Synchronization Parameter Estimation Algorithm of Silent Node in Wireless Sensor Networks With Timestamp-free Exchange
-
摘要: 能效是无线传感网(Wireless sensor networks, WSNs)时间同步机制设计时需考虑的一个关键因素. 近年来, 隐含同步和免时间戳同步两种低功耗同步机制备受关注. 前者利用监听方式节省了发送同步信息所带来的能耗; 后者则通过接收端的定时响应, 无需在交互过程中传递时间戳, 减少了能量开销. 将免时间戳同步与隐含同步相结合, 能够进一步降低无线传感网同步功能实施所导致的额外能耗. 但目前免时间戳交互下的隐含节点只能估计时钟漂移, 无法估计时钟偏移. 针对该问题, 提出了一种基于最大似然估计(Maximum likelihood estimation, MLE)的免时间戳同步参数估计算法, 实现对隐含节点时钟漂移和偏移参数的联合估计, 并推导获得了对应估计器的性能界限. 仿真结果验证了所提估计器的有效性.Abstract: Energy efficiency is a key issue for designing time synchronization mechanism in wireless sensor networks (WSNs). Recently, implicit synchronization and timestamp-free synchronization have attracted much attention. The former uses the monitoring method to save the energy consumption caused by sending synchronization information. The latter reduces the energy overhead by the timing response of receiver without transmitting the timestamp in the exchange process. The combination of timestamp-free synchronization and implicit synchronization can further reduce additional energy consumption caused by the implementation of synchronization function in wireless sensor networks. However, at present, the silent node in timestamp-free exchange can only estimate the clock skew and not the clock offset. To solve this issue, a timestamp-free synchronization parameter estimation algorithm based on maximum likelihood estimation (MLE) is proposed, which can achieve the joint estimation of clock skew and offset for silent node. Then, the corresponding lower bounds of estimation are derived. Finally, simulation results verify the effectiveness of the proposed estimators.
-
表 1 本文算法与隐含同步算法、免时间戳同步算法以及免时间戳和隐含同步结合算法的计算数量对比结果
Table 1 The comparison results of the number of calculations among proposed algorithm, implicit synchronization algorithm, timestamp-free synchronization algorithm and combination algorithm of timestamp-free and implicit synchronization
算法 参数 加减法数量 乘除法数量 本文算法 时钟漂移 $2{N^2} + 14N - 3$ ${N^2} + 11N + 3$ 时钟偏移 $5{N^2} + 13N - 2$ $4{N^2} + 11N + 4$ 隐含同步算法 时钟漂移 $2{N^2} + 12N - 3$ $3N + 3$ 时钟偏移 $5{N^2} + 11N - 3$ ${N^2} + 3N + 3$ 免时间戳同步算法 时钟漂移 ${N^2} + 6N - 2$ $4N + 3$ 免时间戳与隐含同步结合算法 时钟漂移 $4{N^2} + 10N - 1$ $4{N^2} + 12N + 1$ -
[1] Huan X T, Kim K S, Lee S, Lim E G, Marshall A. Improving multi-hop time synchronization performance in wireless sensor networks based on packet-relaying gateways with Per-Hop delay compensation. IEEE Transactions on Communications, 2021, 69(9): 6093-6105 doi: 10.1109/TCOMM.2021.3092038 [2] 王頲, 徐小权, 唐晓铭, 黄庆卿, 李永福. 工业物联网中的精确时钟同步: 网络化控制理论观点. 自动化学报, 2021, 47(7): 1720-1738Wang Ting, Xu Xiao-Quan, Tang Xiao-Ming, Huang Qing-Qing, Li Yong-Fu. Precise clock synchronization in industrial internet of things: Networked control perspective. Acta Automatica Sinica, 2021, 47(7): 1720-1738 [3] 张檬, 韩敏. 基于单向耦合法的不确定复杂网络间有限时间同步. 自动化学报, 2021, 47(7): 1624-1632Zhang Meng, Han Min. Finite-time synchronization between uncertain complex networks based on unidirectional coupling method. Acta Automatica Sinica, 2021, 47(7): 1624-1632 [4] 王恒, 朱元杰, 杨杭, 王平. 基于优先级分类的工业无线网络确定性调度算法. 自动化学报, 2020, 46(2): 373-384Wang Heng, Zhu Yuan-Jie, Yang Hang, Wang Ping. Deterministic scheduling algorithm with priority classification for industrial wireless networks. Acta Automatica Sinica, 2020, 46(2): 373-384 [5] 王恒, 刘清华, 李敏, 谭帅. 考虑链路重传的工业无线网络确定性调度算法. 