph and low-rank tensor learning for multi-view clustering. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 6388-6395 doi: 10.1609/aaai.v34i04.6109
    [28] Carroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via an n-way generalization of “eckart-young” decomposition. Psychometrika, 1970, 35(3): 283-319 doi: 10.1007/BF02310791
    [29] Tucker L R. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966, 31(3): 279-311 doi: 10.1007/BF02289464
    [30] Kilmer M E, Braman K, Hao N, Hoover R C. Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging. SIAM Journal on Matrix Analysis and Applications, 2013, 34(1): 148-172 doi: 10.1137/110837711
    [31] Liu X W, Wang L, Zhang J, Yin J P, Liu H. Global and local structure preservation for feature selection. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(6): 1083-1095 doi: 10.1109/TNNLS.2013.2287275
    [32] Chen G L, Lerman G. Spectral curvature clustering (SCC). International Journal of Computer Vision, 2009, 81(3): 317-330 doi: 10.1007/s11263-008-0178-9
    [33] Liu G C, Lin Z C, Yu Y. Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th International Conference on Machine Learning (ICML). Haifa, Israel: Omnipress, 2010. 663−670
    [34] 王卫卫, 李小平, 冯象初, 王斯琪. 稀疏子空间聚类综述. 自动化学报, 2015, 41(8): 1373-1384 doi: 10.16383/j.aas.2015.c140891

    Wang Wei-Wei, Li Xiao-Ping, Feng Xiang-Chu, Wang Si-Qi. A survey on sparse subspace clustering. Acta Automatica Sinica, 2015, 41(8): 1373-1384 doi: 10.16383/j.aas.2015.c140891
    [35] You C, Robinson D P, Vidal R. Scalable sparse subspace clustering by orthogonal matching pursuit. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 3918−3927
    [36] Vidal R, Favaro P. Low rank subspace clustering (LRSC). Pattern Recognition Letters, 2014, 43: 47-61 doi: 10.1016/j.patrec.2013.08.006
    [37] Kheirandishfard M, Zohrizadeh F, Kamangar F. Deep low-rank subspace clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, USA: IEEE, 2020. 864−865
    [38] Nie F P, Wang X Q, Huang H. Clustering and projected clustering with adaptive neighbors. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD). New York, USA: ACM, 2014. 977−986
    [39] Yin M, Gao J B, Xie S L, Guo Y. Multiview subspace clustering via tensorial t-product representation. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 851-864 doi: 10.1109/TNNLS.2018.2851444
    [40] Xia R K, Pan Y, Du L, Yin J. Robust multi-view spectral clustering via low-rank and sparse decomposition. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI). Québec City, Canada: AAAI Press, 2014. 2149−2155
    [41] Chen Y Y, Xiao X L, Peng C, Lu G M, Zhou Y C. Low-rank tensor graph learning for multi-view subspace clustering. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 92-104 doi: 10.1109/TCSVT.2021.3055625
    [42] Guo X J. Robust subspace segmentation by simultaneously learning data representations and their affinity matrix. In: Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina: AAAI Press, 2015. 3547−3553
    [43] 文杰, 颜珂, 张正, 徐勇. 基于低秩张量图学习的不完整多视角聚类. 自动化学报, DOI: 10.16383/j.aas.c200519

    Wen Jie, Yan Ke, Zhang Zheng, Xu Yong. Low-rank tensor graph learning based incomplete multi-view clustering. Acta Automatica Sinica, DOI: 10.16383/j.aas.c200519
    [44] Cao X C, Zhang C Q, Fu H Z, Liu S, Zhang H. Diversity-induced multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2015. 586−594
    [45] Nie F P, Cai G H, Li J, Li X L. Auto-weighted multi-view learning for image clustering and semi-supervised classification. IEEE Transactions on Image Processing, 2018, 27(3): 1501-1511 doi: 10.1109/TIP.2017.2754939
    [46] Zhang C Q, Fu H Z, Hu Q H, Cao X C, Xie Y, Tao D C, et al. Generalized latent multi-view subspace clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(1): 86-99 doi: 10.1109/TPAMI.2018.2877660
    [47] Gao Q X, Xia W, Wan Z Z, Xie D Y, Zhang P. Tensor-SVD based graph learning for multi-view subspace clustering. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3930-3937 doi: 10.1609/aaai.v34i04.5807
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  1181
  • HTML全文浏览量:  467
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 录用日期:  2022-08-22
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2023-01-07

目录

    /

    返回文章
    返回