自动化学报, 2021, 47(11): 2664-2674Wang Heng, Liu Qing-Hua, Li Min, Tan Shuai. Orchestration methods with determinacy in wireless industrial network by considering repeat transmissions. Acta Automatica Sinica, 2021, 47(11): 2664-2674 [6] Jia P Y, Wang X B, Shen X M. Passive network synchronization based on concurrent observations in industrial IoT systems. IEEE Internet of Things Journal, 2021, 8(18): 14028-14038 doi: 10.1109/JIOT.2021.3070242 [7] Noh K L, Serpedin E, Qaraqe K. A new approach for time synchronization in wireless sensor networks: Pairwise broadcast synchronization. IEEE Transactions on Wireless Communications, 2008, 7(9): 3318-3322 doi: 10.1109/TWC.2008.070343 [8] Chaudhari Q M, Serpedin E, Qaraqe K. On minimum variance unbiased estimation of clock offset in a two-way message exchange mechanism. IEEE Transactions on Information Theory, 2010, 56(6): 2893-2904 doi: 10.1109/TIT.2010.2046233 [9] Chaudhari Q M, Serpedin E, Kim J S. Energy-efficient estimation of clock offset for inactive nodes in wireless sensor networks. IEEE Transactions on Information Theory, 2010, 56(1): 582-596 doi: 10.1109/TIT.2009.2034817 [10] Wang H, Zeng H Y, Wang P. Linear estimation of clock frequency offset for time synchronization based on overhearing in wireless sensor networks. IEEE Communications Letters, 2016, 20(2): 288-291 doi: 10.1109/LCOMM.2015.2510645 [11] Wang H, Zeng H Y, Li M, Wang B G, Wang P. Maximum likelihood estimation of clock skew in wireless sensor networks with periodical clock correction under exponential delays. IEEE Transactions on Signal Processing, 2017, 65(10): 2714-2724 doi: 10.1109/TSP.2017.2675863 [12] Liu G P, Yan S F, Mao L L. Receiver-only-based time synchronization under exponential delays in underwater wireless sensor networks. IEEE Internet of Things Journal, 2020, 7(10): 9995-10009 doi: 10.1109/JIOT.2020.2988695 [13] Brown D R, Klein A G. Precise timestamp-free network synchronization. In: Proceedings of the 2013 Annual Conference on Information Sciences and Systems (CISS). Baltimore, MD, USA: IEEE, 2013. 1−6 [14] Etzlinger B, Palaoro N, Haselmayr W, Rudic B, Springer A. Timestamp free synchronization with sub-tick accuracy in the presence of discrete clocks. IEEE Transactions on Wireless Communications, 2017, 16(2): 771-783 doi: 10.1109/TWC.2016.2630063 [15] Wang H, Yu F, Li M, Zhong Y. Clock skew estimation for timestamp-free synchronization in industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 2021, 17(1): 90-99 doi: 10.1109/TII.2020.2975289 [16] Wang H, Gong P F, Yu F, Li M. Clock offset and skew estimation using hybrid one-way message dissemination and two-way timestamp free synchronization in wireless sensor networks. IEEE Communications Letters, 2020, 24(12): 2893-2897 doi: 10.1109/LCOMM.2020.3019521 [17] Phan L A, Kim T, Kim T. Robust neighbor-aware time synchronization protocol for wireless sensor network in dynamic and hostile environments. IEEE Internet of Things Journal, 2020, 8(3): 1934-1945 [18] Zhao S, Zhang X P, Cui X W, Lu Q L. A new TOA localization and synchronization system with virtually synchronized periodic asymmetric ranging network. IEEE Internet of Things Journal, 2021, 8(11): 9030-9044 doi: 10.1109/JIOT.2021.3055677 [19] Shi F R, Li H L, Yang S X, Tuo X G, Lin M S. Novel maximum likelihood estimation of clock skew in one-way broadcast time synchronization. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9948-9957 doi: 10.1109/TIE.2019.2955427 [20] Steven M K. Fundamentals of Statistical Signal Processing, Vol I: Estimation Theory. Bergen County: Prentice-Hall, 1993. 22−35